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Preface

Integration, handling data of immense size and uncertainty, and dealing with risk
management are among crucial issues in petroleum geosciences. The problems one
has to solve in this domain are becoming too complex to rely on a single discipline
for effective solutions, and the costs associated with poor predictions (e.g., dry
holes) increase. Therefore, there is a need to establish new approaches aimed at
proper integration of disciplines (such as petroleum engineering, geology, geo-
physics, and geochemistry), data fusion, risk reduction, and uncertainty
management.

This book presents several artificial intelligent approaches1 for tackling and
solving challenging practical problems from the petroleum geosciences and
petroleum industry. Written by experienced academics, this book offers state-of-
the-art working examples and provides the reader with exposure to the latest
developments in the field of artificial intelligent methods applied to oil and gas
research, exploration, and production. It also analyzes the strengths and weaknesses
of each method presented using benchmarking, while also emphasizing essential
parameters such as robustness, accuracy, speed of convergence, computer time,
overlearning, or the role of normalization.

The reader of this book will benefit from exposure to the latest developments in
the field of modern heuristics applied to oil and gas research, exploration, and
production. These approaches can be used for uncertainty analysis, risk assessment,
data fusion and mining, data analysis and interpretation, and knowledge discovery,
from diverse data such as 3-D seismic, geological data, well logging, and pro-
duction data. Thus, the book is intended for petroleum scientists, data miners, data
scientists and professionals, and postgraduate students involved in the petroleum
industry.

Petroleum Geosciences are—like many other fields—a paradigmatic realm of
difficult optimization and decision-making real-world problems. As the number,

1 Artificial Intelligence methods, some of which are grouped together in various ways, under
names such as Computational Intelligence, Soft Computing,Meta-heuristics, orModern heuristics.

v



difficulty, and scale of such specific problems increase steadily, the need for
diverse, adjustable problem-solving tools can hardly be satisfied by the necessarily
limited number of approaches typically included in a curriculum/syllabus from
academic fields other than Computer Science (such as Petroleum Geology).
Therefore, the first three chapters of this volume aim at providing working infor-
mation about modern problem-solving tools, in particular in machine learning and
in data mining, and also at inciting the reader to look further into this thriving topic.

Traditionally, solving a given problem in mathematics and in sciences at large
implies the construction of an abstract model, the process of proving theoretical
results valid in that model, and eventually, based on those theoretical results, the
design of a method for solving the problem. This problem-solving paradigm has
been and will continue to be immensely successful. Nevertheless, an abstract model
is an approximation of the real-world problem; there have been failures triggered by
a tiny mismatch between the original problem and the proposed model for it.
Furthermore, a problem-solving method developed in this manner is likely to be
useful only for the problem at hand. While, ultimately, any problem-solving
technique may be—in various degrees—subject to these two observations, some
relatively new approaches illustrate alternative lines of attack; it is the editors’ hope
that the first three chapters of the book illustrate this idea in a way that will prove to
be useful to the readers.

In the first chapter, Simovici presents some of the main paradigms of intelligent
data analysis provided by machine learning and data mining. After discussing
several types of learning (supervised, unsupervised, semi-supervised, active, and
reinforcement learning), he examines several classes of learning algorithms (naïve
Bayes classifiers, decision trees, support vector machines, and neural networks) and
the modalities to evaluate their performance. Examples of specific applications of
algorithms are given using System R.

The second and third chapters, by Luchian, Breaban, and Bautu, are dedicated to
meta-heuristics. After a rather simple introduction to the topic, the second chapter
presents, based on working examples, evolutionary computing in general and, in
particular, genetic algorithms and differential evolution; particle swarm optimiza-
tion is also extensively discussed. Topics of particular importance, such as multi-
modal and multi-objective problems, hybridization, and also applications in
petroleum geosciences are discussed based on concrete examples. The third chapter
gives a compact presentation of genetic programming, gene expression program-
ming, and also discusses an R package for genetic programming and applications of
GP for solving specific problems from the oil and gas industry.

Ashena and Thonhauser discuss the Artificial Neural Networks (ANNs), which
has the potential to increase the ability of problem solving in geosciences and in the
petroleum industry, particularly in case of limited availability or lack of input data.
ANN applications have become widespread because they proved to be able to
produce reasonable outputs for inputs they have not learned how to deal with. The
following subjects are presented: artificial neural networks basics (neurons, acti-
vation function, ANN structure), feed-forward ANN, back-propagation and learn-
ing, perceptrons and back-propagation, multilayer ANNs and back-propagation
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algorithm, data processing by ANN (training, overfitting, testing, validation), ANN,
and statistical parameters. An applied example of ANN, followed by applications of
ANN in geosciences and petroleum industry complete the chapter.

Al-Anazi and Gates present the use of support vector regression to accurately
estimate two important geomechanical rock properties, Poisson’s ratio and Young’s
modulus. Accurate prediction of rock elastic properties is essential for wellbore
stability analysis, hydraulic fracturing design, sand production prediction and
management, and other geomechanical applications. The two most common
required material properties are Poisson’s ratio and Young’s modulus. These elastic
properties are often reliably determined from laboratory tests by using cores
extracted from wells under simulated reservoir conditions. Unfortunately, most
wells have limited core data. On the other hand, wells typically have log data. By
using suitable regression models, the log data can be used to extend knowledge of
core-based elastic properties to the entire field. Artificial neural networks (ANN)
have proven to be successful in many reservoir characterization problems. Although
nonlinear problems can be well resolved by ANN-based models, extensive
numerical experiments (training) must be done to optimize the network structure. In
addition, generated regression models from ANNs may not perfectly generalize to
unseen input data. Recently, support vector machines (SVMs) have proven suc-
cessful in several real-world applications for its potential to generalize and converge
to a global optimal solution. SVM models are based on the structural risk mini-
mization principle that minimizes the generalization error by striking a balance
between empirical training errors and learning machine capacity. This has proven
superior in several applications to the empirical risk minimization principle adopted
by ANNs that aims to reduce the training error only. Here, support vector regression
(SVR) to predict Poisson’s ratio and Young’s modulus is described. The method
uses a fuzzy-based ranking algorithm to select the most significant input variables
and filter out dependency. The learning and predictive capabilities of the SVR
method is compared to that of a back-propagation neural network (BPNN). The
results demonstrate that SVR has similar or superior learning and prediction
capabilities to that of the BPNN. Parameter sensitivity analysis was performed to
investigate the effect of the SVM regularization parameter, the regression tube
radius, and the type of kernel function used. The result shows that the capability
of the SVM approximation depends strongly on these parameters.

The next three chapters introduce the active learning method (ALM) and present
various applications of it in petroleum geosciences.

First, Cranganu, and Bahrpeyma use ALM to predict a missing log (DT or sonic
log) when only two other logs (GR and REID) are present. In their approach,
applying ALM involves three steps: (1) supervised training of the model, using
available GR, REID, and DT logs; (2) confirmation and validation of the model by
blind-testing the results in a well containing both the predictors (GR, REID) and the
target (DT) values; and (3) applying the predicted model to wells containing the
predictor data and obtaining the synthetic (simulated) DT values. Their results
indicate that the performance of the algorithm is satisfactory, while the performance
time is significantly low. The quality of the simulation procedure was assessed by
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three parameters, namely mean square error (MSE), mean relative error (MRE), and
Pearson product momentum correlation coefficient (R). The authors employed both
the measured and simulated sonic log DT to predict the presence and estimate the
depth intervals where overpressured fluid zone may develop in the Anadarko Basin,
Oklahoma. Based on interpretation of the sonic log trends, they inferred that
overpressure regions are developing between *1,250 and 2,500 m depth and the
overpressured intervals have thicknesses varying between *700 and 1,000 m.
These results match very well previous published results reported in the Anadarko
Basin, using the same wells, but different artificial intelligent approaches.

Second, Bahrpeyma et al. employed ALM to estimate another missing log in
hydrocarbon reservoirs, namely the density log. The regression and normalized
mean squared error (MSE) for estimating density log using ALM were equal to 0.9
and 0.042, respectively. The results, including errors and regression coefficients,
proved that ALM was successful in processing the density estimation. In their
chapter, the authors illustrated ALM by an example of a petroleum field in the NW
Persian Gulf.

Third, Bahrpeyma et al. tackled the common issue when reservoir engineers
should analyze the reservoirs with small sets of measurements (this problem is
known as the small sample size problem). Because of small sample size problem,
modeling techniques commonly fail to accurately extract the true relationships
between the inputs and the outputs used for reservoir properties prediction or
modeling. In this chapter, small sample size problem is addressed for modeling
carbonate reservoirs by using the active learning method (ALM). Noise injection
technique, which is a popular solution to small sample size problem, is employed to
recover the impact of separating the validation and test sets from the entire sample
set in the process of ALM. The proposed method is used to model hydraulic flow
units (HFUs). HFUs are defined as correlatable and mappable zones within a res-
ervoir controlling the fluid flow. This research presents quantitative formulation
between flow units and well log data in one of the heterogeneous carbonate res-
ervoirs in Persian Gulf. The results for R and nMSE are 85 % and 0.0042,
respectively, which reflect the ability of the proposed method to improve gener-
alization ability of the ALM when facing with sample size problem.

Dobróka and Szabó carried out a well log analysis by global optimization-based
interval inversion method. Global optimization procedures, such as genetic algo-
rithms and simulated annealing methods, offer robust and highly accurate solution
to several problems in petroleum geosciences. The authors argue that these methods
can be used effectively in the solution of well-logging inverse problems. Traditional
inversion methods are used to process the borehole geophysical data collected at a
given depth point. As having barely more types of probes than unknowns in a given
depth, a set of marginally overdetermined inverse problems has to be solved along a
borehole. This single inversion scheme represents a relatively noise-sensitive
interpretation procedure. To reduce the noise, the degree of overdetermination
of the inverse problem must be increased. This condition can be achieved by using
a so-called interval inversion method, which inverts all data from a greater depth
interval jointly to estimate petrophysical parameters of hydrocarbon reservoirs to
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the same interval. The chapter gives a detailed description of the interval inversion
problem, which is then solved by a series expansion-based discretization technique.
The high degree of overdetermination significantly increases the accuracy of
parameter estimation. The quality improvement in the accuracy of estimated model
parameters often leads to a more reliable calculation of hydrocarbon reserves. The
knowledge of formation boundaries is also required for reserve calculation. Well
logs contain information about layer thicknesses, which cannot be extracted by the
traditional local inversion approach. The interval inversion method is applicable to
derive the layer boundary coordinates and certain zone parameters involved in the
interpretation problem automatically. In this chapter, the authors analyzed how to
apply a fully automated procedure for the determination of rock interfaces and
petrophysical parameters of hydrocarbon formations. Cluster analysis of well-
logging data is performed as a preliminary data-processing step before inversion.
The analysis of cluster number log allows the separation of formations and gives an
initial estimate for layer thicknesses. In the global inversion phase, the model
including petrophysical parameters and layer boundary coordinates is progressively
refined to achieve an optimal solution. The very fast simulated reannealing method
ensures the best fit between the measured data and theoretical data calculated on the
model. The inversion methodology is demonstrated by a hydrocarbon field exam-
ple, with an application for shaly sand reservoirs.

Finally, Mohebbi and Kaydani undertake a detailed review of meta-heuristics
dealing with permeability estimation in petroleum reservoirs. They argue that
proper permeability distribution in reservoir models is very important for the
determination of oil and gas reservoir quality. In fact, it is not possible to have
accurate solutions in many petroleum engineering problems without having accu-
rate values for this key parameter of hydrocarbon reservoir. Permeability estimation
by individual techniques within the various porous media can vary with the state of
in situ environment, fluid distribution, and the scale of the medium under investi-
gation. Recently, attempts have been made to utilize meta-heuristics for the iden-
tification of the relationship that may exist between the well log data and core
permeability. This chapter overviews the different meta-heuristics in permeability
prediction, indicating the advantages of each method. In the end, some suggestions
and comments about how to choose the best method are presented.

December 2014 Constantin Cranganu
Henri Luchian

Mihaela Elena Breaban
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Intelligent Data Analysis
Techniques—Machine Learning
and Data Mining

Dan Simovici

Abstract This introductory chapter presents some of the main paradigms of
intelligent data analysis provided by machine learning and data mining. After
discussing several types of learning (supervised, unsupervised, semi-supervised,
active and reinforcement learning) we examine several classes of learning algo-
rithms (naive Bayes classifiers, decision trees, support vector machines, and neural
networks) and the modalities to evaluate their performance. Examples of specific
applications of algorithms are given using System R.

Keywords Supervised learning � Unsupervised learning � Clustering � General-
ization � Overfitting � Active learning � Classifiers � A priori probabilities �
A posteriori probabilities � Decision trees � Entropy � Impurity � Naive Bayes
classifiers � Perceptrons � Neural Networks

1 Introduction

Machine learning and its applied counterpart, data mining, deal with problems that
present difficulties in formulating algorithms that can be readily translated into
programs, due to their complexity. Examples of such problems are finding diag-
nosis for patients starting with a series of their symptoms, determining credit
worthiness of customers based on their demographics and credit history. In each of
these problems, the challenge is to compute a label for each analyzed piece of data
that depends on the characteristics of data.

The general approach known as supervised learning is to begin with a number of
labeled examples (where answers are known) in order to generate an algorithm that
computes the function that gives the answers starting from these examples.

D. Simovici (&)
Department of Computer Science, University of Massachusetts Boston, Boston, MA, USA
e-mail: dsim@cs.umb.edu

© Springer International Publishing Switzerland 2015
C. Cranganu et al. (eds.), Artificial Intelligent Approaches in Petroleum Geosciences,
DOI 10.1007/978-3-319-16531-8_1
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In other approaches in machine learning, the challenge is to identify structure
that is hidden in data, e.g., identifying groups of data such that strong similarity
exists between objects that belong to the same group and also that objects that
belong to different groups are sufficiently distinct. This activity is known as clus-
tering and belongs to the category of unsupervised learning. The term “unsuper-
vised” refers to the fact that this type of learning does not require operator
intervention. Other machine learning activities of this type include outlier identi-
fication and density estimation.

An intermediate type of activity, referred as semi-supervised learning, requires a
limited involvement of the operator. For example, in the case of clustering, this may
allow the operator to specify pairs of objects that must belong to the same group
and pairs of objects that may not belong to the same group.

The quality of the learning process is assessed through its capability for gen-
eralization, that is, the capacity of the produced algorithm for computing correct
labels for yet unseen examples. It is important to note that the correct behavior of an
algorithm relative to the training data is no guarantee, in general, for its general-
ization prowess. Indeed, it is sometime the case that the pursuit of a perfect fit of the
learning algorithm to the training data leads to overfitting. This term describes the
situation when the algorithm acts correctly on the training data but is unable to
predict unseen data. In an extreme case, a rote learner will memorize the labels of
its training data and nothing else. Such a learner will be perfectly accurate on its
training data but lack completely any generalization capability.

A machine learning algorithm can achieve greater accuracy with fewer training
labels if it is allowed to choose the data from which it learns, that is, to apply active
learning. An active learner may pose queries soliciting a human operator to label a
data instance. Since unlabeled data are abundant and, in many cases, easily
obtained, there are good reasons to use this learning paradigm.

Reinforcement learning is a machine learning paradigm inspired by psychology
which emphasizes learning by an agent from its direct interaction with the data in
order to attain certain goals of learning, e.g., accuracy of label prediction. The
framework of this type of learning makes use of states and actions of an agent, and
the rewards and deals with uncertainty and non-determinism.

Machine learning techniques can be applied to a wide variety of problems and tend
to avoid the difficulties of standard problem-solving techniques where a complete
understanding of data is required at the beginning of the problem-solving process.

We have selected system R to provide examples of applications of algorithms
presented in this chapter. This is one of the most popular, freely available software
system for statistics and machine learning, that is continuously expanded by a large
community of developers that have created packages that address certain problems.
The basic software is available from http://www.r-project.org/. Packages can be
obtained from many mirrors of the software that can be easily accessed after the
basic system is installed.

Data sets used in R are either part of the basic software or can be downloaded
from the University of California Irvine machine learning repository whose URL is
http://archive.ics.uci.edu/ml/. The basic R system is capable of reading files in the
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csv format, which is one of the most common modalities for uploading data. For
example, to create a data frame d by reading the file d.csv, one could use

d <- read.csv("d.csv")

To learn the basics of R, the reader is invited to consult one of the basic
references (Lander 2014; Maindonald and Braun 2004) or seek help on the Web.

2 Simple Classifiers

We present now several types of classifiers using two of the most popular data sets,
namely Fisher’s iris data and the tennis data.

Example 2.1 The iris data were collected by Anderson (1936), an American bot-
anist who was interested in the study of variations in three species of iris flowers in
Gaspè peninsula in northeastern Canada and was made popular in statistics by
Fisher (1936).

Fisher’s iris data consist of measurements on 150 of iris specimens and include
measurements of sepal length, sepal width, petal length, and petal width, as well as
the species of the plants. The attributes that are distinct from the class are numerical,
so each plant is represented by a point in R

4. The species identified are iris setosa,
iris versicolor, and iris virginica, and there are 50 specimens from each of these
species, as shown in Table 1.

We will use various types of classifiers as they are implemented in system R,
one of the most used pieces of software for data analysis, which is freely available
on the Internet.

The iris data set is a part of the basic R package and can be loaded using

> data(iris)

The structure of this data set can be obtained using

> str(iris)

which returns a summary description:

’data.frame’: 150 obs. of 5 variables:
$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
$ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
$ Species : Factor w/ 3 levels "setosa","versicolor",..:1 1 ...

Example 2.2 The tennis data set shown in Table 2 is a fictitious small data set
that specifies conditions from playing an outdoor game. It contains five attributes:
outlook, temperature, humidity, windy, and play.

Intelligent Data Analysis Techniques … 3



The data can be placed in a comma-separated EXCEL file tennis.csv and
then loaded in R using a statement of the form

tennis <- read.csv("tennis.csv")

Table 1 Fisher’s iris data set

Sepal length Sepal width Petal length Petal width Species

SL SW PL PW

5.1 3.5 1.4 0.2 Setosa

4.9 3.0 1.4 0.2 Setosa

..

. ..
. ..

. ..
. ..

.

5.3 3.7 1.5 0.2 Setosa

5.0 3.3 1.4 0.2 Setosa

7.0 3.2 4.7 1.4 Versicolor

6.4 3.2 4.5 1.5 Versicolor

..

. ..
. ..

. ..
. ..

.

5.1 2.5 3.0 1.1 Versicolor

5.7 2.8 4.1 1.3 Versicolor

6.3 3.3 6.0 2.5 Virginica

5.8 2.7 5.1 1.9 virginica

..

. ..
. ..

. ..
. ..

.

6.2 3.4 5.4 2.3 Virginica

5.9 3.0 5.1 1.8 Virginica

Table 2 Tennis data set

outlook temperature humidity windy play

Sunny Hot High No No

Sunny Hot High Yes No

Overcast Hot High No Yes

Rainy Mild High No Yes

Rainy Cool Normal No Yes

Rainy Cool Normal Yes No

Overcast Cool Normal Yes Yes

Sunny Mild High No No

Sunny Cool Normal No Yes

Rainy Mild Normal No Yes

Sunny Mild Normal Yes Yes

Overcast Mild High Yes Yes

Overcast Hot Normal No Yes

Rainy Mild High Yes No

4 D. Simovici



2.1 Bayes Classification and Naive Bayesian Classifiers

Suppose that a data set D consists of n non-empty and mutually disjoint classes

C1; . . .;Cm:

Let PðDjCiÞ be the probability that a datum x in D belongs to Ci for 16 i6m.
Bayes classifiers determine the class of x 2 D as one of the classes C1; . . .;Cn:

by computing the conditional probabilities PðCijxÞ and assigning x to the class Ck

where

k ¼ argmaxiPðCijxÞ:

The probabilities P Cijxð Þ are known as a posteriori probabilities, since they are
evaluated after the datum x is observed and the class Ck is occasionally referred to
as the maximum a posteriori class.

By the Bayes’ law, we have

P Cijxð Þ ¼ P xjCið ÞP Cið Þ
P xð Þ

for 16 i6 n. Note that P xð Þ does not influence the selection of Ck.
Generally, the probabilities of the classes P Cið Þ are referred to as the prior or a

priori probability of classes, and they may be estimated using one of the following
methods:

(i) they may be assumed to be equal, P Cið Þ ¼ � � � ¼ P Cnð Þ ¼ 1
n, or

(ii) they can be estimated as the frequencies of the classes Ci in the training
population, or

(iii) estimations can be obtained from general domain knowledge.

Another challenge in Bayesian classification is to evaluate probabilities of the
form P xjCið Þ. Naïve Bayes classifiers add a supplementary independence hypoth-
esis. Namely, if x ¼ x1; . . .; xmð Þ, we assume that the components x1; . . .; xm are
independent of each other, which allows us to write

P xjCið Þ ¼
Ym
j¼1

P xjjCi
� �

for 16 i6 n. The probabilities PðxjjCiÞ are usually estimated from the training
examples, and the estimation method depends on the nature of each of the attributes
A1; . . .;Am that define these components. The classifier will assign x to the most
likely class, that is to the Ci that corresponds to the maximum value of P Cijxð Þ and
therefore to the class Ci for which P xjCið Þ ¼ Qm

j¼1 P xjjCi
� �

is maximal.
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If Aj is a categorical attribute, PðxjjCiÞ can be estimated as fji
ci
, where ci is the

number of training examples in class Ci and fji is the number of training examples in
the class Ci having the value of the Aj component equal to xj.

If Aj is continuous, PðxjjCiÞ can be approximated with the normal distribution. If
li and ri are the mean and the standard deviation of the examples of the class Ci,
then we may adopt as an estimate of PðxjjCiÞ the value

1ffiffiffiffiffiffi
2p

p
ri
e
�ðxj�liÞ2

2r2
i :

Example 2.3 In the tennis data set, there are two classes determined by the attribute
play: Cyes and CNo, which contain 9 and 5 records, respectively. If the proba-
bilities of these classes are estimated by their frequencies, we will have PðCYesÞ ¼
9
14 and PðCNoÞ ¼ 5

14. Since all attributes in this example are categorical, the prob-

abilities PðxjjCiÞ are estimated as fi j
ci
, where ci is the number of training examples in

class Ci and fji is the number of training examples in the class Ci having the value of
the Aj component equal to xj. In this case, the frequencies are computed in Table 3.

A naive Bayes classifier for this categorical data set is created in R with the
packagee1071. After installing this package,e1071 is loaded using the directive

-> library(e1071)

The naive Bayes classifier nbc is created by writing:

nbc <- naiveBayes(Play ˜ .,data = tennis)

In the definition of nbc, the expression

Play ˜ .

Table 3 Frequencies in the
tennis data set Attributes Values PðxjCyesÞ PðxjCnoÞ

outlook Sunny 2=9 3=5

Overcast 4=9 0=5

Rainy 3=9 2=5

temperature Hot 2=9 2=5

Mild 4=9 2=5

Cool 3=9 1=5

humidity High 3=9 4=5

Normal 6=9 1=5

windy No 6=9 2=5

Yes 3=9 3=5
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is a model formula that has the general form

class variable � list of explanatory variables:

In this case, Play is clearly the class variable; the period “.” replaces all other
variables. If several variables participate in the list of explanatory variables, they are
linked by +.

Displaying the components of nbc gives us the prior probabilities and the
conditional probabilities P xjCð Þ:

A-priori probabilities:
No Yes

0.3571429 0.6428571

Conditional probabilities:
Outlook
Overcast Rainy Sunny

No 0.0000000 0.4000000 0.6000000
Yes 0.4444444 0.3333333 0.2222222

Temp

Cool Hot Mild
No 0.2000000 0.4000000 0.4000000
Yes 0.3333333 0.2222222 0.4444444

Humidity
High Normal

No 0.8000000 0.2000000
Yes 0.3333333 0.6666667

Windy
NO YES

No 0.4000000 0.6000000
Yes 0.6666667 0.3333333

We seek to predict the value of the attribute Play when the values of the other
attributes form a tuple that is absent from the table. This happens when we have the
datum x given below

outlook temperature humidity windy

Rainy Hot High YES

We need to compute the conditional probabilities

P xjCyes
� � ¼ P outlook ¼ RainyjCyes

� � � P temperature ¼ HotjCyes
� �

� Pðhumidity ¼ High jCyesÞPðwindy ¼ YES jCyesÞ
¼ 3=9 � 2=9 � 3=9 � 3=9 ¼ 54=6561 ¼ 0:0082;
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and

PðxjCnoÞ ¼ Pðoutlook ¼ RainyjCnoÞ � Pðtemperature ¼ HotjCnoÞ
� Pðhumidity ¼ High jCnoÞPðwindy ¼ YES jCnoÞ

¼ 2=5 � 2=5 � 4=5 � 3=5 ¼ 48=625 ¼ 0:0768:

A posteriori probabilities are given by

PðCyesjxÞ ¼ PðxjCyesÞPðCyesÞ
PðxÞ

¼ 0:0082 � 0:6428571
PðxÞ ¼ 0:00527

PðxÞ ;

PðCnojxÞ ¼ PðxjCnoÞPðCnoÞ
PðxÞ

¼ 0:0768 � 0:3571429
PðxÞ ¼ 0:02742

PðxÞ :

Since P Cnojxð Þ[P Cyesjx
� �

, the classifier will predict “no” for x.
Note that there is no example in the data set where outlook = “Overcast” and

Play = “Yes”. Therefore, P (outlook = “Overcast”|Play = “Yes”) = 0 and any
product of probabilities that includes this factor will be 0. This problem can be fixed
by using a technique known as Laplace correction. Namely, if the fractions

p1
q1

; . . .;
pm
qm

are m probabilities such that
Pm

i¼1
pi
qi
¼ 1, we replace these fractions by

p1 þ k
q1 þ mk

; . . .;
pm þ k
qm þ mk

;

respectively. None of the newly defined numbers is 0 and we have

pi
qi
6 pi þ k
qi þ mk

6 1
m
:

The parameter k is, in general, a small positive number and is determining how
influential the priori values are compared to knowledge extracted from the training
set.

To apply a Laplace correction with k ¼ 1, we need to write

> nbc <- naiveBayes(Play ˜ .,data=tennis,laplace=1)
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Note that the conditional probabilities are modified and there is no null val-
ues:

A-priori probabilities:

No Yes
0.3571429 0.6428571

Conditional probabilities:
Outlook
Overcast Rainy Sunny

No 0.1250000 0.3750000 0.5000000
Yes 0.4166667 0.3333333 0.2500000

Temp
Cool Hot Mild

No 0.2500000 0.3750000 0.3750000
Yes 0.3333333 0.2500000 0.4166667

Humidity
High Normal

No 0.7142857 0.2857143
Yes 0.3636364 0.6363636

Windy
NO YES

No 0.6000000 0.8000000
Yes 0.7777778 0.4444444

Example 2.4 In this example, we seek to construct a Bayes classifier for a data set
that has numerical attributes using the iris data set and the package e1071.

> nbc <- naiveBayes(iris[,1:4],iris[,5])

> table(predict(nbc,iris[,1:4]), iris[,5],
+ dnn=list("predicted","actual"))

This will return

actual
predicted setosa versicolor virginica

setosa 50 0 0
versicolor 0 47 3
virginica 0 3 47

The structure of the classifier returned can be inspected using the statement

> str(nbc)
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which returns

List of 4
$ apriori: ’table’ int [1:3(1d)] 50 50 50
..- attr(*, "dimnames")=List of 1
.. ..$ iris[, 5]: chr [1:3] "setosa" "versicolor" "virginica"

$ tables :List of 4
..$ Sepal.Length: num [1:3, 1:2] 5.006 5.936 6.588 0.352 0.516 ...
.. ..- attr(*, "dimnames")=List of 2
.. .. ..$ iris[, 5] : chr [1:3] "setosa" "versicolor" "virginica"
.. .. ..$ Sepal.Length: NULL
..$ Sepal.Width : num [1:3, 1:2] 3.428 2.77 2.974 0.379 0.314 ...
.. ..- attr(*, "dimnames")=List of 2
.. .. ..$ iris[, 5] : chr [1:3] "setosa" "versicolor" "virginica"
.. .. ..$ Sepal.Width: NULL
..$ Petal.Length: num [1:3, 1:2] 1.462 4.26 5.552 0.174 0.47 ...
.. ..- attr(*, "dimnames")=List of 2
.. .. ..$ iris[, 5] : chr [1:3] "setosa" "versicolor" "virginica"
.. .. ..$ Petal.Length: NULL
..$ Petal.Width : num [1:3, 1:2] 0.246 1.326 2.026 0.105 0.198 ...
.. ..- attr(*, "dimnames")=List of 2
.. .. ..$ iris[, 5] : chr [1:3] "setosa" "versicolor" "virginica"
.. .. ..$ Petal.Width: NULL

$ levels : chr [1:3] "setosa" "versicolor" "virginica"
$ call : language naiveBayes.default(x = iris[, 1:4], y = iris[, 5])
- attr(*, "class")= chr "naiveBayes"

2.2 Decision Trees

Decision trees are algorithms that build classification models based on a chain of
partitions of the training set. Depending on the nature of data (categorical or
numerical), we need to choose a particular type of decision tree.

Decision trees are built through recursive data partitioning, where in each iter-
ation, the training data are split according to the values of a selected attribute. Each
node n corresponds to a subset D(n) of the training data set D and to a partition
π(n) of D(n). If n0 is the root of the decision tree, then D(n0) = D. If n is a node that
has the descendants n1, … , nk, then

p nð Þ ¼ Dðn1Þ; . . .;D nkð Þf g:

In other words, the blocks of the partition π(n) are the data sets that correspond
to the descendant nodes n1, … , nk. Partitioning of a set D(n) is done, in general, on
the basis of the values of the attributes of the objects assigned to the node n.

Suppose that the training data is labeled by c1; . . .; cm. This, in turn, determines a
partition r ¼ C1; . . .;Cmf g of the training set, where the block Cj contains the data
records labeled cj for i6 j6m. If E is a subset of D, the purity of E equals the
entropy of the trace partition rE (see Sect. 8B). The set E is pure if rE consists of
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exactly one block, that is, HðrEÞ ¼ 0; in other words, E is pure if its elements
belong to exactly one classes.

The recursive splitting of the nodes stops at nodes that correspond to “pure” or
“almost pure” data subsets, that is, when the data of the node consist of instances of
the same class, or when a class is strongly predominant at that node. Nodes where
splitting stops are the leaves of the decision trees.

There are three issues in constructing a decision tree (Breiman et al. 1998):

(i) choosing a splitting criterion that generates a partition of D nð Þ;
(ii) deciding when a node should not be split further, that is, when a node is

terminal;
(iii) the assignment of each terminal node to a class.

Splitting the data set DðnÞ aims to produce nodes with increasing purity. Assume
that n is split k ways to generate the descendants n1; . . .; nk that contain the data sets
Dðn1Þ; . . .;DðnkÞ. The splitting partition rn at n is defined as

r ¼ fDðn1Þ; . . .;DðnkÞg:

If j is the partition of the original data set in classes, the a-impurity at n is
HaðjDðnÞÞ. The aggregate a-impurity of the descendants of n is

Xk
j¼1

Ha jDðnjÞ
� � jDðnjÞj

jDðnÞj
� �a

¼ HaðjDðnÞjrnÞ

and, therefore, the decrease in impurity afforded by the splitting rn is

HaðjDðnÞÞ � HaðjDðnÞjrnÞ:

This quantity is known as the information gain caused by rn, and it is the basis
of one of the best known method for constructing decision trees, namely the C5.0
algorithm of Quinlan (1993). Variants of this algorithm are also popular [e.g., the
J48 of the WEKA software package (Witten et al. 2011)].

The construction of a C5.0 tree in the C50 package can be achieved by writing

C5.0(trainData,classVector, trials = t, costs = c)

where the first parameter specifies the data set on which the classifier is constructed
and the second parameter is a factor vector which contains the class for each row of
the training data; the remaining parameters are optional and will be discussed in the
sequel.

Example 2.5 To generate a decision tree for the iris data set, we split this data
into a training data set, trainIris, and a test data set, testIris by writing

Intelligent Data Analysis Techniques … 11



> index <- sample(2,nrow(iris),replace=TRUE,prob=c(0.9,0.1))
> trainIris <- iris[index==1,]
> testIris <- iris[index==2,]

About 90 % of the entries in this index have value 1 and about 10 % contain the
value 2, which correspond to the training set and the test set, respectively.

The classifier dt is built using the syntax

dt <- C5.0(trainIris[,1:4],trainIris[,5])

The classes predicted for the test set are obtained with

> pred <- predict(dt,testIris[,1:4],type="class")
> pred

setosa setosa setosa setosa setosa
versicolor versicolor versicolor versicolor versicolor
versicolor versicolor virginica virginica virginica
virginica virginica virginica virginica

Levels: setosa versicolor virginica

A summary of the classifier summary (dt) returns the specifics of the decision
tree

Decision tree:

Petal.Length <= 1.9: setosa (45)
Petal.Length > 1.9:
:...Petal.Width > 1.7: virginica (39/1)

Petal.Width <= 1.7:
:...Petal.Length <= 4.9: versicolor (41/1)

Petal.Length > 4.9: virginica (6/2)

Evaluation on training data (131 cases):

Decision Tree
----------------
Size Errors

4 4( 3.1%) <<

(a) (b) (c) <-classified as
---- ---- ----

45 (a): class setosa

40 3 (b): class versicolor
1 42 (c): class virginica

The parameter trials refers to a very important technique in machine learning
called boosting. Boosting refers to a method of producing a very accurate classifier
by combining moderately inaccurate classifiers. Using trials, we can specify the
number of boosting iterations.
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Note that the classifier generated in Example 2.5 produced four erroneous pre-
dictions. A matrix of costs can be associated with these mistakes such that the costs
depend on the nature of the errors. For instance, since we have three classes
designated as (a), (b), and (c), we could consider the cost matrix

costs ¼
0 2 0
4 0 5
0 1 0

0
@

1
A

These entries of this matrix assign a cost to mistakes made during the classifi-
cation. Rows correspond to predicted values and columns to actual values; the
diagonal elements are 0. Thus, the costliest error of the classifier is to predict (b) for
an object in the class (c).

3 Evaluation of Performance of Classifiers

Consider a simple classification algorithm involving the diagnosis of a condition
based on the value of a test result. A disease is predicted when the value of a test
t result is greater than 5; patients who satisfy this condition constitute the positive
set which contains PðtÞ elements; the other patients form the set of negative cases
which consist of NðtÞ, as we show in Fig. 1. Suppose initially that the distribution of
cases is the one shown in Fig. 1a. In this case, the test results are decisive: Patients
with test values of at least 5 have a positive diagnosis, while patients with values
lower than 5 have a negative diagnosis. Such well-delimited situations are infre-
quent. More likely, the curves that give the probability densities intersect, as we
show in Fig. 1b.
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Note that the set of test values of individuals who have the disease overlaps with
the set of test values of those who do not have the disease. These sets are repre-
sented in Fig. 1b by the areas P and N located under each of the two curves.

The diagnosis is determined by the value of a test threshold: Patients whose test
values exceed the threshold are deemed to be positive (that is, have the disease);
patients whose test values are lower than the threshold are deemed to be negative.

Some patients who have the disease but whose test results are lower than the
threshold will be classified by this simple test among the negative cases (there are
the false-negative cases); others, who do not have the disease but whose test values
are larger than the threshold, will be classified among the positive cases (they are
the false-positive cases). The number of elements of these sets is denoted by FNðtÞ
and FNðtÞ, respectively.

The set of patients who have the disease and are correctly identified by the test
forms the set of true-positive cases; the number of elements of this set is denoted by
TPðtÞ. Also, the set of patients who do not have the disease and are correctly
identified forms the set of true-negative cases; the number of elements of this set is
TNðtÞ. Clearly, we have

N ¼ TNðtÞ þ FPðtÞ;
P ¼ TPðtÞ þ FNðtÞ:

Note that the total number of cases N and P does not depend on t. The definitions
are summarized in Table 4 known as the confusion matrix or confusion table.

Among these cases, the number of incorrectly classified cases is FPðtÞ þ FNðtÞ;
this motivates the introduction of the error rate errorðtÞ as

errorðtÞ ¼ FPðtÞ þ FNðtÞ
Nþ P

:

Note that errorðtÞ 2 ½0; 1� for every value of t. The accuracy at t is

accðtÞ ¼ 1� error ¼ TPðtÞ þ TNðtÞ
Pþ N

:

The specificity at t (also known as the true-negative rate) is defined as:

Table 4 Confusion table
True class

Positive Negative

Classifier result for
threshold t

Positive TPðtÞ FPðtÞ
Negative FNðtÞ TNðtÞ

Totals P N
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specificityðtÞ ¼ TNðtÞ
N

:

Specificity can be regarded as a conditional probability, namely,

specificityðtÞ ¼ PðTNðtÞjNÞ:

Similarly, the sensitivity at t (also known as the true-positive rate) or the recall is
given by

sensitivityðtÞ ¼ TPðtÞ
P

;

and can be expressed as the conditional probability sensitivityðtÞ ¼ PðTPðtÞjPÞ.
High values of specificity occur when there are few false positives; low sensi-

tivity indicates the presence of many false negatives.
The precision at t is

precisionðtÞ ¼ TPðtÞ
TPðtÞ þ FPðtÞ :

Note that

06 specificityðtÞ; sensitivityðtÞ; precisionðtÞ6 1

for every value of t. Also, we have

specificityðtÞ ¼ TNðtÞ
TNðtÞ þ FPðtÞ ;

sensitivityðtÞ ¼ TPðtÞ
TPðtÞ þ FNðtÞ ;

precision tð Þ ¼ TP tð Þ
TP tð Þ þ FP tð Þ :

It is easy to verify that for any four positive numbers a; b; c; d, we have the
double inequality

min
a
b
;
c
d

n o
6 aþ c

bþ d
6max

a
b
;
c
d

n o
:

This implies

min
TPðtÞ
P

;
TNðtÞ
N

	 

6 TPðtÞ þ TNðtÞ

Pþ N
6max

TPðtÞ
P

;
TNðtÞ
N

	 

;
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which is equivalent to

min specificityðtÞ; sensitivityðtÞf g6 accðtÞ6max specificityðtÞ; sensitivityðtÞf g:

In other words, the accuracy of t always lies between the sensitivity and the
specificity at t.

Note that 1� specificityðtÞ ¼ 1� TNðtÞ
N ¼ FPðtÞ

N . This justifies referring to 1�
specificityðtÞ as the false-positive rate.

The F1 score considers both the precision and the sensitivity rates and is defined
as their harmonic mean

F1ðtÞ ¼ 2
precisionðtÞ � sensitivityðtÞ
precisionðtÞ þ sensitivityðtÞ :

A more general measure is Fb given by

FbðtÞ ¼ ð1þ b2Þ precisionðtÞ � sensitivityðtÞ
b2precisionðtÞ þ sensitivityðtÞ :

Note that F2 weighs sensitivity higher than precision, while F0:5 weighs preci-
sion higher than sensitivity.

4 Support Vector Machines

Support vector machines (SVMs) represent a powerful technique in classification,
regression, and outlier detection. SVMs were developed by Cortes and Vapnik
(1995) for binary classification.

The simplest application of these algorithms is solving the binary classification
problem which seeks to separate two classes of vectors in R

n by determining an
optimum separating hyperplane for the classes involved. The two classes of vectors
involved are known as the positive examples and the negative examples, and the
separating hyperplane must be determined such that the separation between the
closest representatives of the two classes is maximized.

Building a separating hyperplane amounts to building a classifier model and the
process begins, as it is customary in classification, with a training set T that consists
of m pairs of the form

x1; y1ð Þ; . . .; xm; ymð Þ;

where x1; . . .; xm 2 R
n and yi 2 f�1; 1g for 16 i6m. The sets
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Tþ ¼ fxijðxi; 1Þ 2 Tg;
T� ¼ fxijðxi;�1Þ 2 Tg

are the set of positive examples and the set of negative examples, respectively.
T is linearly separable if there exists a hyperplane Hv;a : v0x ¼ a (called the

separating hyperplane) such that all positive examples lie in one half-space
determined by Hv;a and all negative examples lie in the other half-space as shown in
Fig. 2. In other words, v and a can be chosen such that for all positive examples we
shall have v0xi � a[ 0 and for all negative examples we shall have v0xi � a\0.
Both conditions can be stated as

yiðv0xi � aÞ[ 0 ð1Þ

for 16 i6m.
The distance between a point xi and the hyperplane Hv;a is

di ¼ jv0xi � aj
vk k ¼ yiðv0xi � aÞ

vk k ;

and we refer to this distance as the geometric margin of xi.
We need to ensure that the geometric margins have a guaranteed minimum l,

that is,

yiðv0xi � aÞ> l vk k
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for 16 i6m. This would imply that for the positive examples, we shall have

v0xi � a� l vk k> 0;

and for the negative examples,

v0xi � aþ l vk k6 0:

These conditions can be written equivalently as

w0xi � b� 1> 0 ð2Þ

for the positive examples, and

w0xi � bþ 16 0; ð3Þ

for the negative examples, where w ¼ 1
l

v
vk k and b ¼ a

l wk k. In a unified form, these

restrictions can be now written

yiðw0xi � bÞ> 1

for 16 i6m.
The distance between the hyperplanesw0xi � a ¼ 1 andw0x� a ¼ �1 is 2

wk k, and
we seek to maximize this distance in order to obtain a good separation between the
classes. Thus, we need to minimize wk k subjected to the restrictions yiðw0xi � bÞ>1
for 16 i6m. An equivalent formulation brings this problem to a quadratic optimi-
zation problem, namely seeking w that is a solution of the problem:

minimize
1
2

wk k2;wherew 2;
subject to 1� yi w0xi � bð Þ6 0 for 16 i6m

The separating hyperplane is Hv;a.
To obtain the dual of this problem (see Sect. 8C), we start from the Lagrangean

L w; a; uð Þ ¼ 1
2

wk k2þ
Xm
i¼1

ui 1� yiðw0xiÞð Þ

¼ 1
2

wk k2þ
Xm
i¼1

ui �
Xm
i¼1

uiyi
Xn
k¼1

wkxki � b

 !
;

where ui > 0 are the Lagrange multipliers. The dual objective function is obtained
by as gðuÞ ¼ infw;aLðw; uÞ. This requires the stationarity conditions
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@L
@wi

¼ 0 for 16 i6n and
@L
@a

¼ 0;

which amount to

@L
@wj

¼ wj �
Xm
i¼1

yiuixji ¼0 for 16 j6n;

@L
@a

¼
Xn
i¼1

uiyi ¼0;

In a vectorial form, the first n stationary conditions can be written as
w�Pn

i¼1 yiuixi ¼ 0n. Since

w ¼
Xn
i¼1

yiuixi ð4Þ

and
Pn

i¼1 uiyi ¼ 0, the dual objective function is

g uð Þ ¼
Xm
i¼1

ui � 1
2

Xn
i¼1

Xn
i¼1

yiyiuiuix0ixj;

which is a quadratic function subject to u> 0m.
There are several important aspects of the dual formulation of the SVM:

(i) Equality (4) shows that the weight vector w is located in the hyperplane
determined by the vectors x1; . . .; xn. Moreover, one can show that ui 6¼ 0 if
and only if xi is a support vector and, therefore, w is determined by the support
vectors.

(ii) The advantage of the dual formulation is that the number m of variables ui may
be a lot smaller that the original number of variables n.

(iii) The dual optimization problem needs no access to the original data
fxij16 i6 ng. Instead, only the inner products x0ixj are necessary in the
construction of the dual objective function.

A data point x 2 R
n is classified by the SVM determined here based on the sign

of the expression w0x� a; in other words, the class y of an yet unseen point is given
by y ¼ signðw0x� aÞ.

If the data are “almost” linearly separable, a separation hyperplane exists such
that the majority (but not all) of the positive examples inhabit the positive half-
space of the hyperplane and the majority (but not all) of the negative examples
inhabit the negative half-space. In this case, we shall seek a “separating hyperplane”
that separates the two classes with the smallest error. This is achieved by assigning
to each object xi in the data set a slack variable ni, where ni>0, by relaxing
Inequalities 2 and 3 as
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w0xi � b� 1> � ni ð5Þ

for the positive examples and

w0xi � bþ 16 ni; ð6Þ

for the negative examples, respectively, where w ¼ 1
l

v
vk k and b ¼ a

l wk k. In turn, in a

unified form these restrictions can be written as

1� yiðw0xi � bÞ6 ni

for 16 i6m. The soft-margin SVM primal problem is

minimize
1
2

wk k2þC
Xn
i¼1

ni; wherew 2;

subject to 1� yi w0xi � að Þ6 ni for 16 i6m;

where C and ni are user-defined parameters referred usually as hyper-parameters.
The dual of the soft-margin problem is similar to the previous dual and it

amounts to

maximize g uð Þ ¼
Xm
i¼1

ui � 1
2

Xn
i¼1

Xn
i¼1

yiyjuiujx0ixj;

subject to 06 ui 6C and
Xm
i¼1

uiyi ¼ 0:

Example 4.1 The kernlab library is described in (Karatzoglou et al. 2004) which
provides users with essential access to support vector machine techniques. After
installing the package, its loading is achieved using

> library(kernlab)

We split the data set iris into a training set trainIris and a test set
testIris in the same manner used in Example 2.5.

The classifier is created by writing

> svm <- ksvm(Species ˜ .,data=trainIris,kernel="vanilladot",
C = 1,prob.model=TRUE)

and is used to generate distribution probabilities for each of the 12 entries of the
test set by writing

> pred_p <- predict(svm,testIris,type = "probabilities")
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Note the use of the parameter kernel = “vanilladot”. We will explain later
the use of kernels.

These distributions can be examined:

> pred_p
setosa versicolor virginica

[1,] 0.948669677 0.0365527398 0.014777583
[2,] 0.971508823 0.0190805740 0.009410603
[3,] 0.987012019 0.0080849105 0.004903071
[4,] 0.950002416 0.0357236471 0.014273937
[5,] 0.659161885 0.2879288429 0.052909272
[6,] 0.017947111 0.9594198514 0.022633038
[7,] 0.012561988 0.9829687166 0.004469296
[8,] 0.017910234 0.9784817276 0.003608038
[9,] 0.008436607 0.9467301478 0.044833245

[10,] 0.012126227 0.9815816669 0.006292106
[11,] 0.028265376 0.9660266137 0.005708011
[12,] 0.052250902 0.9359484109 0.011800687
[13,] 0.001837466 0.0003496850 0.997812849
[14,] 0.006546816 0.0065769958 0.986876188
[15,] 0.005543471 0.0006948435 0.993761686
[16,] 0.001242060 0.0002903663 0.998467574
[17,] 0.012187320 0.0324955786 0.955317101
[18,] 0.019265185 0.3263600533 0.654374762
[19,] 0.005646642 0.0255939953 0.968759363

Note that in each case, one of the numbers strongly dominates the others, a
consequence of the linear separability of this data set. Alternatively, a prediction
that returns directly the class of various objects can be generated by

pred <- predict(svm,testIris,type="response")

and generates

> pred
[1] setosa setosa setosa setosa setosa

versicolor versicolor versicolor
[9] versicolor versicolor versicolor versicolor virginica

virginica virginica virginica
[17] virginica virginica virginica

Levels: setosa versicolor virginica.

A contingency table can be obtained with

table(pred,testIris$Species)

pred setosa versicolor virginica
setosa 5 0 0
versicolor 0 7 0
virginica 0 0 7
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In many situations, data are not linearly separable; that is, there is no separating
hyperplane between classes. Consider, for example, the set of points is shown in
Fig. 3, which are separated into positive and negative examples by a nonlinear
surface rather than a hyperplane (in our two-dimensional case, by a curve rather
than a line). The solution is to transform data into another space, where the sepa-
rating surface is transformed into a hyperplane such that the positive and negative
examples will inhabit the two half-spaces determined by the hyperplane. The data
transformation is defined by a function / : Rn ! H, where H is a new linear space
that is referred as the feature space. The intention is to use a linear classifier in the
new space to achieve separation between the representation of the positive and the
negative examples in this new space.

We assume that the feature space H is equipped with an inner product
�; �ð Þ : H ! R>0. In view of Equality (4), if the data are approximately linearly
separable in the new space, the classification decision is based on computing

Xn
i¼1

yiui/ xið Þ0/ xð Þ � a

Let K : H2 ! R be the function defined by Kðu; vÞ ¼ ðUðuÞ;UðvÞÞ; this func-
tion is referred to as a kernel function, and the decision in the new space is based on
the sign of the expression

Pn
i¼1 yiuiK xi; xð Þ � a. Thus, we need to specify only

the kernel function rather than the explicit transformation /. In Example 4.1, / is
the identical transformation and the corresponding kernel, Kðu; vÞ ¼ u0v, is known
as the vannila kernel. Among the most frequently used kernels, we mention the

Gaussian kernel defined by Kðu; vÞ ¼ e�c u�vk k2 , the exponential kernel given by
Kðu; vÞ ¼ e�c u�vk k, and the polynomial kernel Kðu; vÞ ¼ ðk þ u0vÞp.

� �

� �
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Fig. 3 Inseparable data set
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Example 4.2 The two-dimensional data set shown in Fig. 4 is clearly not linearly
separable because no line can be drawn such that all positive points will be on one
side of the line and all negative points on the other.

Again, we use the kernlab and the function ksvm of this package. We apply a
Gaussian kernel, which can be called using the rbfdot value:

> svmrbf <- ksvm(class ˜ x + y, data=points,
+ kernel="rbfdot", C = 1)

If the data frame testdata contains the vectors
6
6

� �
;

7
8

� �
; and

8
11

� �
, then

the predictions of the classifier svmrbf obtained with

> pred_points <- predict(svmrbf,testdata,type="response")

returns

> pred_points
[,1]

[1,] -0.03084342
[2,] -1.03816317
[3,] 1.21256792

Note that the first two test data that are close to negative training examples get
negative predictions; the remaining test data that are close to positive examples get
a positive prediction.

4 6 8 10 12

4
6

8
10

x

y

Fig. 4 Data set that is not
linearly separable; positive
examples are shown as white
square and negative examples
as asterisk
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5 Regression

Regression seeks functions that model data with minimal errors. It aims to describe
the relationships between dependent variables and independent variables and to
estimate values of dependent variables starting from values of independent
variables.

There are several types of regression: linear regression, logistic regression,
nonlinear regression, Cox regression, etc. We present here an introduction to linear
regression.

Linear regression considers models that assume that a variable Y is estimated to
be a linear function of the independent variables X1; . . .;Xn:

Y ¼ a0 þ a1X1 þ � � � þ anXn:

Y must be continuous, while X1; . . .;Xn may be continuous or discrete (categorial).

Example 5.1 Consider a data set that records the height and weight of several
individuals. We seek a linear dependency of the height on the weight (the regres-
sor), specified by the model formula weight* height. Data can be placed in R
using

height <- c(1.6,1.62,1.65,1.72,1.74,1.74,1.76,1.77,1.79,1.8,1.8,1.81,
1.83,1.84,1.86,1.87,1.9,1.91,1.91,1.92);

weight <- c(55,53,54,57,64,69,73,65,80,72,77,81,73,80,84,86,84,88,
91,89);

and can be displayed using the usual plot function, as shown in Fig. 5. To
produce the regression line, we call the linear modeling function lm:

lm.r <- lm(formula = weight ˜ height)

The coefficients of the regression line are

Coefficients:
(Intercept) height

-148.0 123.8

and abline(lm.r) places the regression line on the plot.

In a multivariable regression, we seek a similar linear dependency that involves
several regressors.

Example 5.2 Suppose that we collect a data set that shows the dependency of
systolic blood pressure numbers on the body mass index (BMI), sex, and age by
writing
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BMI <- c(21.48,19.83,19.26,21.13,22.79,23.56,20.74,24.96,22.22,23.76,
24.72,21.79,23.62,24.28,24.59,23.26,24.12,24.94,24.14);

sex <- c(0,0,1,0,1,1,1,1,1,1,0,1,0,1,0,1,1,1,1);
age <- c(21,31,20,32,41,25,40,38,50,45,41,65,37,60,51,65,40,55,40);
sys <- c(125,120,110,130,141,155,110,120,130,140,130,120,135,167,

130,150,140,145,120);

The linear model is obtained with

lm.r = lm(sys ˜ BMI + sex + age)

This results in the linear function defined by the following coefficients:

(Intercept) BMI sex age
31.5458 4.0081 2.4310 0.1791

In other words, the linear model is

sys = 31.5458 + 4.0081 ∗ BMI + 2.4310 ∗ sex + 0.1791 ∗ age.

The use of support vector machines for regression was proposed in (Drucker
et al. 1996). The model produced by support vector classification depends only on a
subset of the training data, because the cost function for building the model does not
care about training points that lie beyond the margin. Another SVM version known
as least squares support vector machine has been proposed in (Suykens and Van-
dewalle 1999).
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Fig. 5 Data and regression
line
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6 Active Learning

Learning, as has been discussed up to this point, involves passive learners, that is,
learning algorithms where the information flows from data to learner.

A machine learning algorithm can achieve greater accuracy with fewer training
labels if it is allowed to choose the data from which it learns, that is, to apply active
learning. An active learner may pose queries, usually in the form of unlabeled data
instances to be labeled by a human operator. The flow of information between data
and the learner is bidirectional as shown in Fig. 6.

Since unlabeled data are abundant and, in many cases, easily obtainable, there
are good reasons to use this learning paradigm.

The training processes that allow us to construct data mining models often
require a large volume of labeled data. For example, to produce a topic-based text
classifier through text mining, a large number of documents must be labeled with
the pertinent topics. This is an expensive process that requires numerous human
readers capable of understanding these topics and attaches appropriate labels to the
documents. Similarly, speech recognition requires labeling of a large number of
speech fragments by specialized linguists, which is time consuming and prone to
errors.

Active learning requires a querying strategy (see Settles 2012). One such
strategy is query by uncertainty (also known as uncertainty sampling), in which a
single classifier is learned from labeled data and is subsequently utilized for
examining the unlabeled data. Those instances in the unlabeled data set that the
classifier is least certain about are subject to classification by a human annotator.
Query by uncertainty has been realized using a range of learners, such as logistic
regression (Lewis and Gale 1994), support vector machines (Schohn and Cohn
2000), and Markov models (Scheffer et al. 2001). The amount of data that require
annotation in order to reach a given performance, compared to passively learning
from examples provided in a random order, is significantly reduced using query by
uncertainty.

Data Set S
Passive Learning

algorithm Model� �

Passive learning

Data Set S
Active Learning

algorithm Model

�
�

�

Active Learning

Fig. 6 Information flow in passive versus active learning
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There are several modalities to implement query by uncertainty, and they require
to determine the data item xlc for which the learner is the least confident about its
labeling.

The most common approach for selecting xlc is the use of entropy as a measure
of uncertainty. If Y is a random variable that ranges over all possible labels, then we
shall seek xlc as xlc ¼ argmaxxHðY jxÞ.

Another approach requires the learner C to evaluate the degree of confidence in
its predictions. Let x be a data item and let ŷ be the label with the highest posterior
probability according to C, that is, ŷ ¼ argmaxyPCðyjxÞ. Then, 1� PðŷjxÞ is the
lack of confidence of C in the label ŷ and xlc ¼ argmaxxð1� PðŷjxÞÞ is a data item
for which C is the least confident. The intervention of the human annotator will be
required for xlc.

Yet another strategy makes use of the output margin of a data item x defined as
the difference Pðŷ1jxÞ � Pðŷ2jxÞÞ between the probability of the most likely label ŷ1
and the second most likely label ŷ2 of an item x. For items with large margins, there
is little uncertainty on the choice of the most likely label; therefore, items with small
margin benefit most from an external annotation, and so, an external annotation will
be required for xm defined by

xm ¼ argminxðPðŷ1jxÞ � Pðŷ2jxÞÞ:

Active learning may run into difficulties because, as shown in (Schütze et al.
2006; Velipasaoglu et al. 2007), a mix of learnable and unlearnable classes co-occur
in a data set. A class can be regarded as learnable if there exists a learning pro-
cedure that generates a classifier with a performance (e.g., the F1 measure) that
exceeds a certain threshold with a certain level of confidence.

For small classes, it is difficult or impossible to create reliable classifiers. For
example, if a class contains 1 % of 1000 records, we have just ten examples for that
class and this is often not sufficient for creating a classifier.

In Dasgupta (2011), the following simple but paradigmatic example is used to
describe the effect of active learning. Suppose that we have a data set
S ¼ fðxi; yiÞj1> i> ng, where xi 2 R and yi 2 f�1; 1g, and we use a collection H
of simple thresholding classifiers of the form ht : R ! �1; 1f g, where

�1 if x\ t;
1 if x> t;

	

where t is the threshold that defines the classifier ht. The empirical error of the
classifier ht is

errðhtÞ ¼ jfxijhtðxiÞ 6¼ yigj
n

:

The data are separable if a value t0 exists such that errðht0Þ ¼ 0. Note that if
n ¼ 2, the data are separable.
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To determine effectively a threshold classifier that achieves an approximative
separation of the data (in case that data are not separable), with an error less than �,
we need approximately 1

� randomly drawn examples [see, for example Blumer et al.
(1989)].

If n� ¼ 1
�

� �
unlabeled examples are drawn at random, finding a classifier

involves asking for log2 n� labels by a binary process that begins by asking for the
label of the median point, then for the label of the 25 percentile point (or to the label
of the 75 percentile point), as so on. This opens the possibility that active learning
reduces exponentially the number of labels needed to construct a classifier (Das-
gupta 2011).

7 Perceptrons and Neural Networks

Artificial neural networks (NN) aim to emulate cognitive processes that take place
in the human brain. Research in this direction started in the 1940s with the work of
McCulloch and Pitts (1943), Pitts and McCulloch (1947) who developed a com-
putational model of the brain.

The human brain is a highly organized collection of a large number of inter-
connected and specialized cells called neurons. Neurons are engaged in certain
computing activities that are carried out using chemical and electrical signals;
connections between neurons are referred to as synapses and the brain, as a large
collection of simple computers has a high degree of parallelism.

The current model of NN consists in a series of layers L1; . . .; L‘ of computing
units. Units on the first layer L1 are referred to as input units; those on the last layer
L‘ are the output units, and the units in each layer beyond the first layer are neurons.
Connections exist only between neurons that belong to consecutive layers.

A simple example of a NN is a perceptron that consists of n input units and one
neuron. Perceptrons can be trained to perform classification on sets of objects of the
form ðx1; y1Þ; . . .; ðxm; ymÞ, where xi 2 R

n and yi 2 f�1; 1g, and they achieve this
by constructing a separating hyperplane between the set of positive examples and
the set of negative examples whenever these sets are linearly separable. In this
respect, perceptrons are similar to support vector machines. However, the model
building is done in an iterative, specific way proposed by Rosenblatt (1958).
Several variants of this algorithm exist (Freund and Shapire 1999; Novikoff 1962).

A perceptron intended to analyze vectors x 2 R
n is defined by nþ 1 numbers:

the weights w1; . . .;wn of the input units and a bias b as shown in Fig. 7.
In the simplest case (discussed next), the neuron itself is characterized by a

transfer function that computes the answer y ¼ signðnetðxÞÞ, where netðxÞ ¼
w0xþ b.

The hyperplane defined by this perceptron is w0xþ b ¼ 0.
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Example 7.1 Let

x1 ¼ 0
0

� �
; x2 ¼ 0

1

� �
; x3 ¼ 1

1

� �
; x4 ¼ 1

0

� �
:

The sequence

S1 ¼ ðx1; 1Þ; ðx2; 1Þ; ðx3;�1Þ; ðx4; 1ÞÞ

is linearly separable, as shown in Fig. 8a. On the other hand, the sequence

S1 ¼ ðx1; 1Þ; ðx2;�1Þ; ðx3; 1Þ; ðx4;�1ÞÞ

shown in Fig. 8b is not linearly separable.

Let R be the minimum radius of a closed ball centered in 0, that is,
R ¼ max xik kj16 i6mf g.

If ðxi; yiÞ is amember of the sequence S andH is the target hyperplanew0xþ b ¼ 0,
where wk k ¼ 1, define the functional margin of ðxi; yiÞ as ci ¼ yiðw0xi þ bÞ. As
before, if yi and w0xi þ b have the same sign, then ðxi; yiÞ is classified correctly;
otherwise, it is incorrectly classified and we say that a mistake occurred.

Perceptron

�

�

�

�

�

�
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xni

b

�
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Fig. 7 Perceptron acting on
n-dimensional inputs
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Fig. 8 A linearly separable sequence and a sequence that is not linearly separable; positive
examples are designated by square, while circle symbols correspond to negative examples
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A perceptron is constructed starting from the sequence S and from a parameter
g 2 ð0; 1Þ known as a learning rate.

Input: labelled training sequence S and learning rate η
Output: weight vector w and parameter b defining classifier

initialize w = 0, b0 = 0, k = 0
define R = max{‖ xi ‖ | 1 � i � m}
repeat until (no mistakes are made in the for loop)

for i = 1 to m do
if (yi(w′

kxi + bk) � 0)
wk+1 = wk + ηyixi;
bk+1 = bk + ηyiR

2;
k = k + 1;

end if
end for

end repeat
return k, (wk, bk) where k is the number of mistakes;

Suppose there exists an optimal weight vector wopt and an optimal bias bopt such
that

wopt


 

 ¼ 1 and yiðw0

optxi þ boptÞ> c;

for 16 i6m. Then, we claim that the number of mistakes made by the algorithm is
at most

2R
c

� �2

Indeed, let t be the update counter,

ŵ ¼ w
b
R

� �
and x̂i ¼ xi

R

� �

for 16 i6m.
The algorithm begins with an augmented vector ŵ0 ¼ 0 and updates it at each

mistake.
Let ŵt�1 be the augmented weight vector prior to the tth mistake. The tth update

is performed when

yiŵ
0
t�1x̂i ¼ yiðŵ0

t�1xi þ bt�1Þ6 0;

where ðxi; yiÞ is the example incorrectly classified by
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ŵt�1 ¼ wt�1
bt�1
R

� �
:

The update is

ŵt ¼
wt
bt
R

� �
¼

wt�1 þ gyixi
bt�1þgyiR2

R

 !

¼ wt�1 þ gyixi
bt�1
R þ gyiR

� �
¼ wt�1

bt�1
R

� �
þ gyixi

gyiR

� �
¼ ŵt�1 þ gyix̂i;

where we used the fact that bt ¼ bt�1 þ gyiR2.
Since

yiŵ
0
optx̂i ¼ yi ŵ0

opt
b
R

� �
xi
R

� �
¼ yi ŵ0

optxi þ b
� �

> c;

we have

ŵ0
optŵt ¼ ŵ0

optŵ
0
t�1 þ gyiŵ

0
optx̂i > ŵ0

optŵt�1 þ gc:

By repeated application of the inequality ŵ0
optŵt > gc, we obtain

ŵ0
optŵt > tgc:

Since ŵt ¼ ŵt�1 þ gyix̂i, we have

ŵtk k2 ¼ ŵ0
tŵt ¼ ðŵ0

t�1 þ jgyix̂i0 Þðŵt�1 þ gyix̂iÞ
¼ ŵt�1k k2þ2gyiŵ

0
t�1x̂i þ g2 x̂ik k2

ðbecause yiŵ0
t�1x̂i 6 0 when an update occursÞ

6 ŵt�1k k2þg2 x̂ik k2

6 ŵt�1k k2þg2ð x̂ik k2þR2Þ
6 ŵt�1k k2þ2g2R2;

which implies ŵtk k2 6 2tg2R2. By combining the inequalities

ŵ0
optwt > tgc and ŵik k2 6 2tg2R2
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we have

ŵopt


 

 ffiffiffiffi

2t
p

gR> ŵopt


 

 ŵtk k> ŵ0

optŵt > tgc;

which imply

t6 2
R
c

� �2

ŵopt



 

2 6 2R
c

� �2

because bopt 6R for a non-trivial separation of data and hence

ŵopt


 

2 6 ŵopt



 

2þ1 ¼ 2:

In the case of the perceptron considered above, the transfer function is the
signum function

signðxÞ ¼ 1 if x> 0;
�1 if x[ 0

	

for x 2 R. We mention a few other choices that exist for the transfer function:

• the sigmoid or the logistic function hðxÞ ¼ 1
1þe�x,

• the hyperbolic tangent hðxÞ ¼ tanhðxÞ,
• the Gaussian function hðxÞ ¼ ae�

x2
2 .

for x 2 R. The advantage of these last three choices is their differentiability that
enables us to apply optimization techniques to more complex NNs. Note, in par-
ticular, that if h is a sigmoid transfer function, then

h0ðxÞ ¼ 1
ð1� e�xÞ2 e

�x ¼ hðxÞ ð1� hðxÞÞ; ð7Þ

which turns out to be a very useful property. To emphasize the choices that we have
for the transfer function, it is useful to think that a neuron has the structure shown in
Fig. 9.

A multilayer NN is a much more capable classifier compared to the perceptron.
It has, however, a degree of complexity because of topology of the neuron network
which entails multiple connection weights, the multiple outputs, and the more
complex neurons.

The specification of the architecture of a NN encompasses the following ele-
ments (see Fig. 10):

(i) the choice of ‘ is the number of levels; the first level L1 contains the input
units, the last level L‘ contains the output units, and the intermediate levels
L2; . . .; L‘�1 contain the hidden units;
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(ii) the connection from unit Ni on level Lk to unit Nj on level k þ 1 has the weight
wji; the set of units on level Lkþ2 that are connected to unit Nj is the down-
stream set of Nj denoted by ðNjÞ;

(iii) the type of neurons used in the network as defined by their transfer functions.

Let X be the set of examples that are used in training the network. For x 2 X, we
have a vector of target outputs tðxÞ and a vector of actual outputs oðxÞ, both in xp,
where p is the number of output units. The outputs that correspond to a unit Nj are
denoted by ox;j. For a weight vector w of the network, the total error is

E wð Þ ¼ 1
2

X
x2X

t xð Þ � o xð Þk k2:

The information is propagated from the input to the output layer. This justifies
referring to the architecture of this network as a feed-forward network.
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Fig. 9 Summation and activation components of a neuron
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Fig. 10 Structure of a neural
network
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We discuss here the backpropagation training algorithm for a feed-forward NN.
The training process consists in readjusting the weights of the connection taking
into account the error rate.

Note that EðwÞ depends on a large number of parameters of the form wji, which
poses a significant challenge as an optimization problem. Finding a local minimum
of EðwÞ can be achieved by applying a gradient descent algorithm. It is known that
the fastest decrease of a function is in the opposite direction of its gradient, and the

components of the gradient of EðwÞ are given by @EðwÞ
@wkj

. The learning algorithm will

modify the weights of the network wji in the opposite direction of the gradient of the
error EðwÞ. Consequently, the change in wji will be given by

Dwji ¼ �g
@EðwÞ
@wji

where the learning rate g is a small positive number. Initially, the weights of the
edges are randomly set as numbers having small absolute values (e.g., between
−0.05 and 0.05) (cf. Mitchell 1997). These rates are successively modified as we
show next.

To evaluate the partial derivatives of the form @EðwÞ
@wji

, we need to take into account

that EðwÞ depends on wji through netj and therefore,

@EðwÞ
@wji

¼ @EðwÞ
@netj

@netj
@wji

¼ @EðwÞ
@netj

xji:

The position of the neuron Nj in the network must be considered in computing
@EðwÞ
@netj , and we have two cases.

(i) If Nj is an output neuron, then EðwÞ depends on netj through the output oj of
the unit Nj, where oj ¼ hðnetjÞ. Thus,

@EðwÞ
@netj

¼ @EðwÞ
@oj

@oj
@netj

¼ @EðwÞ
@oj

h0ðnetjÞ:

Since Nj is an output neuron, we have @EðwÞ
@oj

¼ �ðtj � ojÞ for 16 j6 p. If we

assume that Nj has a sigmoidal transfer function, then [by Equality (7)] we
have

@E wð Þ
@netj

¼ � tj � oj
� �

h netj
� �

1� h netj
� �� �

:

(ii) When Nj is a hidden unit EðwÞ depends on netj via the functions netk for all
neurons Nk situated downstream from Nj. In turn, each netk depends on oj,
which depends on netj. This allows us to write:
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@E wð Þ
@netj

¼
X

Nk2ds Njð Þ
@E wð Þ
@netk

@netk
@netj

¼
X

Nk2ds Njð Þ
@E wð Þ
@netj

@netk
@oj

@oj
@netj

:

Observe that

@oj
@netj

¼ h0ðnetjÞ ¼ hðnetjÞð1� hðnetjÞÞ

because h is a sigmoid function, and @netk
@oj

¼ wk j because Nk 2 dsðNjÞ. This
yields

@EðwÞ
@netj

¼ ojð1� ojÞ
X

Nk2ds Njð Þ
@E wð Þ
@netk

wk j:

If di ¼ � @EðwÞ
@neti for every neuron Ni, then

@EðwÞ
@wji

¼ � tj � oj
� �

h netj
� �

1� h netj
� �� �

if Nj is an output neuron
�oj 1� oj
� �P

Nk2ds Njð Þ dkwk j if Nj is a hidden neuron:

(

The changes in the weights can now be written as

Dwji ¼
gðtj � ojÞhðnetjÞð1� hðnetjÞÞ if Nj is an output neuron
gojð1� ojÞ

P
Nk2ds Njð Þ dkwkj if Nj is a hidden neuron:

(

The backpropagation algorithm consists of the following steps:

for each training example (x, t), where x ∈ X do
input x in the network and obtain ox,j for each unit Nj ;
for each output unit Nj compute Δwji = η(tj − oj)h(netj)(1 − h(netj))

and update wji;
for each hidden unit Nj compute Δwji = ηoj(1 − oj)

∑
Nk∈ds(Nj) δkwkj

and update wji;
end for

Observe that the weight updates proceed from the output layer toward the inner
layers, which justifies the name of the algorithm.

Next, we present an example for NN construction using the package neu-
ralnet developed in (Günther and Fritsch 2010). The package computes NN with
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one hidden layer with a prescribed number of neurons. The computation of the NN
model is achieved by calling

nnmodel <- neuralnet(target ˜ predictors, data = inputdata,
+ hidden = h)

where target * predictors is the formula that specifies the model, and
hidden gives the number of neurons in the hidden layer.

Example 7.2 We use the data set Concrete_Compressive_Strength
(CCS) that is available from the data mining repository at UCI. Ingredients included
in concrete include cement, blast furnace slag, fly ash, water, superplasticizer,
coarse aggregate, and fine aggregate. The data set records 1030 observations and
has nine numerical attributes. Data are presented in a raw form (it is not scaled), and
various attributes have distinct ranges (see Table 5).

The first seven attributes are expressed in kgm3. Data (originally in the xls
format) are read in R using the csv format as

> CCS <- read.csv("CCS.csv")
> head(CCS)

cem blast ash water plast coarse fine age strength
1 540.0 0.0 0 162 2.5 1040.0 676.0 28 79.99
2 540.0 0.0 0 162 2.5 1055.0 676.0 28 61.89
3 332.5 142.5 0 228 0.0 932.0 594.0 270 40.27
4 332.5 142.5 0 228 0.0 932.0 594.0 365 41.05
5 198.6 132.4 0 192 0.0 978.4 825.5 360 44.30
6 266.0 114.0 0 228 0.0 932.0 670.0 90 47.03

Since the scale of the attributes is quite distinct, the data are normalized using the
function normalize defined in (Lantz 2013) as

normalize <- function(x) {
+ return((x - min(x)) / (max(x) - min(x)))
+ }

Table 5 Attributes of CCS
data set Attribute in original set Attribute in our data set

Cement Cem

Blast furnace slag Bla

Fly ash Ash

Water Water

Superplasticizer Plast

Coarse aggregate Coarse

Fine aggregate Fine

Age Age in days

Concrete compressive strength Strength
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and the data set is normalized using

CCSN <- as.data.frame(lapply(CCS,normalize))

This results in normalized data; its first few records (truncated to two decimals)
are:

> head(CCSN)
cem blast ash water plast coarse fine age strength

1 1.00 0.00 0 0.32 0.07 0.69 0.20 0.07 0.96
2 1.00 0.00 0 0.32 0.07 0.73 0.20 0.07 0.74
3 0.52 0.39 0 0.84 0.00 0.38 0.00 0.73 0.47
4 0.52 0.39 0 0.84 0.00 0.38 0.00 1.00 0.48
5 0.22 0.36 0 0.56 0.00 0.51 0.58 0.98 0.52
6 0.37 0.31 0 0.84 0.00 0.38 0.19 0.24 0.55

A neural net model with four hidden neurons is computed by

nnet4 <- neuralnet(strength ˜ cem + blast + ash + water +
+ plast + coarse + fine + age,
+ data = CCSN, hidden = 4)

The resulting neural net can be seen using plot(nnet4) and is shown in
Fig. 11.

0.80951

4.
48

62
3

−1
.8

90
78

−5
1.

08
56

5

age

−0.92724

2.3
34

64

8.
53

70
7

2.
55

68
5

fine

0.38691

1.22867−1
.5

35
48

1.
85

85

coarse

−1.9247

−1.03747

−4.70991

−1
.3

49
99

plast

6.85137

2.25118

−3.089381.
03

93
9

water

−1.46234
0.57723

−1.99543

1.95418

ash

−1.82383
2.11599

−4.39641

3.99981blast

−4.19679
2.73906
−1.61038

3.70027

cem

−0
.5

00
99

1.51544

−0.19121

−0.83368

strength

0.00881
−2.79836

1.18987

−6.10732

1

−0.45595

1

Error: 2.460318   Steps: 35779

Fig. 11 Neural nets with four
hidden neurons
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Once a neural net is created, the compute function of the neuralnet can be
used to calculate and summarize the output of each neuron; it can be used to predict
outputs formed by new combinations of values of attributes.

Example 7.3 Consider some new combinations of values for the eight predictive
attributes of CCSN defined by

newconc <- matrix(c(1.00, 0.2, 0.1, 0.1, 0.1, 0.8, 0.8, 0.9,
0.9, 0.5, 0.1, 0.4, 0.1, 0.5, 0.5, 0.2),
byrow = TRUE, ncol = 8)

Using

new.output <- compute(nnet4,newconc)
new.output$net.result

yields the following predictions for strength

[,1]
[1,] 0.8891098520
[2,] 0.9530817536

8 Bibliographic Guide

Data mining and machine learning have generated a vast collection of references.
Among more advanced texts, we recommend (Abu-Mostafa et al. 2012; Bishop
2007; Murphy 2012; Shalev-Shwartz and Ben-David 2014; Zaki and Meira 2014;
Mohri et al. 2012).

A large number of books exist that deal with the R system and its applications to
machine learning and data mining. We mention (Lander 2014; Maindonald and
Braun 2004; Matloff 2011; Wickham 2009) as general references on R; books
specialized in machine learning applications are (Lantz 2013; Zhao 2013; Shao and
Cen 2014).

A very lucid and helpful survey of active learning is (Settles 2012).
The current literature dedicated to support vector machines includes book

written at various levels of mathematical sophistication ranging from accessible
titles (Cristianini and Shawe-Taylor 2000; Kung 2014; Statnikov et al. 2011;
Suykens et al. 2005) to more advanced (Shawe-Taylor and Cristianini 2005; 2008).
A comprehensive discussion related to the implementation of SVM in the
kernlab package of R is presented in (Karatzoglou et al. 2004; Karatzoglu et al.
2006).

38 D. Simovici



A Subspaces and Hyperplanes

We assume that the reader is familiar with the notion of linear space, as presented,
for example in (Simovici and Djeraba 2014). If L is a real linear space, a subspace
of L is a subset M of L such that x; y 2 M implies xþ y 2 M and ax 2 M for every
a 2 R.

Note that L is a subspace of L and that the smallest subspace of L is {0}. Any
intersection of subspaces of L is a subspace of L. Therefore, if X is a subset of L,
then the intersection of all subspaces that contain X is a subspace; we refer to this
subspace as the subspace generated by X, and we denote it by spanðXÞ.

Let v 2 R
n � 0f g and let a 2 R. The hyperplane determined by v and a is the

set Hv;a ¼ x 2 R
n v0x ¼ ajf g.

If x0 2 Hv;a, then v0x0 ¼ a, so Hv,a is also described by the equality

Hv;a ¼ x 2 R
n v0 x� x0ð Þ ¼ 0jf g;

where x0 2 Hv;a.
Any hyperplane Hv;a partitions Rn into three sets:

H[
v;a ¼ x 2 R

njv0x[ af g;
H0

v;a ¼ Hv;a;

H\
v;a ¼ x 2 R

njv0x\af g:

The sets H[
v;a and H\

v;a are the positive and negative open half-spaces determined
by Hv;a, respectively. The sets

H>
v;a ¼ fx 2 R

njv0x> ag;
H6

v;a ¼ fx 2 R
njv0x6 ag:

are the positive and negative closed half-spaces determined by Hv;a, respectively.
If x1; x2 2 Hv;a, then v ? x1 � x2. This justifies referring to v as the normal to

the hyperplane Hv;a. Observe that a hyperplane is fully determined by a vector
x0 2 Hv;a and by v.

Let x0 2 R
n and let Hx;a be a hyperplane. We seek x 2 Hx;a such that x� x0k k2

is minimal. Finding x amounts to minimizing the function f xð Þ ¼ x� x0k k22¼Pn
i¼1 ðxi � x0iÞ2 subjected to the constraint v1x1 þ � � � þ wnxn � a ¼ 0. Using the

Lagrangean LðxÞ ¼ f ðxÞ þ kðv0x� aÞ and the multiplier k, we impose the
conditions

@L
@xi

¼ 0 for 16 i6 n

which amount to
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@f
@xi

þ kwi ¼ 0

for 16 i6n. These equalities yield 2ðxi � x0iÞ þ kvi ¼ 0, so we have
xi ¼ x0i � 1

2 kvi. Consequently, we have x ¼ x0 � 1
2 kv. Since x 2 Hv;a, this implies

v0x ¼ v0x0 � 1
2
kv0v ¼ a:

Thus,

k ¼ 2
v0x0 � ja

v0v
¼ 2

v0x0 � a

vk k22
:

We conclude that the closest point in Hv;a to x0 is

x ¼ x0 � v0x0 � a

vk k22
v:

The smallest distance between x0 and a point in the hyperplane Hv;a is given by

x0 � xk k ¼ v0x0 � aj j
vk k22

v












 ¼ v0x0 � aj j

vk k

If we define the distance dðHv;a; x0Þ between x0 and Hv;a as this smallest dis-
tance, we have:

d Hv;a; x0
� � ¼ v0x0 � aj j

vk k2
ð8Þ

B Convexity, Partitions, and Entropy

Let x; y 2 R
n. The closed segment determined by x and y is the set

½x; y� ¼ faxþ ð1� aÞy j 06 a61g:

A set C, C � R
n is convex if x; y 2 C implies ½x; y� � C.

Let S be a non-empty convex subset of Rn. A function f : S ! R is convex if
f ðtxþ ð1� tÞyÞ6tf ðxÞ þ ð1� tÞf ðyÞ for every x; y 2 S and t 2 ½0; 1�.
Theorem B.1 (Jensen’s Theorem) Let f be a function that is convex on an interval
I. If t1; . . .; tn 2 ½0; 1� are n numbers such that

Pn
i¼1 ti ¼ 1, then
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f
Xn
i¼1

tixi

 !
6
Xn
i¼1

tif xið Þ

for every x1; . . .; xn 2 I.

Proof The argument is by induction on n, where n> 2. The basis step, n ¼ 2,
follows immediately from the definition of convex functions.

Suppose that the statement holds for n, and let t1; . . .; tn; tnþ1 be nþ 1 numbers
such that

Pnþ1
i¼1 ti ¼ 1. We have

f ðt1x1 þ � � � þ tn�1xn�1 þ tnxn þ tnþ1xnþ1Þ

¼ f t1x1 þ � � � þ tn�1xn�1 þ ðtn þ tnþ1Þ tnxn þ tnþ1xnþ1

tn þ tnþ1

� �
:

By the inductive hypothesis, we can write

f ðt1x1 þ � � � þ tn�1xn�1 þ tnxn þ tnþ1xnþ1Þ

6 t1f ðx1Þ þ � � � þ tn�1f ðxn�1Þ þ ðtn þ tnþ1Þf tnxn þ tnþ1xnþ1

tn þ tnþ1

� �
:

Next, by the convexity of f , we have

f
tnxn þ tnþ1xnþ1

tn þ tnþ1

� �
6 tn

tn þ tnþ1
f ðxnÞ þ tnþ1

tn þ tnþ1
f ðxnþ1Þ:

Combining this inequality with the previous inequality gives the desired con-
clusion. h

Example B.2 It is easy to verify that the function f ðxÞ ¼ xa is convex if a> 1
because f 00ðxÞ ¼ 1

x [ 0 for x 2 R[ 0. Therefore, if t1; . . .; tn 2 ½0; 1� andPn
i¼1 ti ¼ 1, by applying Jensen’s inequality to f , we obtain the inequality:

Xn
i¼1

tixi

 !a

�
Xn
i¼1

tix
a
i :

In particular, if t1 ¼ � � � ¼ tn ¼ 1
n, it follows that

Xn
i¼1

xi

 !a

6 na�1
Xn
i¼1

xai ;

so
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Xn
i¼1

xai > n1�a
Xn
i¼1

xi

 !a

:

When
Pn

i¼1 xi ¼ 1, the previous inequality implies
Pn

i¼1 x
a
i > n1�a.

A partition of a finite and non-empty set S is a collection of non-empty subsets
B1; . . .;Bn such that

(i) if 16 i; j6 n and i 6¼ j, Bi \Bj ¼ ;;
(ii)

Sn
i¼1 Bi ¼ S. The sets B1; . . .;Bn are known as the blocks of p.

Let partðSÞ be the set of partitions of the set S. A partial order “≤” can be defined
on partðSÞ as p6p0 if each block B0 of p is a union of blocks of the partition p.

Example B.3 For S ¼ fxij16 i6 6g consider the partitions

p ¼ ffx1; x2g; fx6g; fx3; x5g; fx4gg;
p0 ¼ ffx1; x2; x6g; fx3; x4; x5gg:

We have p6 p0 because each of the blocks of p0 is a union of blocks of p.

The partition iS whose blocks are singletons fxg, where x 2 S, is the least
partition defined on S. The partition hS that consists of a single block equal to S is
the largest partition on S.

Let p; r be two partitions of a set S, where p ¼ fB1; . . .;Bng and
r ¼ fC1; . . .;Cmg. The partition p ^ r of S consists of all non-empty intersections of
the form Bi \ Cj, where 16 i6 n and 16 j6m. Clearly, we have p ^ r6 p and
p ^ r6 r. Moreover, if s is a partition of S such that s6 p and s6 r, then s6p ^ r.

If T 	 S is a non-empty subset of S, then any partition p ¼ fB1; . . .;Bng of S
determines a partition pT on T defined by

pT ¼ T \ Bi Bi 2 p andj T \ Bi 6¼ ;f g:

For example, if p ¼ ffx1; x2g; fx6g; fx3; x5g; fx4gg, the trace on p on the set
fx1; x2; x5; x6g is the partition pT ¼ ffx1; x2g; fx6g; fx5gg.

A subset T of S is p-pure, if T is included in a block of p, or, equivalently, if
pT ¼ xT .

Let p ¼ fB1; . . .;Bng be a partition of a finite set S and let xi ¼ Bij j
Sj j for 1> i6 n.

Since
P

i¼1 nxi ¼ 1, we have the inequality

1�
Xn
i¼1

jBij
jSj

� �a

61� n1�a:
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Note that if jB1j ¼ � � � ¼ jBnj ¼ jSj
n , the left member of the above equality equals

1� n1�a.

Definition B.4 The a-entropy HaðpÞ of the partition p ¼ fB1; . . .;Bng of the set S
is given by

HaðpÞ ¼ 1
1� 21�a 1�

Xm
i¼1

jBij
jSj

� �a
 !

:

By the previous considerations, the maximum value of the expression HaðpÞ is
obtained when the blocks of the partition p have equal size and are equal to 1�n1�a

1�21�a.

When a ¼ 2, we obtain the Gini index of p, giniðpÞ ¼ 2 1�Pn
i¼1

jBij
jSj
� �2� �

.

Example B.5 Starting with the convex function gðxÞ ¼ x ln x (whose second
derivative g00ðxÞ ¼ 1

x is positive), the Jensen equality implies:

Xn
i¼1

tixi

 !
ln
Xn
i¼1

tixi

 !
6
Xn
i¼1

tixi ln xi

for every x1; . . .; xn 2 I. As before, for t1 ¼ � � � ¼ tn ¼ 1
n, we have

ðx1 þ � � � þ xnÞ ln x1 þ � � � þ xn
n

6
Xn
i¼1

xi ln xi:

Applying this inequalities to xi ¼ jBij
jSj , where p is a partition of S given by

p ¼ fB1; . . .;Bng, we have

ln n>�
Xn
i¼1

jBij
jSj ln

jBij
jSj :

The quantity �Pn
i¼1

jBij
jSj ln

jBij
jSj is the Shannon entropy of p. Its maximum value

ln n is obtained when the blocks of p have equal size.

Note that lima!1HaðpÞ ¼ HðpÞ. In other words, Shannon’s entropy is a limit
case of the Ha-entropy.

Let p; r be two partitions of a set S, where p ¼ fB1; . . .;Bng and
r ¼ fC1; . . .;Cmg. The conditional entropy HaðpjrÞ is defined by

Ha p rjð Þ ¼
Xm
j¼1

HaðpCjÞ
jCjj
jSj

� �a

:
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Since HaðpCjÞ ¼ 1
1�21�a 1�Pm

i¼1
jBi \Cjj
jCjj

� �a� �
, it follows that

Haðp ^ rÞ ¼ HaðpjrÞ þ HaðrÞ:

Various types of entropies are used to evaluate the impurity of a set relative to a
partition. Namely, for a partition j of S, HaðjÞ ranges from 0 (when the partition j

consists of one block and, therefore, is pure) to 1�n1�a

1�21�a when the partition consists of
n-singletons, and, therefore, it has the highest degree of impurity.

C Optimization with Constraints

An optimization problem consists in finding a local minimum or a local maximum
of a function f : Rn ! R, when such a minimum exists. The function f is referred
to as the objective function. Note that finding a local minimum of a function f is
equivalent to finding a local maximum for the function �f .

In constrained optimization, additional conditions are imposed on the argument
of the objective function. A typical formulation of a constrained optimization
problem is

minimize f ðxÞ;where x 2 R
n

subject to ciðxÞ ¼ 0; where 16 i6 p;

and cj xð Þ> 0; where 16 j6 q:

Here, ci are functions that specify equality constraints placed on x, while cj
define inequality constraints. The feasible region of the constrained optimization
problem is the set

R ¼ x 2 R
njciðxÞ ¼ 0 for 16 i6 p and cjðxÞ> 0 for 16 j6 q

� �
:

If the feasible region R is non-empty and bounded, then, under certain condi-
tions, a solution exists.

If R ¼ ;, we say that the constraints are inconsistent.
Note that equality constraints can be replaced in a constrained optimization

problem by inequality constraints. Indeed, a constraint of the form cðxÞ ¼ 0 can be
replaced by a pair of constrains cðxÞ> 0 and �cðxÞ> 0.

Let x 2 R be a feasible solution and let cðxÞ> 0 be an inequality constraint used
to define R. If x 2 R and cðxÞ ¼ 0, we say that c is an active constraint.

Consider the following optimization problem for an object function f : Rn ! R,
the compact set S � R

n, and the constraint functions c : Rn ! R
m and

d : Rn ! R
p:

minimize f xð Þ;where x 2 S;

subject u 2 R
m to c xð Þ6 0m

and d xð Þ ¼ 0p
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Both the object function f and the constraint functions c; d are assumed to be
continuously differentiable. We shall refer to this optimization problem as the
primal problem.

Definition C.1 The Lagrangean associated with this optimization problem is the
function L : Rn 
 R

m 
 R
p ! R given by

Lðx; u; vÞ ¼ f ðxÞ þ u0cðxÞ þ v0dðxÞ

for x 2 R
n, u 2 R

m, and v 2 R
p. The component ui of u is the Lagrangean mul-

tiplier corresponding to the constraint ciðxÞ60; the component vj of v is the
Lagrangean multiplier corresponding to the constraint hjðxÞ ¼ 0.

The dual optimization problem starts with the Lagrange dual function g :
R

m 
 R
p ! R defined by

gðu; vÞ ¼ inf
x2S

Lðx; u; vÞ ð9Þ

and consists of

maximize g u; vð Þ;where u 2 R
mand v 2 R

p;

subject to u> 0m:

Theorem C.2 The function g : Rm 
 R
p ! R defined by Equality (9) is concave

over Rm 
 R
p.

Proof For u1; u2 2 R
m and v1; v2 2 R

p, we have:

gðtu1 þ ð1� tÞu2; tv1 þ ð1� tÞv2Þ
¼ infff ðxÞ þ ðtu01 þ ð1� tÞu02ÞcðxÞ þ ðtv01 þ ð1� tÞv02ÞdðxÞ j x 2 Sg
¼ infftðf ðxÞ þ u01cþ v01dÞ þ ð1� tÞðf ðxÞ þ u02cðxÞ þ v02dðxÞÞ j x 2 Sg
> t infff ðxÞ þ u01cþ v01djx 2 Sg

þ ð1� tÞinfff ðxÞ þ u02cðxÞ þ v02dðxÞ j x 2 Sg
¼ tgðu1; v1Þ þ ð1� tÞgðu2; v2Þ;

which shows that g is concave.
Theorem C.2 is significant because a local optimum of g is a global optimum

regardless of convexity properties of f ; c or d. Although the dual function g is not
given explicitly, the restrictions of the dual have a simpler form and this may be an
advantage in specific cases. h

Example C.3 Let f : Rn ! R be the linear function f ðxÞ ¼ a0x, A 2 R
p
n, and

b 2 R
p. Consider the primal problem:
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maximize a0; x;where x 2 R
n;

subject to x> 0n and

Ax� b ¼ 0p:

The constraint functions are cðxÞ ¼ �x and dðxÞ ¼ Ax� b, and the Lagrangean
L is

Lðx; u; vÞ ¼ a0x� u0xþ v0ðAx� bÞ
¼ �v0bþ ða0 � u0 þ v0AÞx:

This yields the dual function

gðu; vÞ ¼ �v0bþ inf
x2Rn

ða0 � u0 þ v0AÞx:

Unless a0 � u0 þ v0A ¼ 0n0 , we have gðu; vÞ ¼ �1. Therefore, we have

gðu; vÞ ¼ �v0b if a� uþ A0v ¼ 0n;
�1 otherwise.

	

Thus, the dual problem is

maximize gðu; vÞ subject to u> 0m.

An equivalent of the dual problem is

maximize �v0b subject to a� uþ A0v ¼ 0n and u> 0m.

In turn, this problem is equivalent to:

maximize �v0b subject to aþ A0v> 0n.

Example C.4 Let us consider a variant of the primal problem discussed in Example
C.3. The objective function is again f ðxÞ ¼ a0x. However, now we have only the
inequality constraints cðxÞ6 0m, where cðxÞ ¼ Ax� b, A 2 R

m
n, and b 2 R
m.

Thus, the primal problem can be stated as

maximize a0x;where x 2 R
n;

subject toAx> b:

The Lagrangean L is

Lðx; uÞ ¼ a0xþ u0ðAx� bÞ ¼ �u0bþ ða0 þ u0AÞ;
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which yields the dual function:

gðuÞ ¼ �u0b if a0 þ u0A ¼ 0m;
�1 otherwise :

	

and the dual problem is

maximize� b0u subject to a0 þ u0A ¼ 0m
and u> 0

Example C.5 The following optimization problem

minimize
1
2
x0Qx� r0x;where x 2 R

n;

subject toAx> b;

where Q 2 R
n
n is a positive definite matrix, and r 2 R

n, A 2 R
p
n, and b 2 R

p are
known as a quadratic optimization problem.

The Lagrangean L is

Lðx; uÞ ¼ 1
2
x0Qx� r0xþ u0ðAx� bÞ ¼ 1

2
x0Qxþ ðu0A� r0Þx� u0b

and the dual function is gðuÞ ¼ infx2RnLðx; uÞ subject to u> 0m. Since x is
unconstrained in the definition of g, the minimum is attained when we have the
equalities

@ 1
2 x

0Qxþ ðu0A� r0Þx� u0b
@xi

¼ 0

for 16 i6 n, which amount to x ¼ Q�1ðr� AuÞ. Thus, the dual optimization
function is: gðuÞ ¼ � 1

2 u
0Pu� u0d� 1

2 r
0Qr subject to u> 0p, where P ¼ AQ�1A0,

d ¼ b� AQ�1r. This shows that the dual problem of this quadratic optimization
problem is itself a quadratic optimization problem.

Theorem C.6 (The Weak Duality Theorem) Let x0 be a solution of the primal
problem and let ðu; vÞ be a solution of the dual problem. We have gðu; vÞ6 f ðx0Þ.
Proof We have

gðu; vÞ ¼ infff ðxÞ þ u0cðxÞ þ v0dðxÞjx 2 Sg
6 f ðx0Þ þ u0cðx0Þ þ v0dðx0Þ6 f ðx0Þ;

because u>0; cðx0Þ60m, and dðx0Þ ¼ 0p which yields the desired inequality. h
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Corollary C.7 For the function involved in the primal and dual problems, we have

supfgðu; vÞju> 0ng6 infff ðxÞjx 2 S; cðxÞ6 0mg:

Proof This inequality follows immediately from the proof of Theorem C.6. h

Corollary C.8 If f ðx�Þ6 gðu; vÞ, where u> 0m and cðx�Þ6 0m, then x� is a
solution of the primal problem and u is a solution of the dual problem.

Furthermore, if supfgðu; vÞju> 0mg ¼ 1, then there is no solution of the pri-
mal problem.

Proof These statements are an immediate consequence of Corollary C.7. h

Example C.9 Consider the primal problem

minimize x21 þ x22;where x1 x2 2 R

subject to x1 � 16 0:

It is clear that the minimum if f ðxÞ is obtained for x1 ¼ 1 and x2 ¼ 0 and this
minimum is 1. The Lagrangean is

LðuÞ ¼ x21 þ x22 þ u1ðx1 � 1Þ

and the dual function is

gðuÞ ¼ inffx21 þ x22 þ u1ðx1 � 1Þjx 2 R
2g ¼ � u21

4
:

Then, supfgðu1Þju1 > 0g ¼ 0, and a gap exists between the minimal value of the
primal function and the maximal value of the dual function.

The possible gap that exists between infff ðxÞjx 2 S; cðxÞ6 0mg and
supfgðu; vÞj> 0ng is known as the duality gap.

A stronger result holds if certain conditions involving the restrictions are
satisfied:

Theorem C.10 (Strong Duality Theorem) Let C be a non-empty convex subset of
R

n, f : Rn ! R and c : Rn ! R
m be convex functions, and let d : Rn ! R

p be
given by dðxÞ ¼ Ax� b, where A 2 R

p
n and b 2 R
p.

Consider the primal problem

minimize f xð Þ;where x 2 S;

subject to c xð Þ6 0m
and d xð Þ ¼ 0p;

and its dual
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maxmize g u; vð Þ;where u 2 R
m and v 2 R

p;

subject to u> 0m

Suppose that there exists z 2 C such that cðzÞ\0m and dðzÞ ¼ 0p; additionally,
0p 2 IðdðCÞÞ. We have:

supfgðu; vÞju> 0mg ¼ infff ðxÞjx 2 C; cðxÞ6 0m; dðxÞ ¼ 0pg: ð10Þ

Moreover, if infff ðxÞjx 2 C; cðxÞ6 0m;dðxÞ ¼ 0pg is finite, then there exists
u1; v1 with u1 > 0m such that gðu1; v1Þ ¼ supfgðu1; v1Þju1 > 0mg; if f �xð Þ ¼
infff ðxÞjx 2 C; cðxÞ6 0m; dðxÞ ¼ 0pg (which means that the infimum is achieved
at �x), then u01c �xð Þ ¼ 0.

If L is the Lagrangean of the primary optimization problem

minimize f xð Þ;where x 2 S;

subject to c xð Þ6 0m
and d xð Þ ¼ 0p;

then a saddle point is a triplet x�; u�; v� with x� 2 S and u� 6 0 such that

Lðx�; u; vÞ6 Lðx�; u�; v�Þ6 Lðx; u�; v�Þ

for x 2 S and u> 0.
The duality gap disappears, and then, a saddle point occurs for the primal

problem, as stated by the next theorem.

Theorem C.11 The triplet ðx�; u�; v�Þ is a saddle point of the Lagrangean of the
primal problem if and only if its components x� and u�; v� are solutions of the
primal and dual problems, respectively, and there is no duality gap, that is,
f ðx�Þ ¼ gðu�; v�Þ.
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Abstract This chapter presents popular meta-heuristics inspired from nature
focusing on evolutionary computation (EC). The first section, as an elevator pitch,
briefly walks through problem solving, touching upon notions such as optimization
problems, meta-heuristics, constraint handling, hybridization, and the No Free
Lunch Theorem for optimization, and also giving very short introductions into
several most popular meta-heuristics. The next two sections are dedicated to evo-
lutionary algorithms and swarm intelligence (SI), two of the main areas of EC.
Three particular optimization methods illustrating these two areas are presented in
more detail: genetic algorithms (GAs), differential evolution (DE), and particle
swarm optimization (PSO). For a better understanding of these algorithms, refer-
ences to R packages implementing the algorithms and code samples to solve
numerical and combinatorial problems are given. The fourth section is dedicated to
the use of EC techniques in data analysis. Optimization of the hyper-parameters of
conventional machine learning techniques is illustrated by a case study. The last
section reviews applications of meta-heuristics in geosciences.
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1 A Painless Introduction

A particular characteristic of problem solving becomes evident if computers are
used for searching solutions to problems. Namely, when asked to solve a given
problem, one is simultaneously, if implicitly, asked to solve the meta-problem of
finding the best method to solve the problem. Best may refer to saving resources
most often, time in the process of finding a solution; it may also point to the
required accuracy/precision of the solution or to the set of instances of the problem
which must be solved, or to a threshold for positive/negative errors, etc. In many
cases, simply finding a method which can successfully look for a solution to the
given problem is not sufficient; the method should comply with requirements such
as those enumerated above, and moreover, it should do this in the best possible
way. Therefore, irrespective of what best means, in order to deal with the com-
panion meta-problem, one needs to be acquainted with a comprehensive set of
methods for solving problems: the larger the set of methods one chooses from, the
better the proposed method should be.

This may be the reason why, along with the ever increasing use of computers for
solving problems, a wealth of new approaches to problem solving has been
proposed.

1.1 Briefly, on Problems and Methods to Solve Them

How many problem-solving methods does one need to master? Indeed, many
new methods for solving problems were invented (some may say discovered) lately.
As opposed to exact deterministic algorithms, many of these new methods are weak
methods; a weak method is not rigidly related to one specific problem, but rather it
can be applied for solving various problems. At times, one or another such prob-
lem-solving technique appears to be most fashionable. To an outsider, genetic
algorithms (GAs), artificial neural networks, particle swarm optimization, and
support vector machines to name just a few seemed to successively take by storm
the proscenium over the last decades. Is each new method better than the previous
ones and, consequently, is the choice of the method to solve ones specific problem a
matter of keeping pace with fashion? Is there one particular method that solves best,
among all existing methods and all problems? A positive answer to either question
would mean that we actually have a free lunch when trying to solve a given
problem: we could spare the time needed to identify the best method for finding
solutions to the problem. However, a theorem proven in 1995 by Wolpert and
McReady (1997), called the No Free Lunch Theorem for optimization, shows that
the answer to both questions above is negative. Informally (and leaving aside
details and nuances of the theorem), the NFLTO states that, averaging overall
problems, all solving methods have the same performance, no matter what indicator
of performance is used. Obviously, the common average is obtained from various
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sets of values of the performance indicators for each method and various levels of
each method’s performance when applied to each specific problem. This means that
in general, two different methods perform at their respective best on different
problems, and consequently, each of them has a poorer performance on remaining
problems. It follows that there is no problem-solving method which is the “best”
method to solve all problems (indeed, if a method M would have equally good
performances on all problems, then this would be Ms average performance; then,
any method with scattered values of the performance indicator would outperform M
on some problems). Therefore, for each problem-solving method, there is a subset
of all problems for which it is the best solving method in some cases, and the subset
may consist of only one problem or even zero problems. Conversely, given a
problem to be solved, one has to find a particular method that works best for that
problem which proves that the meta-problem mentioned above is non-trivial.
Actually, it may be a very difficult problem; similar to the way some problem-
solving methods are widely used even if they are not guaranteed to provide the
exact solution, an approximate but acceptably good solution to the meta-problem
may be useful.

Optimization problems There is an informal conjecture stating that anything we
are doing, we optimize something; or, as Clerc put it in (2006), iterative optimi-
zation is as old as life itself. While each of these two statements may be the subject
of subtle philosophical debates, it is true that many problems can be stated as
optimization problems. Finding the average of n real numbers is an optimization
problem (find the number a which minimizes the sum of its distances absolute
values of the differences to each of the given numbers); the same goes for decision-
making problems, for machine learning ones, and many others.

An optimization problem asks to find—if it exists—an extreme value (either
minimum or maximum) of a given function. Finding the required solution is, in
fact, a search process performed in the space of all candidate solutions; this is why
the terms optimization method and search method are sometimes loosely used as
synonyms, although the term optimization refers to the values of the function, while
search (through the set of candidate solutions) usually points to values of the
variables of the respective function. Several simple taxonomies of optimization
problems are useful when studying meta-heuristics: optimization of functions of
continuous variable/discrete variable; optimization with/without constraints; opti-
mization with a fixed/moving optimum; single objective/multiple objective opti-
mization. Here are some examples:

• constraint optimization raises the critical problem of handling constraints;
• continuous/discrete variables point to specific meta-heuristics that originally

specialize in one the two types of optimization (e.g., GAs for discrete variables;
differential evolution (DE) for continuous variables);

• self-adapting meta-heuristics are recommended for solving problems with a
moving optimum;
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• particular variants of existing meta-heuristics have been defined for multi-
objective optimization (e.g., in DE).

Meta-heuristics, described below, are seen as optimization methods (i.e.,
methods for solving optimization problems). While meta-heuristics can also be used
for solving, for example, complex-system-design problems or machine learning
problems, such problems can also be stated as optimization problems.

Meta-heuristics Any problem-solving method belongs to one of three categories:
exact deterministic methods, approximate deterministic methods, and non-deter-
ministic methods. This chapter is concerned with the second and third categories,
which flourished over the last few decades.

A heuristic is a problem-solving method which is able to find approximate
solutions to the given problem either in a (significantly) shorter time than an exact
algorithm or simply when no exact algorithm can find a solution. Approximate
solutions may be acceptable in various situations; Simon (1969) argues that humans
tend to satisfice (use an acceptable approximate solution obtained reasonably
quickly) when it comes to complex situations/domains.

Meta-heuristic is a relatively recent term, introduced by Glover in 1986. Various
definitions and taxonomies of meta-heuristics were subsequently proposed; the
works mentioned below discuss these in detail. It is generally accepted that meta-
heuristics are problem-independent high-level strategies which guide the process of
finding (approximate) solutions to given problems. However, problem-independent
methods (also called weak methods) may well be fine-tuned by incorporating in the
search procedure some problem-specific knowledge; an early paper on this is
(Grefenstette 1987).

Among several existing taxonomies of meta-heuristics, the most interesting one
for our discussion is the classification concerned with the number of current
solutions. A trajectory or single-point meta-heuristic works with only one current
solution; the current solution is iteratively subject to conditional change. Local
search meta-heuristics, such as Tabu Search, Iterated Local Search, and Variable
Neighborhood Search (Blum and Roli 2003), fall into this category. A population-
based meta-heuristic iteratively change a set of candidate solutions collectively
called population; genetic algorithm (GA) or particle swarm Optimization, among
others, belong in this category.

This section briefly discusses two trajectory-based methods: iterated hill
climbing and simulated annealing.

Hill climbing Hill climbing is a weak optimization heuristic: In order to be applied
for solving a given problem, the only properties that are required are that the
function to be optimized takes on values which can always be compared against
each other (a totally ordered set of values such as the real numbers or the natural
numbers) and that it allows for a step-by-step improvement of candidate solutions
(i.e., the problem is not akin to finding the needle in the haystack). Hill climbing
does not use any other properties of the function to be optimized and does not
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organize the search for the optimum following a tree structure—or any other
structure. Therefore, it requires little computer memory. Hill climbing starts with an
initial candidate solution and iteratively aims at improving the current candidate
solution by replacing it with any (or the best) neighbor solution which is better than
the current one; when there are no more possible improvements, the search stops.
The neighborhood can be considered either in the set over which the function is
defined (a neighbor can be obtained through a slight modification of a number
which is a component of the candidate solution) or in the set of computer repre-
sentations of candidate solutions (a neighbor there is reached by flipping one bit).

While the procedure sketched above is very effective for any mono-modal
function (informally, a function whose graph has only one hilltop), it may get stuck
in local optima if the function is multi-modal. In the latter case, the graph of the
function will also have a second-highest hill, a third highest one, etc.; one run of the
hill-climbing procedure having the initial solution at the shoulder of the second-
highest hill will find the second-highest hilltop (a local optimum), but then, it will
get stuck there, since no improvement is possible anymore in the neighborhood.
This is why for multi-modal functions iterated hill climbing is used instead of one-
iteration hill climbing: The method is applied several times in a row, with different
initial candidate solutions, thus increasing the chance that one run of the method
will start at the foot of the hill which contains the global optimum.

Simulated Annealing The problem described above—optimization methods
getting stuck in local optima—was actually impairing potential advances in opti-
mization methods. A breakthrough has been the Metropolis algorithm (Metropolis
et al. 1953). The new idea was to occasionally allow for candidate solutions which
are worse than the current one to replace the current solution. This is compatible
with the hill-climbing metaphor: Indeed, when one wanders through a hilly land-
scape aiming at reaching the top of the highest hill, he/she may have to occasionally
climb down a hill in order to reach a higher one.

The idea of expanding the exploration capabilities of the optimization method at
the expense of the quality of the current solution proved to be very productive.
Nevertheless, a better idea is to also keep under some kind of control the ratio
between the number of steps when the current solution is actually improved and the
number of steps when the current solution is worsened. This is where simulated
annealing comes into scene. Beings of nature have not been the only inspiration for
problem-solving researchers; non-living-world processes are also a rich source for
metaphors and simulations in problem solving. One celebrating example is
annealing: Cooled gradually, a metal can gain most desirable physical properties
(e.g., ductility and flexibility), while sudden cooling of a metal hardens it.

Kirckpatrick et al. (1983) proposed a simulation of annealing which uses a
parameter (the temperature) for controlling the improvement/worsening ratio men-
tioned above: The lower the temperature, the fewer steps which worsen the current
solution are allowed. Analogously to what happens in the physical–chemical process
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of annealing, the temperature starts at a (relatively) high value and decreases at each
iteration of the current-solution-changing process. Simulated annealing has been
successfully applied to solve many discrete and continuous optimization problems,
including optimal design.

The rest of this chapter and Chapter “Genetic Programming Techniques with
Applications in the Oil and Gas Industry” present several population-based meta-
heuristics: GAs and genetic programing, DE, and particle swarm optimization. We
briefly introduce each of them in the following paragraphs. Four particular topics of
interest, in particular for the meta-heuristics under discussion, are then briefly
touched upon.

Many more meta-heuristics have been proposed and new ones continue to
appear. Monographs and surveys on meta-heuristics such as Glover (1986); Talbi
(2009); Voß (2001) give comprehensive insights into the topic. The International
Journal of Meta-heuristics publishes both theoretical and application papers on
methods including: neighborhood search algorithms, evolutionary algorithms, ant
systems, particle swarms, variable neighborhood search, artificial neural networks,
and artificial immune systems. Those interested in approaches to solving the meta-
problem above may wish to read about hyper-heuristics—a term coined by Burke; a
survey is provided in Burke et al. (2013).

1.2 What Will the Rest of This Chapter and the Next
One Elaborate On?

We introduce briefly the main topics of the two chapters.

Genetic Algorithms Ingo Rechenberg, a professor with the Technical University
of Berlin and a parent of evolution strategies, made a statement which supports the
use of evolutionary techniques for problem solving: “Natural evolution is, or
comprises, a very efficient optimization process, which, by simulation, can conduct
to solving difficult optimization processes” Rechenberg (1973). The statement is
empirically supported by many successful applications of evolutionary techniques
for solving various optimization problems. The field of evolutionary computing
now includes various techniques; the pioneering ones have been the GAs (Holland
1975), the evolution programs Fogel et al. (1966), and the evolution strategies
Rechenberg (1973; Schwefel 1993). Excellent textbooks on GAs are widely used:
Michalewicz (1992; Mitchell 1996), or a more general one, on evolutionary com-
puting (Jong 2006).

As the title of the groundbreaking book by Holland suggests, adaptation has
been the core idea that led to GAs; self-adapting techniques became ever since
more and more popular. Trying to reach the optimum starting from initial guesses as
candidate solutions, such techniques self-adapt their search using properties of the
search space of (the instance of) the problem.
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GAs simulate a few basic factors of natural evolution: mutation, crossover, and
selection. The implementation of each of these simulated factors involves gener-
ating random numbers: like all evolutionary methods, GAs are non-deterministic.
Adaptation, which is instrumental in natural evolution, is simulated by calculating
values of a function (the environment) and, on this basis, making candidate solu-
tions compete for survival for the next generation. The evolution of the population
of solutions can be seen as a learning process where candidate solutions learn
collectively.

More sophisticated variants of GAs simulate further factors of natural evolution,
such as the integrated evolution of two species [coevolution (Hillis 1990) the host–
parasite model].

One particular feature of GAs is that the whole computation process takes place
in two dual spaces: the space of candidate solutions to the given problem (where the
evaluation and the subsequent selection for survival take place the phenotype) and
the space of the representations of such solutions (where genetic operators such as
mutation and crossover are applied the genotype). This characteristic is also bor-
rowed from natural evolution, where the genetic code and the actual being evolved
from that code are instantiations of the two-space paradigm: In natural evolution,
the genetic code is altered through mutations and through crossover between par-
ents; subsequently, the being evolved from the genetic code is evaluated with
respect to its adaptation to the environment.

The genetic code in GAs is actually the way candidate solutions are represented
in the computer. The standard GAs (Michalewicz 1992) works with chromosomes
(representations of candidate solutions) which are strings of bits. When applied to
solve real-world problems, GAs evolved toward sophisticated representations of
candidate solutions, including varying-length chromosomes and multi-dimensional
chromosomes. One particular representation of candidate solutions has been
groundbreaking: trees from graph theory.

Genetic Programing emerged as a distinct area of GA. In his seminal book (Koza
1992), Koza uses a particular definition for the solution to a problem: A solution is a
computer program which solves the problem. Adding to this the idea that such
computer programs can be developed automatically, in particular through genetic
programing, a flourishing field of research and applications emerged. As Poli et. al.
put it, genetic programing automatically solves problems without requiring the user
to know or specify the form or structure of the solution in advance (Poli et al. 2008).

A tree can be seen as representing a calculation, in particular, a computer pro-
gram. In genetic programing, computer programs evolve in an automated manner
through self-adaptation of a population of trees each tree representing a candidate
program. Evaluation of candidate solutions is carried out using a set of instances of
the problem to be solved for which the actual solutions are known beforehand.
Specific operators have been introduced to cope with peculiarities of the evolution
of trees as abstract representations.
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Spectacular results have been obtained using genetic programing, including
patentable inventions.

Differential Evolution Since 1996, when it was publicly proposed by Price and
Storn (1997), DE became a popular optimization technique. It is a population-based
method designed for minimizing multi-dimensional real-valued functions through
vector processing; the function needs not be continuous (let alone differentiable)
and, even if it is differentiable, no information on the gradient is used.

DE follows the general steps of an evolutionary scheme: initialisation, applying
specific operators (see the one described below), evaluation, and selection; this
sequence being iterated from the second step until a halting condition is met. The
basic operation in DE is to add the weighted difference of two vectors in the
population to a third one. Thus, the candidate solutions learn from each other; the
computation is a self-adapting process.

From its early days, DE proved to be a powerful optimization technique: It won
the general-purpose algorithms competition in the First International Contest on
Evolutionary Optimization, 1996 (at the IEEE International Conference on Evo-
lutionary Computation). As was the case with other evolutionary techniques, DE
evolved to incorporate new elements such as elitism or coevolution. Pareto-based
approaches have been proposed for tackling multiple objective optimization
problems using DE (Madavan 2002).

Particle Swarm Optimization Collective intelligence (Nguyen and Kowalczyk
2012) is a rich source of inspiration for designing meta-heuristics through simu-
lation. Particularly, successful among such meta-heuristics are Ant Colony Opti-
mization (Dorigo and Stützle 2004) and Particle Swarm Optimization.

The seminal paper for the latter meta-heuristic is (Kennedy and Eberhart 1995);
a textbook dedicated to PSO is (Clerc 2006). Bird flocking or fish schooling can be
considered as being the inspiring metaphors from nature. The core idea is that at
each iteration, each particle (candidate solution) moves through the search space
according to a (linear) combination of the particles current move, of the best per-
sonal previous position, and of the best previous position of the neighbors (what
neighbors means, is a parameter of the procedure). This powerful combination of
the backtracking flavor (keeping track somehow of the previous personal best) and
collective learning (partly aiming at the regional/global previous best) makes PSO
well suited for optimization problems with a moving optimum.

1.3 Short Comments on Four Transversal Issues

Parameter Control A key element for the successful design of any meta-heuristic
is a proper adjustment of its parameters. Suffices it to think of the number of
candidate GAs one has to select from when designing a GA for a given problem:
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Mutation rates and crossover rates can, at least theoretically, take on any value
between 0 and 1; there are tens of choices for the population size; the selection
procedure can be any of at least ten popular ones (new ones can be invented), etc.
This makes a search space for properly designing a GAs for a given problem in the
range of at least hundreds of thousands candidate GAs; of these, only a few will
probably have a good performance and finding these among all possible GAs for
that problem is a non-trivial task.

In the design phase of a meta-heuristic, parameters can be set by hand or auto-
matically. For example, for GAs, a supervisor GAs have been proposed (Gre-
fenstette 1986) which can be used for off-line improvement of the parameters of a
given GAs such as the population size, the mutation, and crossover rates.

If one chooses to have dynamic parameter values during the run of the algo-
rithm, this can be done automatically, for example, upon automatedly checking
whether or not any change of the best-so-far solution happened during a given
number of iterations.

Constraint Handling When the problem to be solved belongs to the constraint
optimization class, a major concern along the iterative solution-improving process
is that of preserving the feasability of candidate solutions, i.e., keeping only
solutions which satisfy all the constraints. The way a feasible solution is obtained in
the first place is beyond the scope of this paragraph—this may happen, for example,
by applying a heuristic which ends up with a feasible but, very likely, non-optimal
solution. Subsequently, the iterative solution-improvement process successively
changes the current solution; every such change may turn a current solution which
is feasible into one which is not. When unfeasible solutions (candidate solutions
which do not satisfy the problem constraints) are obtained, the optimization method
should address this.

There are three main ways of tackling unfeasible solutions. A first approach is to
penalize unfeasible solutions and otherwise let them continue to be part of the
search process. In this way, an unfeasible solution becomes even less competitive
than it actually is with respect to the search-for-the-optimum process (see fitness
function in the GAs section of this chapter). A second approach is to repair the new
solution in case it is unfeasible (repairing means changing the solution in such a
way that it becomes feasible); the fact that repairing may have the same complexity
as the original given problem makes this approach least recommendable. The best
approach seems to be that of including the constraints (or at least some of them) into
the representation of solutions. This idea is convincingly illustrated for numerical
problems in Michalewicz (1992) where bit string representations are used: Any bit
string is decoded into a feasible solution. This approach has the decisive advantage
that there is no need to check whether or not candidate solutions obtained from
existing ones are feasible. When including the problem constraints into the codi-
fication of candidate solutions, one actually uses hybridisation with the problem,
which is mentioned in the next paragraph.
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Hybridisation According to one of the definitions in Blum and Roli (2003), a basic
idea of meta-heuristics in general is to combine two or more heuristics in one
problem-tailored procedure and use it as a specific meta-heuristic. Hybridisation has
even more subtle aspects. Hybridisation happens when inserting an element from one
meta-heuristic into another meta-heuristic (e.g., using crossover, a defining operator
for GA, in an evolution strategy which, in its standard form, uses only mutations).
Another form of hybridisation could be called hybridisation with the problem:
Problem-specific properties can be used for defining particular operators in a meta-
heuristic. An example can be found in Michalewicz (1992): For the transportation
problem, a feasible solution remains feasible after applying on it a certain transfor-
mation; this transformation is then used to define the mutation operator. An example
of hybridisation is illustrated in this book, in the chapter on genetic programing.

Hybridisation is recommended, in general, for improving the problem-solving
method. This could be called intended hybridisation, and it has proven its beneficial
effects in countless successful applications.

There also exists an unintended hybridisation which one should be aware of. For
example, when trying to optimize a Royal Road function (Mitchell et al. 1992), the
search in a large plateau (while a substring of 8 bits does not yet contain only 1s) is
akin to a blind search, even though we run a GA for solving the problem. Indeed,
the probability field constructed for the selection has, for the whole plateau, equal
probabilities, and consequently, the selection is not biased toward solutions closer
to the optimum—it is rather a random selection. This way, the GA designed to
solve the Royal Road problem is (unwillingly) hybridised with random search
which takes over temporarily while walking the plateau.

Experiments Non-deterministic methods are used in a way which differs from that
of deterministic ones. The latter will always provide the same output for a given
input, while the former may give different results when run repeatedly with the same
input. This behavior leads to the need of assessing the quality of a non-deterministic
algorithm by repeatedly running it with the same input. Various statistics can be used
—usually, the average of the respective best solutions and their standard deviation,
over a number of runs. Therefore, the proper use of non-deterministic methods
requires at least basic knowledge of probabilities and statistics, in particular Exper-
iment design. Testing statistical hypothesis gives substance to the study of the per-
formance of (non-deterministic) meta-heuristics.

1.4 Going into Practice: Two Running Examples

In order to illustrate the optimization process conducted within the methods
described in this chapter, two optimization problems are formulated here. Sample
code in R (including the output) invoking the algorithms under consideration is
listed in the next sections in an attempt to familiarize the reader with some avail-
able, easy-to-use software.
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The first optimization problem, known as Six Hump Camel Back, is commonly
used as a benchmark function to assess the performance of optimization algorithms
to which its multi-modal complex landscape imposes serious difficulties. It is for-
mulated as a minimization problem over two continuous variables. The problem is
defined as follows:

Minimize f ðx1; x2Þ ¼ ð4� 2:1x21 þ x41=3Þx21 þ x1x2 þ ð�4þ 4x22Þx22
where �3� x1 � 3;

�2� x2 � 2:
ð1Þ

The landscape of the function is illustrated in Fig. 1 with the aid of perspective
and contour plots in R.

Visible on the plots above, the function has six local minima and two global
minima. The two global minima lie at locations ðx1; x2Þ ¼ ð�0:0898; 0:7126Þ and
ðx1; x2Þ ¼ ð0:0898;�0:7126Þ; the value returned at these locations corresponds to
f ðx1; x2Þ ¼ �1:0316.

The R code defining the Six Hump Camel Back function is shown below.

> SixHump <- function (x1, x2)
{

(4-2.1*x1^2+x1^4/3)*x1^2+x1*x2+(-4+4*x2^2)*x2^2
}

An equivalent function can be implemented in R using as argument a vector.
This formulation is more appropriate for our goals because, this general form which
does not impose restrictions on the size of the input, can be further called by other R
routines implementing the meta-heuristics presented in this chapter.

> SixHumpV <- function (x)
{

(4-2.1*x[1]^2+x[1]^4/3)*x[1]^2+x[1]*x[2]+(-4+4*x[2]^2)*x[2]^2
}

We also illustrate the use of meta-heuristics on a constrained optimization
problem with discrete variables, frequently arising in the oil and gas industry:
portfolio selection. While this problem may be found under various formulations,
we tackle here the variant presented in Shakhsi-Niaei et al. (2013). Given a firm
with a budget b, n projects, with the net value of the ith project denoted by fi and the
cost of the ith project denoted by ci, one must find the combination of projects that
maximizes the total utility for the firm, as computed in Eq. 2:

Maximize z ¼
Xn
i¼1

fixi; ð2Þ

On Meta-heuristics in Optimization and Data Analysis. Application to Geosciences 63



Subject to:
Xn
i¼1

cixi � b; ð3Þ

xi 2 0; 1; i ¼ 1; n: ð4Þ

x1 þ x2 � 1; ð5Þ

x5 þ x3 � 1: ð6Þ

x5 þ x3 þ x4 � 2: ð7Þ

The variables xi represent the decision to select project i (xi ¼ 0 means the project
is not selected, whereas xi ¼ 1 means the project gets selected for implementation)—
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Fig. 1 Perspective and contour plots for Six Hump Camel Back: a for the entire domain of
definition: x1 2 ½�3; 3�, x2 2 ½�2; 2�, b restricted to x1 2 ½�1:9; 1:9�, x2 2 ½�1:1; 1:1�. The two
global optima are illustrated as blue triangles at locations ðx1; x2Þ ¼ ð�0:0898; 0:7126Þ and
ðx1; x2Þ ¼ ð0:0898; �0:7126Þ
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constraint expressed by Eq. 4. The total budget of the firm must not be exceeded by
the total costs of the projects selected (Eq. 3). Other constraints may be imposed on
the problem (especially in a real-world context), such as Eq. 5 expresses the condition
that either project 1 or project 2 gets implemented; Eq. 6 expresses the condition that
either project 3 or project 5 gets implemented; Eq. 7 expresses the condition that at
most 2 out of the 3 projects (3, 4, and 5) may get implemented.

2 Evolutionary Algorithms

Evolutionary algorithms (EAs) are simplified computational models of the evolu-
tionary processes that occur in nature. They are search methods implementing
principles of natural selection and genetics. Parts of this section follow closely the
text in (Breaban 2011).

2.1 Terminology

Evolutionary algorithms use a vocabulary borrowed from genetics. They simulate the
evolution across a sequence of generations (iterations within an iterative process) of a
population (set) of candidate solutions. A candidate solution is internally represented
as a string of genes and is called chromosome or individual. The position of a gene in a
chromosome is called locus, and all the possible values for the gene form the set of
alleles of the respective gene. The internal representation (encoding) of a candidate
solution in an evolutionary algorithm form the genotype; this information is pro-
cessed by the evolutionary algorithm. Each chromosome corresponds to a candidate
solution in the search space of the problem which represents its phenotype. A
decoding function is necessary to translate the genotype into phenotype. If the search
space is finite, it is desirable that this function should satisfy the bijection property in
order to avoid redundancy in chromosomes encoding (which would slow down the
convergence) and to ensure the coverage of the entire search space.

The population maintained by an evolutionary algorithm evolves with the aid of
genetic operators that simulate the fundamental elements in genetics: Mutation
consists in a random perturbation of a gene, while crossover aims at exchanging
genetic information among several chromosomes. The chromosome subjected to a
genetic operator is called parent and the resulted chromosome is called offspring.

A process called selection involving some degree of randomness selects the
individuals to breed and create offsprings, mainly based on individual merit. The
individual merit is measured using a fitness function which quantifies how fitted the
candidate solution encoded by the chromosome is for the problem being solved. The
fitness function is formulated based on the mathematical function to be optimized.

The solution returned by an evolutionary algorithm is usually the most fitted
chromosome in the last generation.
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2.2 Directions in Evolutionary Algorithms

First efforts to develop computational models of evolutionary systems date back to
1950s (Bremermann 1958; Fraser 1957). Several distinct interpretations, which are
widely used nowadays, were independently developed later. The main differences
between these classes of evolutionary algorithms consist in solution encoding,
operators implementation, and selection schemes.

Evolutionary programing crystallized in 1963 in the USA at San Diego Uni-
versity, when Fogel (1966) generated simple programs as simple finite-state
machines; this technique was developed further by his son David Fogel. A random
mutation operator was applied on state transition diagrams, and the best chromo-
some was selected for survival.

Evolutionary strategies (ES) were introduced in 1960s when Hans-Paul
Schwefel and Ingo Rechenberg, working on a problem from mechanics involving
shape optimization, designed a new optimization technique because existing
mathematical methods were unable to provide a solution. The first ES algorithm
was initially proposed by Schwefel in 1965 and developed further by Rechenberg
(1973). Their method was designed to solve optimization problems with continuous
variables; it used one candidate solution and applied random mutations followed by
the selection of the fittest. ES were later strongly promoted by Back (1996) who
incorporated the idea of population of solutions.

GAs were developed by John Henry Holland in 1973 after years of study of the
idea of simulating the natural evolution. These algorithms model the genetic
inheritance and the Darwinian competition for survival. GAs are described in more
detail in Sect. 2.3.

Genetic programing is a specialized form of a GA. The specialization consists in
manipulating a very specific type of encoding and, consequently, in using modified
versions of the genetic operators. GP was introduced by Koza in 1992 in an attempt
to perform automatic programing. GP manipulates directly phenotypes, which are
computer programs (hierarchical structures) expressed as trees. It is currently
intensively used to solve symbolic regression problems. Genetic programing and
one important variation—gene expression programing—are described in Chapter
“Genetic Programming Techniques with Applications in the Oil and Gas Industry”
of this book.

DE (Storn and Price 1997) is a more recent class of evolutionary algorithms
whose operators are specifically designed for numerical optimization. DE is
described in detail in Sect. 2.4.

An in-depth analysis under a unified view of these distinct directions in evo-
lutionary algorithms is presented in De Jong (2006).
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2.3 Genetic Algorithms

GAs (Holland 1998) are the most well known and the most intensively used class of
evolutionary algorithms.

A GA performs a multi-dimensional search by means of a population of can-
didate solutions which exchange information and evolve during an iterative process.
The process is illustrated by the pseudo-code in Fig. 2.

In order to solve a problem with a GA, one must define the following elements:

• an encoding for candidate solutions (the genotype);
• an initialization procedure to generate the initial population of candidate

solutions;
• a fitness function which defines the environment and measures the quality of the

candidate solutions;
• a selection scheme;
• genetic operators (mutation and crossover);
• numerical parameters.

The encoding is considered to be the main factor determining the success or
failure of a GA.

The standard encoding in GAs consists in binary strings of fixed length. The
main advantage of this encoding is offered by the existence of a theoretical model
(the Schema theorem) explaining the search process until convergence. Another
advantage shown by Holland is the high implicit parallelism in the GA. A widely
used extension to the binary encoding is gray coding.

Unfortunately, for many problems, this encoding is not a natural one and it is
difficult to be adapted. However, GAs themselves evolved and the encoding
extended to strings of integer and real numbers, permutations, trees, and multi-
dimensional structures. Decoding the chromosome onto a candidate solution to the
problem sometimes necessitates problem-specific heuristics.

Important factors that need to be analyzed with regard to the encoding are the
size of the search space induced by a representation and the coverage of the phe-
notype space: Whether the phenotype space is entirely covered and/or reachable,
whether the mapping from genotype to phenotype is injective, or “degenerate,” and

t := 0
Initialize P0
Evaluate P0
while halting condition not met do

t := t+ 1
select Pt from Pt−1
apply crossover and mutation in Pt

evaluate Pt

end while

Fig. 2 A generic genetic
algorithm
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whether particular (groups of) phenotypes are over-represented (Radcliffe et al.
1995). Also, the “heritability” and “locality” of the representation under crossover
and mutation need to be studied (Raidl and Gottlieb 2005).

The initialization of the population is usually performed randomly. There exist
approaches which make use of greedy strategies to construct some initial good
solutions or other specific methods depending on the problem.

The fitness function is constructed based on the mathematical function to be
optimized. For more complex problems, the fitness function may involve very
complex computations and increase the intrinsic polynomial complexity of the GA.

Several probabilistic procedures based on the fitness distribution in population
can be used to select the individuals to survive in the next generations and produce
offsprings; this phase of the algorithm is known as selection for variation. All
these procedures encourage to some degree the survival of the fittest individuals,
allowing at the same time that the worst adapted individual survive and contribute
with local information (short-length substrings) to the structure of the optimal
solution. The most essential feature which differentiates them is the selection
pressure: the degree to which the better individuals are favored; the higher the
selection pressure, the more the better individuals are favored. The selection
pressure has a great impact on the diversity in population and consequently on the
convergence of GAs. If the selection pressure is too high, the algorithm will suffer
from insufficient exploration of the search space and premature convergence occurs,
resulting in sub-optimal solutions. On the contrary, if the selection pressure is too
low, the algorithm will unnecessarily take longer time to reach the optimal solution.
Various selection schemes were proposed and studied from this perspective. They
can be grouped into two classes: proportionate-based selection and ordinal-based
selection. Proportionate-based selection takes into account the absolute values of
the fitness. The most known procedures in this class are as follows: roulette wheel
(Holland 1975) and stochastic universal sampling (Baker 1987).

Because of its wide use and popularity among all GAs flavors, we describe, in
the following, roulette wheel selection. For this procedure, each individual is
assigned a probability of being selected proportional with its fitness value. The sum
of these probability values over the set of all the individuals in a generation is 1. Let
fi be the fitness of the ith individual of the current population, then pi is the
probability of the individual for being selected:

pi ¼ fiPN
j¼1

fj

;

where N is the number of individuals in the population (see, for a simple example,
Fig. 3 which assumes a population of 5 individuals). On each application of the
selection scheme, a random number is generated r 2 ½0; 1Þ and the individual i with
the highest cumulative frequency smaller than this random r is selected to survive to
the next generation:

68 H. Luchian et al.



i ¼ k ¼ 1. . .n
min

fkj
Xk
j¼1

� rg:

Ordinal-based selection takes into account only the relative order of individuals
according to their fitness values. The most used procedures of this kind are the
linear ranking selection (Baker 1985) and the tournament selection (Goldberg
1989).

New individuals are created in population with the aid of two genetic operators:
crossover and mutation. The classical crossover operator aims at exchanging
genetic material between two chromosomes in two steps: A locus is chosen ran-
domly to play the role of a cut point and splits each of the two chromosomes in two
segments; then, two new chromosomes are generated by merging the first segment
from the first chromosome with the second segment from the second chromosome
and vice versa. This operator is called in literature one-point crossover and is
illustrated in Fig. 4. Generalizations exist to three or more cut points. Uniform
crossover builds sequentially the offspring by copying at each locus the allele
randomly chosen from one of the two parents.

Various constraints imposed by real-world problems led to various encodings for
candidate solutions; these problem-specific encodings subsequently necessitate the
redefinition of crossover. Thus, algebraic operators are implied for the case of
numerical optimization with real encoding; an impressive number of papers focused
on permutation-based encodings proposing various operators and performing
comparative studies. It is now a common procedure to wrap a problem-specific
heuristic within the crossover operator in Ionita et al. (2006), the authors propose
new operators for constraint satisfaction; (Luchian et al. 1994) presents new
operators in the context of clustering]. Crossover in GAs stands at the moment for
any procedure which combines the information encoded within two or several
chromosomes to create new and hopefully better individuals.

Fig. 3 Fitness values in a population of 5 individuals. The bottom row contains the fitness values
of the individuals. Their associated probabilities are the labels of the circular sectors
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Mutation is a unary operator designed to introduce variability in population. In
the case of binary GAs, the mutation operator modifies each gene (from 0 to 1 or
from 1 to 0) with a given probability. As in the case of crossover, mutation takes
various forms depending on the problem and the encoding used (see Fig. 5 for
examples of how mutation works for different chromosome representations).

When designing a GA, decisions have to be made with regard to several
parameters: population size, crossover and mutation rate, and a halting criterion.
Except some general considerations (i.e., high mutation rate in first iterations,
decreasing during the run, combined with a complementary evolution for cross-
over), finding the optimum parameter values comes more to empiricism than to
abstract studies.

In the following, we illustrate the search process conducted by a GA using the
package called “GA” (Scrucca 2013) in R to minimize the Six Hump Camel Back
function, previously defined in Sect. 1.4.

Fig. 4 Crossover operators in bit string GA

Fig. 5 The behavior of the mutation operator for different encodings
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Because this is a problem with a continuous bi-dimensional search space, a real
encoding and arithmetical operators are a natural choice. Moreover, empirical
studies have reported that these settings obtain better performance compared to
natural encoding and standard operators in the case of numerical optimization
problems. The initialization scheme consists in randomly generating points (can-
didate solutions, chromosomes) in the bi-dimensional search space defined by the
problem. We have to define further the fitness function that should be used to
measure the quality of the chromosomes. Naturally, this is based on the objective
function of our problem, but requires some minimal modifications: the GAs
necessitate that the fitness function is designed for maximization: The higher the
fitness value is, the better the candidate solution for our problem is. Because the
problem we tackle is defined for minimization, low values of our objective function
(previously defined in R as SixHumpV) correspond to better solutions, while high
values to worse ones. Therefore, we need to build a new function playing as fitness
in the GA, simply by multiplying our objective function with (−1):

SixHumpMax <- function(x)
+ {
+ -SixHumpV(x)
+ }

The lines of code below call the ga function to execute a GA which maximizes
our newly defined function with a population of 20 chromosomes using real
encoding and arithmetic operators for 50 iterations:

> library("GA")
> GA.sols <- ga(type = "real-valued", fitness = SixHumpMax,
+ min = c(-3, -2), max = c(3, 2), maxiter=50, popSize=20)
Iter = 1 | Mean = -20.10513 | Best = 0.3900806
Iter = 2 | Mean = -8.679598 | Best = 0.3900806
Iter = 3 | Mean = -1.909435 | Best = 0.3900806
Iter = 4 | Mean = -0.7739577 | Best = 0.521566
Iter = 5 | Mean = -0.4207289 | Best = 0.521566
...
Iter = 50 | Mean = 0.9275536 | Best = 1.020383

During its execution, the ga function prints at each iteration the mean of the
fitness in population and the best fitness value. To show the final results, we call the
summary function:
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Iterations = 50
Fitness function value = 1.020383
Solution =

x1 x2
[1,] -0.1262185 0.6870156

> summary(GA.sols)
+-----------------------------------+
| Genetic Algorithm |
+-----------------------------------+

GA settings:
Type = real-valued
Population size = 20
Number of generations = 50
Elitism = 1
Crossover probability = 0.8
Mutation probability = 0.1
Search domain

x1 x2
Min -3 -2
Max 3 2

GA results:

The best solution obtained over 50 iterations corresponds to Six Hump
(−0.1262185, 0.6870156) = −1.020383. The evolution of the best value of the
objective function in population during the run is illustrated in Fig. 6.
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Fig. 6 The evolution of the
best objective value in one
run of the GA
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Figure 7 illustrates the distribution of the individuals in population during one
run of the GA, at iterations 1, 2, 5, 10, and 50. The GA shows a very quick
convergence toward the regions containing the global minima. The evolution of the
fitness for the run illustrated here shows that the GA is able to locate in only a few
number of iterations the promising area in the search space due to its good
exploration abilities. However, by comparing the final solution to the minimum of
the objective function (−1.020383 vs. −1.0316), we may conclude that in this run,
the GA is deficient at exploitation: Even if very close to the global optima, starting
at iteration number 17, the algorithm stopped improving the best solution achieved
so far.

By illustrating only one run of the GA, a general conclusion on its convergence
cannot be drawn on this basis due to the stochastic nature of the algorithm. To study
its performance, 30 runs are performed with the same settings and for each run, the
objective value corresponding to the solution returned is collected. In this manner,
we obtain a sample of 30 values with mean −1.030361—which is closer to the
optimum than the particular run reported previously, and standard deviation 0.0037
—which indicates that the algorithm is stable, returning each time solutions very
close to the optimum. The confidence interval for the mean supports these con-
clusions: The mean of the objective values returned by the GA is less than
−1.028960 (we are interested in the minimum) with probability 0.95. In the code
below, “fitness” is a vector with 30 values corresponding to the objective values
returned in 30 runs:
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Fig. 7 The evolution of the population in GA during one run of the algorithm: the distribution of
the candidate solutions at iterations 1, 2, 5, 10, and 15
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> t.test(fitness)

One Sample t-test

data: fitness
t = -1503.688, df = 29, p-value < 2.2e-16
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
-1.031762 -1.028960

sample estimates:
mean of x
-1.030361

Although the reported results are satisfactory, the GAs are usually enhanced in
practice by hybridizing them with local search algorithms.

With a standard binary encoding, GAs are the most appropriate candidates when
attempting to solve the portfolio selection problem by means of meta-heuristics.

In order to illustrate such an approach, we consider the problem defined in
Sect. 1.1 with the following instantiation: the number of projects n ¼ 6, the budget
of the firm b ¼ 1000, and the costs and the utilities of the projects as in Table 1. An
optimal solution to this problem involves the selection of projects 1, 4, 5, and 6; it
has total cost 850 and utility 1700.

One way to deal, within a GA, with the constraints imposed by the problem, is to
encourage the search in the feasible region of the search space by penalizing the
unfeasible candidate solutions. Under this approach, any solution that violates a
constraint gets a lower fitness. Identifying the most appropriate scheme to penalize
solutions is, by itself, an optimization problem. The code below implements one
possible fitness function for our problem:

> portfolio <- function(x){
+ cost <- c(250,350,100,200,300,100)
+ utility <- c(500,400,150,300,600,300)
+ totalUtility <- sum (utility*x)
+ totalCost <- sum (cost*x)
+ penalty <- 0
+ if (totalCost > 1000)
+ penalty <- totalCost #penalty for exceeding the budget
+ p=sum(cost)
+ if (x[1]+x[2] > 1) penalty <- penalty+p #violating constraint 5)
+ if (x[3]+x[5] > 1) penalty <- penalty+p #violating constraint 6)
+ if (x[3]+x[4]+x[5] > 2) penalty <- penalty+p #violating constraint 7)
+ totalUtility - penalty
+ }
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A GA with binary encoding is called to solve this problem instance:

> GA <- ga(type = "binary", fitness = portfolio, nBits = 6,
+ maxiter = 50, popSize = 10)
Iter = 1 | Mean = 270 | Best = 1300
Iter = 2 | Mean = 850 | Best = 1400
Iter = 3 | Mean = 1225 | Best = 1700
Iter = 4 | Mean = 1160 | Best = 1700
I...
Iter = 49 | Mean = 832.5 | Best = 1700

> summary(GA)
+-----------------------------------+
| Genetic Algorithm |
+-----------------------------------+

GA settings:
Type = binary
Population size = 20
Number of generations = 50
Elitism = 1
Crossover probability = 0.8
Mutation probability = 0.1

GA results:
Iterations = 50
Fitness function value = 1700
Solution =

x1 x2 x3 x4 x5 x6
[1,] 1 0 0 1 1 1

2.4 Differential Evolution

Adhering by design to the area of evolutionary algorithms, but targeting in par-
ticular the field of numerical optimization, a method called DE was developed by
Ken Price and Rainer Storn during 1994–1996 (Storn and Price 1997). The results

Table 1 Cost and utility of
projects

Project 1 2 3 4 5 6

Cost 250 350 100 200 300 100

Utility 500 400 150 300 600 300
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in their seminal paper show that DE outperforms GAs in numerical optimization
and this hypothesis was subsequently confirmed in competitions dedicated to real-
valued function minimization.

DE makes use of the same terminology as GAs: A population of candidate
solutions evolves by means of selection, mutation, and crossover. The differences
occur at several levels: the encoding of the candidate solutions, the definition of the
genetic operators, and the selection scheme.

Designed for numerical optimization, the internal encoding of the candidate
solution (the genotype) is identical to the phenotype: A string of real values that
correspond to the decision variables defined by the problem.

The selection for variation is replaced in DE by a simple pass through the entire
population: Each chromosome is participating in the variation phase to create a new
offspring by means of genetic operators. However, DE implements selection at
replacement: The offspring is introduced in the new population only if it is better
than its parent with regard to the fitness function. The pseudo-code of the DE
algorithm is illustrated in Fig. 8.

There are several versions of the mutation operator (line 7 of the algorithm).
However, they all share a mechanism that is a distinctive feature of DE within the
EA framework: The perturbation term is obtained as the difference between some
randomly selected chromosomes. This perturbation mechanism, particular to DE,
suggestively gives the name of this method. The general formula creating one
mutant yi at time t is given below:

yi ¼ kxðt�1Þ
� þ ð1� kÞxðt�1Þ

Ii þ
XL
l¼1

Flðxðt�1Þ
Jil � xðt�1Þ

Kil
Þ ð8Þ

where k is a numerical value in range [0,1] controlling the influence of the best

element in the current population, which is xðt�1Þ
� . xðt�1Þ

Ii is a chromosome from the

1. t := 0
2. Initialize population P0 = {x(0)1 , x

(0)
2 , ..., x

(0)
m } of size m

3. Evaluate P0
4. while halting condition not met do
5. t := t+ 1
6. for i=1 to m do
7. yi = generateMutant(Pt−1)
8. zi = crossover(x(t−1)

i , yi)
9. Evaluate zi

10. if zi is better than x
(t−1)
i then

11. x
(t)
i = zi

12. else
13. x

(t)
i = x

(t−1)
i

14. end if
15. end for
16. end while

Fig. 8 The differential
evolution algorithm
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current population, chosen at random (Ii 2 f1; 2; . . .mg). L[ ¼ 1 is an integer

value specifying the number of pairs of chromosomes of the form ðxðt�1Þ
Jil ; xðt�1Þ

Kil
Þ

randomly chosen from the current population (Jil;Kil 2 f1; 2; . . .mg; Jil 6¼ Kil) and
which are used in the perturbation mechanism. Fl [ 0; l ¼ 1. . .m are scaling factors
decisive for the influence of each difference.

Different settings of the numerical parameters k and L lead to distinct DE
algorithms. In order to specify, in a concise manner, the DE variant, a simple
notation, was introduced based on three variables: DE/a=L=c where a depends on
the value of k, L is the number of vector differences used, and c is the type of
crossover. The most popular versions of the DE algorithm are DE/best/1=� and
DE/rand/1=�. Both versions correspond to the case when only one difference is
used to compute the mutant. The first case corresponds to k ¼ 1, respectively, to

yi ¼ xðt�1Þ
� þ Fðxðt�1Þ

Ji � xðt�1Þ
Ki

Þ ð9Þ

while the second case corresponds to k ¼ 0, respectively, to

yi ¼ xðt�1Þ
Ii þ Fðxðt�1Þ

Ji � xðt�1Þ
Ki

Þ ð10Þ

It must be noted that the mutation mechanism described above does not alter the
current/selected chromosome xi. It is the role of crossover to build an offspring of
the current chromosome, by combining its genetic material with the one encoded by
the mutant chromosome. From this perspective, DE is not entirely compliant with
the general specifications of the two genetic operators.

Two versions of crossover are proposed in DE. A first one, called binomial
crossover, is similar to the uniform crossover in GAs: It is a binary operator that
mixes the components of the two chromosomes based on a given probability CR:

zi;d ¼ yi;d if rd\CR or d ¼ d0
xi;d otherwise

�
d ¼ 1. . .D ð11Þ

where rd is a random number uniformly distributed in [0,1] and d0 2 ½1;D� is a
random position in the chromosome guaranteeing that the offspring contains at least
one element from the mutant. D denotes the dimensionality of the problem, i.e., the
length of the string representing a chromosome.

The second variant of the crossover operator is called exponential crossover and
can be expressed by the following formulation:

zi;d ¼ yi;d for d 2 H
xi;d otherwise

�
ð12Þ

where H is a series of size at most D of consecutive circular numbers in range 1,2,
… D, starting with a value d0 and continuing with ðd0 þ 1Þ � D, ðd0 þ 2Þ � D; . . .;
ðd0 þ kÞ � D where a� b expresses the modulus operator returning the remainder
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of the division of a to b; k is the first trial that satisfies that a random uniformly
generated number in [0,1] is higher than CR, thus following a truncated geometric
distribution. For example, considering d0 ¼ 6 and D ¼ 10, H could be the series 6,
7, 8 or 6, 7, 8, 9, 10, 1, 2, depending on the parameter CR; these two examples
clearly illustrate the similarity of the exponential crossover in DE with the 2-point
crossover in GAs.

In both versions of the crossover operator, CR is a parameter deciding the
influence of the mutant on the structure of the offspring. A theoretical analysis of
the two crossover variants and their influence on the sensitivity of DE to different
values of CR are presented in Zaharie (2007).

An elitist replacement strategy guarantees survival of the fittest chromosome
among the parent and the offspring.

To simulate a run of the DE algorithm on our minimization problem, we use the
R package called DEoptim (Mullen et al. 2011).1 The following code calls the
DEoptim function which executes the DE/rand/1/bin algorithm (the variant
implementing mutation based on a random candidate and one difference, and binary
crossover) to minimize the SixHump function with a population consisting of 20
candidate solutions over 50 iterations; with the trace parameter set on TRUE, the
best candidate solution (its value for the objective function and its components) in
each iteration is shown during the run:

> library("DEoptim")
> DE.sols <- DEoptim(SixHumpV, lower = c(-3, -2), upper = c(3, 2),
+ control = list(strategy = 1, NP=20, itermax=50, storepopfrom = 1,
+ trace = TRUE))
Iteration: 1 bestvalit: -0.343676 bestmemit: 0.424858 -0.515384
Iteration: 2 bestvalit: -0.343676 bestmemit: 0.424858 -0.515384
Iteration: 3 bestvalit: -0.343676 bestmemit: 0.424858 -0.515384
Iteration: 4 bestvalit: -0.722848 bestmemit: -0.090842 0.885970
Iteration: 5 bestvalit: -0.811161 bestmemit: 0.138414 0.742059
...

The performance of DE is highly dependent on the values of the numerical
parameters. The authors of DE recommend setting CR to 0.9 and selecting F from
the interval [0.5, 1.0]. The run illustrated here uses the default values in DEoptim:
CR ¼ 0:9 and F ¼ 0:8.

The following lines of code list the best solution in the last iteration and output
two plots: One representing the evolution of the best value of the objective function
(the minimum) in the population and one representing the distribution of the can-
didate solutions during the run. The resulting plots are illustrated in Fig. 9.

1The package can be freely downloaded from http://cran.r-project.org/web/packages/DEoptim/
index.html.
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> DE.sols$optim
$bestmem

par1 par2
0.08984226 -0.71265649

$bestval
[1] -1.031628
...
> plot(DE.sols, plot.type = "bestvalit", col="red", pch=1)
> plot(DE.sols, plot.type = "storepop")

Figure 9 clearly illustrates the convergence toward the optimal solution in DE. In
our run, the optimum is found after 31 iterations, as indicated by Fig. 9a. The
diversity in population decreases significantly during the run according to Fig. 9b
which presents in two distinct plots the distribution of the values in each iteration
for each parameter of the objective function. This plot indicates an interesting
behavior: convergence toward two distinct regions in the search space.

In order to get more insight into the dynamics of the population within DE,
Fig. 10 illustrates the candidate solutions in the population at distinct moments
during the run distributed over the contour plot illustrating the landscape of the
objective function. The series (a) of plots show the distribution of the candidate
solutions at iterations 1, 5, 10, and 15. The series (b) offers a zoomed-in perspective
of the landscape (restricted to x1 2 ½�1:9; 1:9� and x2 2 ½�1:1; 1:1�) showing the
distribution of the candidate solutions at iterations 15, 20, 30, and 50. In the first
iteration of the algorithm, the population is spread at random in the search space. At
iteration number 10 (Fig. 10a)-3rd plot), groups of individuals were formed around
local and global optima. Toward the end of our run, all the candidate solutions
migrate in the regions corresponding to the two global optima.
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Fig. 9 The evolution of the population in DE during one run of the algorithm: a the evolution of
the best fitness value in population and b the distribution of the candidate solutions (the genotype)

On Meta-heuristics in Optimization and Data Analysis. Application to Geosciences 79



The mean of the objective values after 30 runs is −1.031615, with a standard
deviation of 3.74e−05.

2.5 Extensions of EAs for Multi-modal and Multi-objective
Problems

Variations were brought to the classical EAs not only at the encoding and operators
level. In order to face the challenges imposed by real-world problems, modifica-
tions are also recorded in the general scheme of the algorithms.

EAs are generally preferred to trajectory-based meta-heuristics (i.e., hill climb-
ing, simulated annealing, Tabu Search) in multi-modal environments, mostly due
to their increased exploration capabilities. However, a standard EA still can be
trapped in a local optimum due to premature attraction of the entire population into
its basin of attraction. Therefore, the main concern of EAs for multi-modal opti-
mization is to maintain diversity for a longer time in order to detect multiple (local)
optima. To discover the global optima, the EA must be able to intensify the search
in several promising regions and eventually encourage simultaneous convergence
toward several local optima. This strategy is called niching: The algorithm forces
the population to preserve subpopulations, each subpopulation corresponding to a
niche in the search space, and different niches represent different (local) optimal
regions.

Several strategies exist in the literature to introduce niching capabilities into
evolutionary algorithms. Deb and Goldberg (1989) propose fitness sharing: The
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Fig. 10 The evolution of the population in DE during one run of the algorithm: a the distribution
of the candidate solutions at iterations 1, 5, 10, and 15 and b a zoomed-in landscape showing the
distribution of the candidate solutions at iterations 15, 20, 30, and 50
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fitness of each individual is modified by taking into account the number and fitness
of its closely ranged individuals. This strategy determine the number of individuals
in the attraction basin of an optimum to be dependent on the height of that peak.

Another widely used strategy is to arrange the candidate solutions into groups of
individuals that can only interact between themselves. The island model evolves
independently several populations of candidate solutions; after a number of gen-
erations, individuals in neighboring populations migrates between the islands
(Whitley et al. 1998).

There are techniques, which divide the population, based on the distances
between individuals (the so-called radii-based multi-modal search GAs). Genetic
chromodynamics (Dumitrescu 2000) introduces a set of restrictions with regard to
the way selection is applied or the way recombination takes place. A merging
operator is introduced which merges very similar individuals after perturbation
takes place. In Stoean et al. (2010), best successive local individuals are conserved,
while sub-populations are topological separated.

De Jong introduced a new scheme of inserting the descendants into the popu-
lation, called the crowding method (Kenneth 1975). To preserve diversity, the
offspring replace only similar individuals in the population.

A field of intensive research within the evolutionary computation (EC) com-
munity is multi-objective optimization. Most real-world problems necessitate the
optimization of several, often conflicting objectives. Population-based optimization
methods offer an elegant and very efficient approach to this kind of problems: With
small modifications of the basic algorithmic scheme, they are able to offer an
approximation of the Pareto optimal solution set. While moving from one Pareto
solution to another, there is always a certain amount of sacrifice in one objective(s)
to achieve a certain amount of gain in the other(s). Pareto optimal solution sets are
often preferred to single solutions in practice, because the trade-off between
objectives can be analyzed and optimal decisions can be made on the specific
problem instance.

Zitzler et al. (2000) formulate three goals to be achieved by multi-objective
search algorithms:

• the Pareto solution set should be as close as possible to the true Pareto front,
• the Pareto solution set should be uniformly distributed and diverse over of the

Pareto front in order to provide the decision maker a true picture of trade-offs,
• the set of solutions should capture the whole spectrum of the Pareto front. This

requires investigating solutions at the extreme ends of the objective function
space.

GAs have been the most popular heuristic approach to multi-objective design
and optimization problems mostly because of their ability to simultaneously search
different regions of a solution space and find a diverse set of solutions. The
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crossover operator may exploit structures of good solutions with respect to different
objectives to create new non-dominated solutions in unexplored parts of the Pareto
front. In addition, most multi-objective GAs do not require the user to prioritize,
scale, or weigh objectives. There are many variations of multi-objective GAs in the
literature and several comparative studies. As in multi-modal environments, the
main concern in multi-objective GAs optimization is to maintain diversity
throughout the search in order to cover the whole Pareto front. Konak et al. (2006)
provide a survey on the most known multi-objective GAs, describing common
techniques used in multi-objective GA to attain the three above-mentioned goals.

3 Swarm Intelligence

Swarm intelligence (SI) is a computational paradigm inspired from the collective
behavior in auto-organized decentralized systems. It stipulates that problem solving
can emerge at the level of a collection of agents which are not aware of the problem
itself, but collective interactions lead to the solution. SI systems are typically made
up of a population of simple autonomous agents interacting locally with one
another and with their environment. Although there is no centralized control, the
local interactions between agents lead to the emergence of global behavior.
Examples of systems like this can be found in nature, including ant colonies, bird
flocking, animal herding, bacteria molding, and fish schooling.

The most successful SI techniques are ant colony optimization (ACO) and
particle swarm optimization (PSO). In ACO (Dorigo and Stützle 2004), artificial
ants build solutions walking in the graph of the problem and (simulating real ants)
leaving artificial pheromone so that other ants will be able to build better solutions.
ACO was successfully applied to an impressive number of optimization problems.
PSO is an optimization method initially designed for continuous optimization;
however, it was further adapted to solve various combinatorial problems. PSO is
presented in more detail in the next section.

3.1 Particle Swarm Optimization

The PSO model was introduced in 1995 by Kennedy and Eberhart (1995), being
discovered through simulation of a simplified social model such as fish schooling or
bird flocking. It was originally conceived as a method for optimization of contin-
uous nonlinear functions. Latter studies showed that PSO can be successfully
adapted to solve combinatorial problems.

The evolutionary cultural model proposed by (Boyd and Richerson 1985) stands
as the basic principle of PSO. According to this model, individuals of a society have
two learning sources: individual learning and cultural transmission. Individual
learning is efficient only in homogenous environments: The patterns acquired
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through local interactions with the environment are generally applicable. For het-
erogenous environments, social learning—the essential feature of cultural trans-
mission—is necessary.

In line with the evolutionary cultural model, the PSO algorithm uses a set of
simple agents which collaborate in order to find solutions of a given optimization
problem.

In the PSO paradigm, the environment corresponds to the search space of the
optimization problem to be solved. A swarm of particles is placed in this envi-
ronment. The location of each particle corresponds therefore to a candidate solution
to the problem. A fitness function is formulated in accordance with the optimization
criterion to measure the quality of each location. The particles move in their
environment collecting information on the quality of the solutions they visit and
share this information to the neighboring particles in the swarm. Each particle is
endowed with memory to store the information gathered by individual interactions
with the environment, simulating thus individual learning. The information
acquired from neighboring particles corresponds to the social learning component.
Eventually, the swarm is likely to move toward “more” optimum locations of the
search space, similar to a flock of birds that collectively forage for food.

Unlike GAs, in PSO, there exist no evolution operators and no competition for
survival; all particles survive and share information for the welfare of the swarm.
The driving force is the emergent SI and attained by the sharing of local information
between particles in order to produce global knowledge. It is important to note that
problem solving is a population-wide phenomenon, because a particle by itself is
probably incapable of solving even simple problems (Poli et al. 2007).

Usually, the swarm is composed of particles that share the same structural and
behavioral features. Each particle is characterized by its current position in the
search space, its velocity, and one or more of its best positions in the past (usually,
only one position). Each particle uses the objective (fitness) function so that it can
find out how good its current status is. The particles use a communication channel
in order to exchange information with (some) of its peers. The topology of the
swarm’s social network is defined by the structure of the communication channel,
where cliques of interconnected particles form neighborhoods.

In the classical PSO algorithm, the position of a particle in the search space is
updated in each iteration depending on the position and velocity of the particle in
the previous iteration. The formulas used to update the particles and the procedures
are inspired from and conceived for continuous spaces. Therefore, each particle is
represented by a vector x of length n indicating the position in the n-dimensional
search space and has a velocity vector v used to update the current position. The
velocity vector is computed following the rules:

• every particle tends to keep its current direction (an inertia term);
• every particle is attracted to the best position p it has achieved so far (imple-

ments the individual learning component);
• every particle is attracted to the best particle g in the neighborhood (implements

the social learning component).
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The velocity vector is computed as a weighted sum of the three terms above.
Two random multipliers r1; r2 are used to gain stochastic exploration capability,
while w; c1; c2 are weights usually empirically determined. The formulae used to
update each of the individuals in the population at iteration t + 1 are as follows:

vti ¼ w � vt�1
i þ c1 � r1 � ðpt�1

i � xt�1
i Þ þ c2 � r2 � ðg � it�1 � xt�1

i Þ ð13aÞ

xti ¼ xt�1
i þ vti ð13bÞ

As a side effect of these changes, the velocity of the particle could enter a
divergence process, throwing the particle further, and further away form p. To
prevent this behavior, Kennedy and Eberhart clamped the amplitude of the velocity
to a maximum value, denoted by vmax:

vti ¼ minðvmax;maxð�vmax; v
t
iÞÞ: ð14Þ

Equation 13b generates a new position in the search space (corresponding to a
candidate solution). It can be associated to some extent to the mutation operator in
evolutionary programing. However, in PSO, this mutation is guided by the past
experience of both the particle and other members of the swarm. In other words,
“PSO performs mutation with a conscience” (Jong 2006). Considering the best
visited solutions stored in the personal memory of each individual as additional
members of the population, PSO implements a weak form of selection (Angeline
1998).

The shape of the search space is unknown; hence, there exists no known opti-
mum combination of the two learning sources (i.e., individual learning and cultural
transmission). The classical PSO algorithm compensates this lack of information
with random values for learning factors c1 � r1 and c2 � r2, which change in each
iteration in order to weigh differently the learning sources. The velocity change
produced by each term depends on the distance between the compared positions
(i.e., the particle will move faster if values are larger) and the random learning
factors. This allows PSO to simulate, during a single run, various search strategies.
The solution that the algorithm outputs at the end of the run is obtained from the
information stored in the memory of each particle after the last iteration is
completed.

The search for the optimal solution in PSO is described by the iterative procedure
in Fig. 11. The fitness function is denoted by f and is formulated for maximization.

Particle pi is chosen in the basic version of the algorithm to be the best position
in the problem space visited by particle i. However, the best position is not always
dependent only on the fitness function. Constraints can be applied in order to adapt
PSO to various problems, without slowing down the convergence of the algorithm.
In constrained nonlinear optimization, the particles store only feasible solutions and
ignore the infeasible ones (Hu and Eberhart 2002). In multi-objective optimization,
only the Pareto-dominant solutions are stored (Coello and Lechunga 2002; Hu and
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Eberhart 2002). In dynamic environments, particle p is reset to the current position
if a change in the environment is detected (Hu and Eberhart 2001).

The selection of particle gi is performed in two steps: neighborhood selection
followed by particle selection. The size of the neighborhood has a great impact on
the convergence of the algorithm. It is generally accepted that a large neighborhood
speeds-up the convergence, while small neighborhoods prevent the algorithm from
premature convergence. Various neighborhood topologies were investigated with
regard to their impact on the performance of the algorithm (Kennedy 2002; Ken-
nedy and Mendes 2003); however, as expected, there is no free lunch: Different
topologies are appropriate to different problems.

A major problem investigated in the PSO literature is the premature conver-
gence of the algorithm in multi-modal optimization. This problem has been
addressed in several papers and solutions include addition of a queen particle (Clerc
1999), alternation of the neighborhood topology (Kennedy 1999), introduction of
subpopulations (Lïvbjerg et al. 2001), giving the particles a physical extension
(Krink et al. 2002), alternation between phases of attraction and repulsion (Riget
and Vesterstrøm 2002), giving different temporary search goals to groups of par-
ticles (Al-kazemi and Mohan 2002), giving particles quantum behavior (Sun et al.
2004), and the use of specific swarm-inspired operators (Breaban and Luchian
2005).

Another crucial problem is parameter control. The values and choices for some
of these parameters may have significant impact on the efficiency and reliability of
the PSO. There are several papers that address this problem; in most of them, the
values for parameters are established through repeated experiments but there also
exist attempts to adjust them dynamically, using EC algorithms.

The role played by the inertia weight was compared to that of the temperature
parameter in simulated annealing (Shi and Eberhart 1998). A large inertia weight
facilitates a global search, while a small inertia weight facilitates a local search. The
parameters c1 and c2 are called generically learning factors; because of their distinct
roles, c1 was named the cognitive parameter (it gives the magnitude of the infor-
mation gathered by each individual) and c2 the social parameter (it weights the
cooperation between particles). Another parameter used in PSO is the maximum

1. t := 0
2. Initialize xti, i = 1..n
3. Initialize vti , i = 1..n
4. Store personal best pti = xti, i = 1..n
5. Find neighborhood best gti = argmaxy∈Nxt

i
(f(y)), i = 1..n

6. while halting condition not met do
7. t := t+ 1
8. Update vti , i = 1..n using equation 13a
9. Update xti, i = 1..n using equation 13b

10. Update personal best pti = argmax(f(pt−1
i ), f(xti))

11. Find neighborhood best gti = argmaxy∈Nxt
i
(f(y))

12. end while

Fig. 11 Basic PSO
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velocity which determines the maximum change each particle can take during one
iteration. This parameter is usually proportional with the search domain.

One run of the PSO algorithm can be illustrated using package pso built for R
which is consistent with standard PSO, as described in Bratton and Kennedy
(2007):

> library(pso)
> PSO.sols <- psoptim(rep(NA,2),SixHumpV,lower=c(-3,-2),upper=c(3,2),

control=list( maxit=50, s=20, trace=1, REPORT=1))
S=20, K=3, p=0.1426, w0=0.7213, w1=0.7213, c.p=1.193, c.g=1.193
v.max=NA, d=7.211, vectorize=FALSE, hybrid=off
It 1: fitness=-0.3635
It 2: fitness=-0.8261
It 3: fitness=-0.8261
It 4: fitness=-0.8623
It 5: fitness=-0.9337
...

The final solution obtained in 50 iterations with a population of 20 individuals
reaches the global optima:

> show(PSO.sols)
$par
[1] 0.09041749 -0.71296641

$value
[1] -1.031627

The algorithm reaches quickly the global optima, as shown in Fig. 12.
Figure 13 illustrates the distribution of the individuals in population during one

run, at iterations 1, 2, 5, 10, 20, and 50.

3.2 PSO on Binary Domains

Although PSO was conceived for continuous optimization, an effort was done to
adapt the algorithm in order to be used for solving a wide range of combinatorial
and binary optimization problems. A short discussion of the binary version of PSO
is presented in this section, following the presentation from (Bautu 2010).

Kennedy and Eberhart (1997) introduced a first variant of binary PSO, com-
bining the evolutionary cultural model with the reasoned action model. According
to the latter, the action performed by an individual is the stochastic result of the
intention to do that action. The strength of the intention results from the interaction
of the personal attitude and the social attitude on the matter (Hale et al. 2002).
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Fig. 12 The evolution of the best value of the objective function for one run of PSO
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Fig. 13 The evolution of the population in PSO during one run of the algorithm: the distribution of
the candidate solutions at iterations 1, 2, 5, 10, 20, and 15
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The PSO algorithm for real-valued optimization updates the positions of parti-
cles based on a function that depends (indirectly) of various personal and social
factors. In the binary domain, the intention of particles to move between the two
allowed positions: 0 and 1 is modeled in a similar manner. The probability that the
particle will move to position 1 is computed by:

Pðpt ¼ 1Þ ¼ f 0ðpt�1; vt�1; pt�1
i ; gt�1

g Þ: ð15Þ

The individual learning factor and the social learning factor act as personal and
social attitudes that help to select one of the two binary options.

In particular, with respect to classical PSO, in binary PSO:

• the domain of particle positions in the context of binary optimization problems
is P ¼ f0; 1gn;

• the cost function that describes the optimization problem is hence defined
c : f0; 1gn ! R;

• the position of a particle consists in the responses of the particle to the n binary
queries of the problem. The position in the search space is updated during each
iteration depending on its velocity.

Let pt 2 P and vt 2 R denote the position and the velocity of a particle at
iteration t. The update equation for the particle’s position in binary PSO is as
follows:

p ¼ 1; if /3\ð1þ expð�vÞÞ�1

0; otherwise
;

�
ð16Þ

where /3 is a random uniformly distributed variable in ½0; 1Þ. It results that higher
velocity induces higher probabilities for the particle to choose 1. The equation for
the particle ensures that the particle stays within the search space domain; hence, no
relocation procedure is required.

The velocity of the particle is updated using the same equation as in classical
PSO. The semantics of each term in (13a) for binary PSO are special cases of their
original meaning. For example, if the best position of the particle (pti) is 1 and the
current position (pt) is 0, then pti � pt ¼ 1. In this case, the second term in (13a) will
increase the value of vt; hence, the probability that the particle with choose 1 will
also increase. Similarly, the velocity will decrease if pti ¼ 0 and pt ¼ 1. If the two
positions are the same, the individual learning term will not change the velocity in
order to try to maintain the current choice. The same is true for the velocity updates
produced by the social learning term. The position of the particle may change due to
the stochastic nature of (16), even if the velocity does not change between
iterations.

The complete PSO algorithm for binary optimization problems is presented in
vector form in (Fig. 14).
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Other PSO variants can also be successfully used on binary spaces. In Wang
et al. (2008), the authors propose the outcome of the binary queries to be estab-
lished randomly based on the position of the particle within a continuous space.
Khanesar et al. (2009) present a variation of the binary PSO in which the particle
toggles its binary position with probability depending its velocity.

4 Integrating Meta-heuristics with Conventional Methods
in Data Analysis: A Practical Example

Meta-heuristics stand as basis for the design of efficient algorithms for various data
analysis tasks. Such approaches are extensions of conventional techniques, obtained
as hybridizations with meta-heuristics, or evolved as new self-contained data
analysis methods.

There is a large variety of approaches for data clustering based on GAs (Breaban
et al. 2012; Hruschka et al. 2009; Luchian et al. 1994), DE (Zaharie 2005), PSO
(Breaban and Luchian 2011; Rana et al. 2011), and ACO (Shelokar et al. 2004).
Learning Classifier Systems (Lanzi et al. 2000) are one of the major families of
techniques that apply EC to machine learning; these systems evolve a set of con-
dition–action rules able to solve classification problems. Decision trees (Turney
1995) and support vector machines (Stoean et al. 2009, 2011) are also evolved with
GAs. The representative application example of EAs in regression analysis is the
use of genetic programing for symbolic regression, topic covered in detail in
Chapter “Genetic Programming Techniques with Applications in the Oil and Gas
Industry” of this book. Many algorithms based on meta-heuristics tackle feature
selection and feature extraction.

Require: c - the objective function
Ensure: S - the position that encodes the best solution
1. t = 0
2. Initialize particle positions (pt)
3. Initialize particle velocities (vt)
4. Store particle best solutions (gti = pt)
5. while searching allowed do
6. t = t+ 1
7. Update positions using equation (16)
8. Find neighborhood best solutions with neighborhood operator N

(gtg = argminx∈{bti |N} c(x))
9. Update velocity using equation (13a)

10. Limit velocity using equation (14)
11. end while
12. Retrieve the solution.
13. return S

Fig. 14 The particle swarm optimization algorithm for binary optimization
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We restrict the discussion in this section to one particular application: Optimi-
zation of the parameters of machine learning algorithms used in data analysis. The
performance of several machine learning algorithms depends heavily on some
parameters involved in their design; such parameters are often called meta-
parameters or hyper-parameters. The problem of choosing the best settings for these
parameters is also known as model selection.

Examples may vary from simple algorithms such as k-nearest neighbors where k
is such a hyper-parameter, to more complex algorithms. In the case of artificial
neural networks, the structure of the network (the number of hidden layers, the
number of neurons in each layer, the activation function) has a high impact on the
accuracy of the results in classification or regression analysis; the degree of com-
plexity of the network is a critical factor in the trade-off between overfitting the
model to the training data and underfitting, and the right balance can be achieved
only with extensive experiments. In the definition of support vector machines
(SVMs), two numerical parameters play important roles: a constant C called reg-
ularization parameter and a constant e corresponding to the width of the �-insen-
sitive zone, influence the number of support vectors used in the model, controlling
the trade-off between two goals, fitting the training set well, and avoiding overfit-
ting; parameters characterizing various kernel functions are also involved.

We illustrate here a simple model selection scheme by means of EAs for
regression analysis. A small dataset called “rock,” included in R, is used with this
purpose. It consists of 48 rock samples from a petroleum reservoir characterized by
the area of pores, total perimeter of pores, shape, and permeability.

> show(rock)
area peri shape perm

1 4990 2791.900 0.0903296 6.3
2 7002 3892.600 0.1486220 6.3
3 7558 3930.660 0.1833120 6.3
4 7352 3869.320 0.1170630 6.3
...
48 9718 1485.580 0.2004470 580.0

We illustrate regression analysis by training a support vector machine to learn a
model able to predict permeability. The quality of the regression model is usually
measured by the mean squared error, as defined below.

> MSE <- function(x,y)
+ {
+ mean((x-y)^2)
+ }

Support vector regression is implemented in R under package “e1071.” The
results obtained using radial kernel are shown below:
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> library(e1071)
> svr <- svm(perm ~ area+peri+shape, data=rock,
+ type="eps-regression", kernel = "radial")
> predicted <-predict(svr,newdata=rock,type="response")
> MSE(predicted, rock$perm)
[1] 35316.21
> cor(predicted, rock$perm)
[1] 0.9040716
> plot(predicted, rock$perm)

The default settings of the three hyper-parameters used in the run above can be
inspected next: Cost is the regularization parameter, gamma is a parameter of the
kernel function, and epsilon is the size of the insensitive tube.

> summary(svr)
Parameters:

SVM-Type: eps-regression
SVM-Kernel: radial

cost: 1
gamma: 0.3333333

epsilon: 0.1

These numerical parameters can be optimized in order to minimize the predic-
tion error measured by MSE. We formulate this task as a numerical optimization
problem defined over three numerical parameters (cost, gamma, and epsilon),
aiming to minimize the MSE of the predictions obtained with support vector
regression under the given settings:

> trainingError <- function(params)
+ {
+ svr <- svm(perm ~ area+peri+shape, data=rock, type="eps-regression",
+ kernel = "radial", gamma=params[1], cost = params[2], epsilon = params[3])
+ predicted <-predict(svr,newdata=rock,type="response")
+ MSE(predicted, rock$perm)
+ }

Any of the meta-heuristics presented in this chapter can be used to tackle this
minimization problem. We illustrate here the use of DE:
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> DEparams <- DEoptim(trainingError, lower = c(0, 0, 0), upper = c(4, 4, 1),
+ control = list(strategy = 1,NP=20, itermax=20, trace = TRUE))
Iteration: 1 bestvalit: 5937.692186 bestmemit: 1.929174 2.872409 0.012022
Iteration: 2 bestvalit: 5630.575260 bestmemit: 3.110530 3.717773 0.166768
Iteration: 3 bestvalit: 3623.210268 bestmemit: 2.818071 3.682759 0.077892
...
Iteration: 20 bestvalit: 1473.135923 bestmemit: 3.983884 3.812688 0.046011

The solution obtained by DE is stored next in the vector params and is used to
train a new SVM.

> params <- DEparams$optim$bestmem
> svr <- svm(perm ~ area+peri+shape, data=rock, scale = TRUE, type="eps-regression",
+ kernel = "radial", gamma=params[1], cost = params[2], epsilon = params[3])
> predicted <-predict(svr,newdata=rock,type="response")
> MSE(predicted, rock$perm)
[1] 1473.136
> cor(predicted, rock$perm)
[1] 0.9968882

Figure 15 illustrates the predicted values compared to real values for the case of
SVR with default settings (a) and for the case of SVR with optimized hyper-
parameters (b).

Nevertheless, the optimized model gives much better results with regard to the
error of predictions, but is prone to overfitting: A single dataset was used both for
training and testing; in this situation, the model is highly adapted to the dataset and
may suffer from poor generalization power. We can avoid overfitting by using dis-
tinct sets for training and testing. The new function to be optimized should be
formulated as shown below. Very similar with the previous version regarding its
definition, this function is significantly different in behavior: It invokes a “training”
dataset in the learning phase but computes the prediction error on a “testing” dataset:
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Fig. 15 Predicted over expected values in regression analysis with SVR using: a default hyper-
parameters settings and b optimized settings
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> testingError <- function(params)
+ {
+ svr <- svm(perm ~ area+peri+shape, data=training, type="eps-regression",
+ kernel = "radial", gamma=params[1], cost = params[2], epsilon = params[3])
+ predicted <-predict(svr,newdata=testing,type="response")
+ MSE(predicted, rock$perm)
+ }

The validation of the regression model obtained with the optimized hyper-
parameters requires in this case a third dataset called validation set. This phase
closes the analysis which, as recommended in the case of any supervised learning
task, is composed of three phases: training, testing, and validation. If the accuracy/
error obtained in the validation phase is satisfactory, the model can be used in
production.

5 Applications of Meta-Heuristics in Geosciences

Evolutionary algorithms have been used in solving geophysics optimization
problems in two main directions: either by performing the optimization, or by
optimizing parameters of other methods (e.g., neural networks) used in specific
problems.

Evolutionary methods are compared to PSO in a study on optimization of res-
ervoir models to match past petroleum production data in Yasin Hajizadeh et al.
(2011). ACO, DE, PSO, and the neighborhood algorithm are integrated in a
Bayesian framework in order to measure the uncertainty of the predictions obtained
by each algorithm, in a case study involving two petroleum reservoirs. Ahmadi
et al. (2013) perform the task of predicting reservoir permeability using a soft
sensor implemented on the basis of a feed-forward artificial neural network, which
was then optimized using a hybrid GA and PSO method. History matching is also
the research topic in Park et al. (2014). A multi-objective evolutionary algorithm
identifies optimal solutions and outperforms a traditional weighted-sum approach.

GAs are acknowledged as important tools for successful neural network data-
driven models with applications in the oil and gas industry (Mohaghegh 2005;
Shahab et al. 2005). Intelligent software tools used in the industry integrate hard
(statistical) and soft (intelligent) computing techniques, such as fuzzy cluster
analysis, genetic optimization, or neural computing (Shahab et al. 2005).

Direct use of a GA helps to evaluate hydrocarbon resource in a field dataset from
North Cambay basin, India (Thander et al. 2014). Several parameters are required
for resource estimation (e.g., areal extent, net pay thickness, oil saturation, etc.), yet
a limited set is recorded in the exploration phase. Also, recordings are done with
uncertainty, due to reservoir heterogeneity. GA copes well with the uncertainty in
data and delivers estimations of the oil reserve using a real dataset.
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An oil production planning problem that appears in the context of oil wells with
insufficient oil pressure and which consists in identifying the amount of gas that
should be injected in a well in order to maximize the amount of oil extracted from
that well is solved by an evolutionary algorithm in Singh et al. (2013). The problem
is more difficult since it is constrained by the total amount of gas available daily.
The authors propose a multi-objective approach to the problem and also formulate a
single objective version, focused on the maximization of profit, instead of the oil
quantity. The problem of gas allocation among oil wells is also tackled in Ghaedi
et al. (2013), by means of a hybrid GA, and in Abdel Rasoul et al. (2014). The
problem of gas allocation among oil wells is also tackled in Ghaedi et al. (2013), by
means of a hybrid GA, and in Abdel Rasoul et al. (2014).

The optimal well type and location are determined with PSO in (Onwunalu and
Durlofsky 2010), in a study involving vertical, deviated, and dual-lateral wells.
Comparisons with a GA over multiple runs of both algorithms show that PSO
outperforms, on average, the GA, yet the advantages of using PSO over GA are
varied among the cases surveyed. Driven by the goal of maximizing the total
hydrocarbon recovery, an well placement problem is tackled in Nwankwor et al.
(2013) with a hybrid PSO-DE algorithm is proposed for the problem. The hybrid is
compared to basic variants of PSO and DE on three problem cases concerning the
placement of vertical wells in 2D and 3D reservoir models. Optimal well placement
under uncertainty is tackled in a two-stage approach in Lyons and Nasrabadi
(2013). First, an ensemble Kalman filter is used to perform history matching on the
reservoir data. Then, well placement is solved by a GA combined with pseudohi-
story matching.

Carbon dioxide (CO2) sequestration is of great interest for oil engineers. In
recent years, the idea of storing CO2 in deep geological formations, such as
depleted oil and gas reservoirs (with impermeable rocks), gained a lot of focus from
the community as a solution for greenhouse gas mitigation by avoiding CO2 from
emission into the atmosphere. The CO2 sequestration also helps by enhancing
methods for oil or gas recovery (Zangeneh et al. 2013). Evolutionary algorithms are
used in order to identify carbon dioxide seepage areas in Cortis et al. (2008). In
Zangeneh et al. (2013), the parameters of a CO2 storage model are optimized using
a GA. A multi-objective GA (NSGA) is implemented for optimizing gas storage
alongside oil recovery in Safarzadeh and Motahhari (2014). Based on the results
from the GA, the authors are able to propose some production scenarios.

In (Fichter et al. 2000), a portfolio optimization problem for the oil and gas
industry is tackled by means of a GA. GAs are chosen for this task both due to their
scalability to extremely large portfolios and because they allow the analysis of
portfolios from the point of view of value and risk measures.

GA and PSO are used to find the optimal parameters of a linear and an expo-
nential model for the demand of oil in Iran in Assareh et al. (2010). The models use
as input variables the population, the gross domestic product, import, and export
data; they are used to forecast demand of oil up to 2030.

PSO emerged as a powerful algorithm for geophysical inverse problems when
compared to GAs and simulated annealing in Martnez et al. (2010), Shaw, and
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Srivastava (2007). Other applications include inversion of seismic refraction data
Poormirzaee et al. (2014), crosshole traveltime tomography Tronicke et al. (2012),
or reservoir characterization Fernández Martìnez et al. (2012).

A large number of meta-heuristics are compared with respect to training an
artificial neural network for the task of forecasting the water temperature of a natural
river in Piotrowski et al. (2014). The study involves a comparison of several ver-
sions of PSO, DE, direct search to the levenberg–Marquardt (LM) algorithm for
ANN training. The study concludes that only the DE algorithm obtains results
competitive to the LM algorithm. A similar optimization idea is described in Ah-
madi and Ebadi (2014), where a hybrid combination between an artificial neural
network and PSO, extended with dew point pressure data, leads to a better
understanding of reservoir fluid behavior.
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Genetic Programming Techniques
with Applications in the Oil and Gas
Industry

Henri Luchian, Andrei Băutu and Elena Băutu

Abstract The chapter, entitled “Genetic Programming Techniques with Applica-
tions in the Oil and Gas Industry”, consists of four parts. The first part presents
theoretical features of the genetic programming algorithm, describing its main
components, such as individual representation, initialization of the population,
evaluation of the individuals, genetic operators, and selection scheme. The second
part is concerned with a hybrid evolutionary algorithm—Gene Expression Pro-
gramming, which combines features from genetic algorithms and genetic pro-
gramming. In the third part, references towards software frameworks that
implement GP are provided. This part then focuses on the use of the R package for
genetic programming—RGP and provides a guide for the package, using two
model problems to exemplify its usage. The last part reviews applications of genetic
programming for petroleum engineering problems.

Keywords Genetic programming � Regression � Gene expression � Programming �
RGP � Petroleum engineering problems

This chapter presents the theoretical background behind the evolutionary algorithm
variant known as genetic programming (GP). Details on the features that make GP a
remarkable algorithm for data analysis are provided. Gene Expression Program-
ming (GEP) is a GP variant proposed by Ferreira (2001), which has since gained a
lot of interest from researchers for applications in various fields of science.
We chose to present it in this chapter since it is a good example of a hybrid
evolutionary algorithm that combines advantages from both GAs and GP, and it is
among the most used flavors of GP in applications. Insight into the inner workings
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of GP is gained by means of two practical examples: a synthetic regression problem
and a real problem from the field of petroleum engineering, both modeled by GP.

We provide references to existing software packages that offer implementations
of the GP paradigm and focus on the R package (RGP) for genetic programming. A
step by step guide to using RGP for the aforementioned problems is provided.
Further, we review applications of GP to petroleum engineering related problems,
such as well log analysis, reservoir characterization, or pressure analysis.

Following the directions set by John Holland for the presentation of adaptive
systems (Holland 1992), we explain the basics of GP and GEP by describing the
following features (Bautu 2010):

• the encoding method used by the individuals (representation) and the decoding
procedure;

• the procedure to generate individuals, used especially during the initialization
of the population, but also in the context of some genetic operators;

• the evaluation procedure (fitness function);
• procedures for genetic operators (e.g., mutation, crossover);
• the selection scheme.

1 Genetic Programming

Nicheal Cramer’s work from 1985 stands at the root of the genetic programming
paradigm; he proposed a type of genetic algorithm with individuals represented by
computer programs (Cramer 1985). Cramer used the proposed algorithm to auto-
matically evolve simple mathematical expressions. His work was followed by
Schmidhuber’s idea of using Prolog and Lisp as support for evolutionary algo-
rithms, which led to a meta-learning algorithm based on GP (Dickmanns et al.
1987; Schmidhuber 1987). The inventor of modern GP is considered to be John
Koza, a former professor at Stanford University, who layed the foundation of what
is currently known as GP in his first book on the topic (Koza 1992). He envisioned
a genetic algorithm that evolved Lisp S-expressions, that automatically solves
problems. Recent accounts on the topic of GP are provided in (Poli and Koza 2014;
Poli 2008); insights into the theoretical foundations of GP are provided in Langdon
and Poli (2002). We will briefly describe in the following the main traits of GP that
differentiate it from GAs, following the description provided in (Bautu 2010; Bautu
and Bautu 2009).

1.1 Representation of Individuals

Traditional GP appeared from the need to automatically solve problems, based on a
high-level statement of the problem, without any prior knowledge of the form or
structure of the solution. The structures (individuals) that evolve are at the base of
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any adaptive (or learning based) system. GP individuals are computer programs,
encoded as syntax trees (e.g,. Fig. 1). The nodes in the tree are labeled with
symbols. The leaves of the tree are labeled with terminal symbols (the variables and
the constants in the program—in our example, x, 2), while the internal nodes are
labeled with functional symbols (e.g., algebraic operators, trigonometric functions,
or other common mathematical functions, etc.). During evolution, the sizes and
shapes of the trees are changing in order to adapt to the environment provided by
the problem. The search space for the GP algorithm is graphically depicted in
Fig. 2.

It is important for the symbol set of the algorithm, comprised of all the functions
and terminals, to be carefully selected prior to running the GP algorithm, in order to
provide the prerequisites to model the proposed problem (Koza 1992). We refer, in
the following, to two features that must be met by the symbol set: closure and
completeness.

The closure property refers to each function of the set of functions being well
defined and closely relative to any combination of parameters it may receive during
evolution. This is usually achieved by the special treatment of a relatively small

Fig. 1 GP syntax tree representing the individual ð�xÞ þ x � 2

Fig. 2 Graphical representation of the search space for GA (left) and GP (right)
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number of situations. For example, for divide operations, which are not allowed to
receive zero as the second parameter, it is clear that the closure property is not
satisfied; likewise, the logarithm function should not receive negative parameters.

Examples of closed symbols sets (i.e., it is guaranteed that all syntactically valid
expressions formed with these symbols are also semantically valid):

• C ¼ fAND; OR; NOT ; x; y; TRUE; FALSEg, where x and y are Boolean
variables, and TRUE and FALSE are Boolean constants;

• C ¼ fþ; �; �; x; y; 0; 1g, where x and y are integers variables.
Examples of functions sets that are not closed are:

• C ¼ fþ;�; �; =; x; y; 0; 1g, where x and y are real variables—the set is not
closed because it is possible to generate expressions which are semantically
invalid due to division by 0:

f ðx; yÞ ¼ ðx� xÞ=ðy� yÞ or f ðx; yÞ ¼ ðx� yÞ=0;

• C ¼ fþ;�; log; xg, where x is a real variable—the set is not closed; in case the
log function receives negative or null parameters, the resulting expression is not
semantically valid

f ðxÞ ¼ xþ logðx� xÞ or f ðxÞ ¼ logðxÞ= logð�xÞ ð1Þ

A possible solution for achieving closure of the symbol set is by means of the
definition of protected functions. Protected functions return a special value of the
terminal set whenever an exceptional situation is detected. For example, in case of
the division operator, a protected function can return 0 if the second parameter is 0:

=protðx; yÞ ¼
x=y; if y 6¼ 0
0; otherwise

�
ð2Þ

In this way, the protected divide operation has a well-defined result for any
values of its parameters. The advantage of this approach is its simplicity, from the
implementation point of view.

In order to meet the completeness property, one must make sure that the symbol
set for the algorithm is sufficient in order to express a solution to the problem; in
general, expert knowledge is needed to implement this part. This property is
guaranteed only for some problem cases where there exist theoretical arguments or
empirical evidence favoring a particular choice of symbols.

The selection of the input variables necessary for a given problem can be
straightforward, or it may be solved by a feature extraction algorithm (Veerama-
chaneni et al. 2010). Similarly, the function set that is sufficient to express a
problem solution is very dependent on the problem to be solved.

For example, the functions set {AND, OR, NOT} is sufficient to express any
Boolean function. By removing the AND function, the remaining set still meets the
sufficient condition because the AND Boolean function can be simulated with:
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ANDðx; yÞ ¼ NOTðORðNOTðxÞ;NOTðyÞÞÞ:

In case of removing the NOT function, the remaining set no longer meets the
sufficient condition, because its effect can not be simulated with the functions left in
the set. Thus, functions such as XOR can not be expressed. As with the terminals,
the responsibility to establish the set of functions appropriate for the problem
remains to the user.

GP builds approximations of the real solution, in case the symbols included in
the symbol set are not sufficient to express a solution to the problem. For this
reason, the general set of symbols used in GP to express a solution to a given
problem does not coincide with the minimal set of symbols required to express the
solution; it usually contains additional symbols. The effect that these additional
symbols may have on the quality of solutions identified by the algorithm is difficult
to assess a priori. For example, the presence of additional variables in the set of
terminals may lead to a decrease in the algorithm performance in finding solutions
(Fig. 3); in this case, the GP algorithm also performs a feature selection task,
identifying automatically the variables that are significant for the model.

For example, suppose GP is used to infer a formula for the exponential function
ex. This function cannot be expressed exactly by a finite algebraic expression. If GP
uses the set of symbols,

C ¼ fþ;�; �; =; x; y; 0; 1; 2g;

it will, most likely, provide finite approximations for this function, such as 1,
1; 1þ x; 1þ xþ 1

x2 ; 1þ xþ 1
x2 þ 1

x3.

1.2 Generating Individuals

The generation of GP individuals is used for the initialization of the population in
the first generation, as well as for implementing certain genetic operators, like

Fig. 3 Completeness of the symbols set and its effect on the solution
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subtree mutation. GP individuals are generated in a random manner, usually
recursively, node by node. In the beginning, a symbol chosen randomly from the
symbol set of the algorithm is assigned as the root of the tree. If the symbol is a
terminal (e.g., variable, constant, or a function without parameters), then the gen-
erating process stops. The individual obtained is a (degenerate) tree consisting of a
single node, labeled with a terminal. If the symbol chosen is a function f with arity a
(f), then the recursive process builds up a(f) descendants as parameters of this
symbol. If a descendant is labeled with a terminal, then the generation process is
considered completed for that node. If a descendant is labeled with a function, then
the generation process continues recursively until all leaf nodes of the tree are
labeled with terminals. The tree depth is the longest direct path from the root to any
leaf node. Using pseudocode, this process is described by the algorithm (as shown
in Fig. 4).

In practice, the algorithm (as shown in Fig. 4) should be enhanced with a
provided mechanism for limiting the size of the tree produced; such a mechanism
can be implemented in different ways. Koza proposed three generating methods that
provide control over the sizes and complexity of the trees (Bautu 2010; Koza 1992):

• the full method creates full trees (i.e., the length of the direct path from the root
to any leaf node is equal to the depth of the tree);

• the grow method creates trees with different shapes and sizes;
• the ramped half-and-half method combines the previous methods to produce a

larger variety of full and irregular trees (Fig. 5).

In the initial population, it is essential to have a wide variety of individuals, such
that they ensure a good coverage of the search space, and a good diversity.
Diversity is key for the evolutionary process. The ramped half-and-half method is
very suitable to create a wide variety of trees in the initial population. For example,
with depths between 2 and 5, 12.5 % of the trees are full trees of depth 2, 12.5 % are
irregular trees of depth 2, 12.5 % are full trees of depth 3, and so on until the
maximum depth. Other methods, more sophisticated, are discussed in the literature
and are usually already implemented in dedicated GP packages (Luke 2000a, b).

Require: S – the symbols set
Ensure: T – result tree
1. c = RandomSymbol(S)
2. root(T ) = c
3. for i = 1 . . . z(c) do
4. Child(T, i) = RandomTree(S)
5. end for
6. return T

Fig. 4 Random generation of an individual in GP
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1.3 Evaluation of Individuals

The central idea to all EC techniques is adaptation to the environment. In nature,
the number of offspring the individual has is usually used as a measure of the
individual’s adaptation to its environment. In EC, a reverse approach is employed:
The specific adaptation of each individual controls the number of offspring. An
explicit measure for the adaptation of individuals is the fitness value, evaluated
using a procedure specific to the problem addressed.

In the case of GP, each individual fitness is evaluated against a given set of input
data—particular cases of the problem search space. The selection of the input data
should be representative for the problem, because it is the foundation based on
which the algorithm generalizes the results obtained to the whole problem space.
All the individuals in a generation should train using the same input data, such that
they can be compared against each other.

A formula that is very frequently used to evaluate individuals is the mean
squared error of the individual, with respect to the input data:

fitnessðiÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
j¼1

Sði; jÞ � CðjÞð Þ2

n

vuuut
; ð3Þ

where N is the total number of cases for assessing individuals, S(i, J) is the value
obtained by assessing the individual i of the population for variables in the case j of
input data, and CðjÞ is the correct (expected) value for the case j. For the sake of
comparing individuals across different generations and algorithm runs, John Koza
introduced several types of fitness which offer different abstraction degrees of the
individual performances, all of them based on the distance between the input data
and the estimations made by the GP individual (Koza 1992).

Fig. 5 Trees with depth 4, generated by the full method (left) and the grow method (right). Gray
nodes are terminal nodes
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1.4 Genetic Operators

The main GP operators are selection and crossover. Mutation is considered a
secondary type operator. Also, specific GP operators exist, such as permutation,
editing, encapsulation, and decimation—they are also considered secondary type
operators. Other operators may be defined in order to target particular aspects of the
problems addressed with GP.

Crossover is deemed the most important GP operator. The basic idea is common
to that of the crossover operator from GAs: Parent individuals are selected from the
population, and offspring are produced such that they inherit parts from each parent.
There exist several traditional versions of the crossover operator, and others may be
defined, depending on the specificity of the problem.

The standard crossover operator uses two cut points, one in each parent. The
routine for this operator chooses, with uniform probability, one point in each of the
two parent chromosomes. Then, it swaps the subtree rooted in the corresponding
cut point with the subtree from the other parent (see Fig. 6). This process is
illustrated in the algorithm (as shown in Fig. 7) and represented in Fig. 6.

The offspring produced are always valid structures, due to the closure property
of the symbol set. It can be noted that the operator produces diversity in the
population; in the GA, when 2 identical individuals were subject to crossover, the
offspring were identical to the parents. It is not the case of the standard crossover
operator in GP. Hence, premature convergence is not an issue for GP when standard
crossover is used.

Mutation The mutation operator is a secondary type operator, mainly respon-
sible for producing diversity in the GP population. The standard implementation of
the operator proceeds by randomly selecting a node from the individual. The
subtree rooted in that node is then replaced by a randomly generated subtree. The
generation of the new subtree makes use of one of the algorithms we discussed
earlier. Similar to crossover, a maximum depth limit can be used to restrict the size

Fig. 6 Two-points crossover
operator exchange subtrees
rooted in the cut points
(marked with a dashed line)
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of the offspring. This process is illustrated in the algorithm (as shown in Fig. 8) and
exemplified in Fig. 9.

When the cut point for subtree mutation is close to the root of the syntax tree, the
operator has a highly destructive effect; similarly, a mutation point near to the
leaves of the tree has small chances to alter completely the expression encoded by
the individual. A practical solution to this problem is to assign variable mutation
probabilities to nodes on different levels of the tree, e.g., mutation probability that
increases from the root to the frontier of the tree.

Permutation This operator randomly selects an internal node of the syntax tree.
Assume this node is labeled with a function of arity k. The permutation operator

Require: C1, C2 – parent chromosomes
Ensure: O1, O2 – offspring chromosomes
1. O1 = C1 � Clone parent chromosomes
2. O2 = C2
3. P1 = RandomNodeSelect(C1) � Select the cut points
4. P2 = RandomNodeSelect(C2)
5. nod(O1, P1) = Subtree(C2, P2) � Swap subtrees
6. nod(O2, P2) = Subtree(C1, P1)
7. return O1, O2

Fig. 7 The standard (two points) crossover operator in GP

Require: C – the chromosome undergoing mutation
Require: S – the symbols set
Ensure: O – cromozomul obinut pentru mutaie
1. O = �C clone the parent
2. P = RandomNodeSelect(O) � select the mutation point
3. T = RandomTree(S)
4. nod(O,P ) = �T replace the subtree
5. return O

Fig. 8 Subtree mutation operator

Fig. 9 The subtree mutation
operator replaces a subtree
with a newly generated tree
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generates a random permutation of the k children and swaps the children nodes
according to this permutation. In case the label of the target node is a commutative
function, the effect of this operator on the phenotype encoded by the tree is actually
null.

Editing The editing operator provides a way to reduce the complexity of indi-
viduals chromosomes dynamically, at runtime. For example, the editing operator
might evaluate functions that are context-free and have only constants as parameters
and then replace these functions with the result of the evaluation. Complex editing
rules might require large computing resources. The use of this operator is justified
by the necessity of limiting code bloat (Luke 2000a, b), or if individuals need to be
made more readable (for example, one might process the solution of the algorithm
in order to obtain a more user-friendly solution).

Encapsulation Reusability of code may be implemented in GP by means of the
encapsulation operator. This operator works by assigning names to subtrees of
chosen individuals, in order for them to be referred later in GP chromosomes as
symbols. Encapsulation operates on a single individual by extracting parts of its
chromosome and mapping them to a new symbol name. The encapsulation operator
works by randomly selecting an internal node of the tree encoded in the individual,
saves the subtree with root at that point by a new symbol name, and replaces it with
the new symbol name. The new symbol points to the original subtree and it is
included in the terminal set because it is a complete subtree and does not require
any parameters to be evaluated. The main benefit of this operator is that it protects
the subtree used to define the new symbol from the destructing effects of genetic
operators. This operator stands at the base of the automatically defined functions
idea in GP (Poli 2008).

1.5 Selection Scheme

In GP, selection is viewed as an operator that acts on a population of individuals
and results in a single individual. The selection operator works in two stages: first,
an individual from the population is chosen according to a selection scheme, and
then, this individual is copied into the population in the next generation of the
algorithm. The selection schemes available for genetic algorithms are used in the
case of GP, too. Among them, roulette wheel selection stands out as being very
highly used—whether used directly with the fitness values of the individuals, or
with their ranks (assigned based on fitness values, too).

In the context of GP, tournament selection is also of wide use. For this scheme, a
number of individuals (e.g., 2 or 4) are chosen randomly from the population. The
one with the best fitness is selected to survive in the next generation. The parents
remain in the population, so they may participate in future tournaments.

Usual selection schemes are coupled with elitist survival of a number or of a
percent of the individuals in the population. This scheme ensures the survival of the
best individuals from one generation to the next.
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2 Gene Expression Programming

Different representations used in the GP algorithm led to different flavors of GP,
oftentimes with their own names. Driven by the idea that every terminal has a type
and every function has a specification of types for its parameters, Montana intro-
duced strongly typed genetic programming (David 1995). This variant is useful for
implementing type constraints, such as those encountered in physics equations. The
existence of multiple objectives for practical problems led to the proposal of Pareto
GP (Vladislavleva et al. 2009).

Gene Expression Programming is a GP-based algorithm, proposed in (Ferreira
2001), very popular in applications in many domains (Zhou et al. 2003). This
variant combines the advantages of the classical GA representation (linear strings of
fixed size, which leads to easy implementation of genetic operators), with those
exhibited by the individuals in GP (hierarchical structures with different sizes and
shapes, which leads to the possibility of encoding highly complex programs). We
will describe GEP in the following, using the same structure as for the description
of the GP algorithm.

2.1 Representation of GEP Individuals

The phenotype of a GEP individual is a complex mathematical expression that may
be viewed as a hierarchical structure with variable sizes and shapes. In GEP jargon,
it is called an expression tree. The genotype of a GEP individual is a fixed size
string of symbols.

The expression tree from Fig. 10 represents the mathematical expression

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� yÞ � ðyþ xÞ

p
;

which is the phenotype of the genotype:

ffip ��þ x y y x; ð4Þ

Fig. 10 An expression parse
tree
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where ffip denotes the square root function. This encoding is obtained by the breadth
traversal of the expression tree in Fig. 10. The expression is different from the
prefixed notation, as well as from the postfix notation obtained by depth traversing,
which are used by some vector-based or stack-based variants of GP (Keith and
Martin 1994).

Decoding the genotype into the equivalent phenotype follows the same rules.
For example, the genotype ffip

=� x y x is equivalent to the following expression
tree: The start symbol ð ffip Þ is of arity 1; hence, it is linked with the following
symbol (/); /has arity 2, and it is linked with the following two symbols—and x. The
process continues until each symbol is linked with a number of symbols equal to its
arity. The symbols with arity 0 are leaf nodes in the phenotype’s expression tree.

The translation process builds the expression tree corresponding to
ffiffiffiffiffiffiffiffiffi
ðy�xÞ
x

q
.

GEP genes are divided into two structural units: head and tail. The head may
contain functions and terminals, and the tail is constrained to contain only termi-
nals. The tail size depends on the head size and on the set of symbols used in the
gene,

t ¼ hðn� 1Þ þ 1;

where t is the required minimum size of the tail, h is the size of the head, and n is
the maximum arity of the symbols that may appear inside the gene. In this orga-
nization, GEP genes are padded at the end with symbols that may not be used in the
decodification (they are inactive). This structural organization of GEP genes ensures
syntactic validity of all obtained programs. Also, GEP genetic operators always
produce syntactically correct expressions.

GEP individuals are multi-genic chromosomes, where each gene encodes a valid
expression tree which interacts with the other genes to create a complex entity. The
interaction is given by a linking function.

For example, consider the set of symbols f�; =;þ;�;
ffip g [ fx; y; z; tg. The

maximum arity of symbols is n ¼ 2. Hence, if the head size is h ¼ 4 symbols, then
the tail size is t ¼ 5 symbols. If chromosomes contain three genes, then the total
size of each chromosome is c ¼ 3� ð4þ 5Þ ¼ 27 symbols. In this context, the
chromosome:

ffiffip �þ x z y z x x � y z x y z t x z =
ffiffip x z z t x t t ð5Þ

contains the code for the following mathematical expressions:

E1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðzþ yÞ � x

p
E2 ¼ y� z

E3 ¼
ffiffi
z

p
=x
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Finally, these three subexpressions are connected via the linking function (e.g.,
addition, multiplication), which determines the solution encoded by chromosome. If
multiplication is the linking function, the parse tree in Fig. 11 is obtained. It
corresponds to the mathematical expression:

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðzþ yÞ � x

p
Þ � ðy� zÞ � ð ffiffi

z
p

=xÞ:

The solution can be encoded with a single expression; hence, it is possible to
express the same thing as a single-gene chromosome:

�� =
ffip � ffip x� y z zþ x z y: ð6Þ

However, using a multi-genic chromosome presents some advantages for
complex problems, including the construction of modular and hierarchical solu-
tions. In this way, each gene forms a small building block, isolated from the others
and evolving independently.

The interpretation of a chromosome requires the interpretation of each of its
genes and deciding the type of interaction between them. The interaction method is
usually fixed depending on the problem addressed and some general operation (e.g.,
addition, multiplication, or the AND Boolean function). The linking function may
be updated at runtime or even be evolved during the algorithm.

2.2 Generating Individuals

GEP uses a random initialization process, similar to that of the traditional genetic
algorithms. The process takes into account the fact that the randomly generated

Fig. 11 The parse tree of the
solution encoded by the
trigenic chromosome from eq.
(5), using multiplication as
the linking function
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symbols must respect the structural organization of the GEP chromosome. In the
tail, only terminal symbols are allowed, whereas in the head both terminals, and
functions, may appear. An alternative to random generation of the initial population
is to use a heuristic to generate it. A possible problem that may arise is choosing the
appropriate heuristic and then selecting the appropriate encoding of the output
solutions provided by the heuristic such that they may be expressed into chromo-
somes of the GEP algorithm.

2.3 Evaluation of Individuals

In GEP, depending on the problem, evaluation of the individual is similar to the
evaluation methods used in GP. An important application of GEP is symbolic
regression or the discovery of models. In this context, the objective of the algorithm
is to find a symbolic expression that gives adequate results for the test cases
provided as input data. In this respect, a proper solution is sought by minimizing
relative or absolute errors.

The fitness function proposed by Ferreira may be written as in (8) for relative
errors and in (7) for absolute errors:

fi ¼
Xt

j¼1

M � jSij � Cjj
� �

; ð7Þ

fi ¼
Xt

j¼1

M � Sij � Cj

Cj
� 100

����
����

� �
; ð8Þ

where SðijÞ is the result of individual i on the test case j, Cj is the correct value
expected in the test case j, and M is the range of selection. The algorithm starts with
a tolerance between 20 and 100 % for relative errors, which allows it to explore a
wider range of the solutions’ space before focusing on certain areas.

2.4 Selection Scheme

Roulette wheel is widely used in GEP. All selection schemes that have been
introduced in the context of genetic algorithms or GP may be used in GEP. Nev-
ertheless, the power of the algorithm is enhanced by the use of a diverse range of
genetic operators.
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2.5 Genetic Operators

Due to the structural similarities between GA and GEP representations, genetic
operators in GEP resemble GA operators closer than they resemble GP operators.
The GEP operators have to respect the restriction imposed on the tail of the genes
(i.e., it can contain only terminal symbols). After the application of GEP operators,
it is possible for symbols that were inactive in the parents to become active (i.e., to
participate in the actual decoding expression), as it can be observed in Fig. 12. The
structure of GEP chromosomes allows rapid adaptation of many operators used in
standard GAs, such as mutation (Figs. 12 and 13) and one-point crossover, two-
points crossover, or uniform crossover.

The features of GEP allow new genetic operators to be defined, such as gene
crossover and transposition operators. The gene crossover operator is a particular
case of one-point crossover that selects the cutting point only between genes.
Transposition operators randomly select a transposable element and copy it to
another location in the chromosome. A transposable element in GEP is a fragment
of genome. The structural organization of the chromosome must also be respected
—this is the only restriction.

Fig. 12 The mutation operator in GEP. The mutated symbol is y, and it is changed into functional
symbol +. The initial encoded expression is logðy� ðz� tÞÞ. After mutation, the encoded
expression is logððz� tÞ � ðx� xÞÞ. The two x symbols in the tail become active after the mutation

Fig. 13 The mutation operator in GEP. The mutated symbol is −, and it is changed into terminal
y. The initial encoded expression is logðy� ðz� tÞÞ. After mutation, the encoded expression is
logðy2Þ
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3 RGP—R Package for Genetic Programming

Due to its popularity and successful application in a diverse range of real-world
problems from different fields of science, many software frameworks are available
today for practical and direct application of GP. Among the most well known, we
mention Discipulus (Foster 2001), ECJ (Luke et al. 2006), GeneXPro (Ferreira
2010), and GPLab (Silva and Almeida 2003). RGP is a genetic programming
package for the R environment that implements various types of genetic pro-
gramming (classical untyped tree-based GP (Koza 1992), strongly typed GP (Flasch
et al. 2010), and Pareto GP (Flasch et al. 2010)) in a way that makes them easy to
use, yet highly customizable. It relies on the R environment; hence, it comes
together with direct access to the wide set of tools for statistical computing provided
by RGP (2014).

RGP is a tree-based GP that stores the individuals as R expressions. This allows
most of the existing R functions, variables, and constants to be used in the GP
terminal and function set. The R expressions can be directly evaluated by the R
interpreter. Besides this flexibility, using individuals as R expressions, many fea-
tures and packages build on R can be used to further process these individuals. One
example is the R rules package which uses a customizable set of a rules to transform
such expressions. The default rule set can be used to simplify arithmetic expressions
from within GP individuals to reduce the code bloat resulted from the evolution
process and to make them easier to grasp by humans.

Out of the box, RGP implements a series of standard GP operators for initiali-
zation (grow, full and ramped half-and-half strategy), evolution (subtree crossover,
mutation), and selection (various single and multi-objectives methods, such as
tournament selection).

The standard tree-based representation and operators are available to allow
researchers to get started really fast. However, the chromosome representation and
most of the control parameters can be completely changed by the algorithm
designer in order to include problem-specific knowledge or to test new settings. The
same goes for the evolution pipeline, which can be freely configured with different
operators, working in multiple stages, either in parallel or sequentially.

During and after the algorithm runs, researchers can use the vast array of sta-
tistical tools available in R and also some special built-in RGP tools to analyze and
visualize the structure of GP individuals and populations. In the default imple-
mentation, as R expressions, the GP individuals can be presented as the resulting
mathematical formulas, as plots of their input/output behavior, as trees (with var-
ious detail levels), or as points in a Pareto plot. GP populations can also be pre-
sented as forests of schematic trees, as Pareto plots, or as variable presence charts.
We will present, in the following, two examples of RGP usage.
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3.1 Examples

The first time you attempt to use RGP on your system, you have to install it from
the comprehensive R archive network (CRAN).1 Because RGP is published on
CRAN, the installation of the package and its dependencies is very easy, requiring
only the following command to be run:

> install.packages(“rgp”)

After RGP is installed in your local R environment, every time you want to use it
you have to load its functionality into the current R session via the library
command:

> library(“rgp”)

RGP offers three major ways in which its capabilities can be used by researchers.
First, one can use the low-level functions offered by the package. These func-

tions (such as breed, makePopulation, functionSet, and many others)
allow many in-depth customizations of how the GP algorithm works. In general,
each of these functions targets a very focused step of the algorithm pipeline and
they are mostly useful to researchers in the evolutionary computation fields, to be
used as the building blocks for prototyping new GP algorithms. We will not discuss
this method, but we reference you to the RGP documentation which provides in-
depth explanations and some examples of using these functions (RGP 2014).

The high-level functions (such as geneticProgramming, symbolicRe-
gression, typedGeneticProgramming, dataDrivenGeneticPro-
gramming) are, in fact, façade for the entire RGP system that makes it easier to set
up and run a GP algorithm for a particular task (RGP 2014). This is useful for most
scientists with basic knowledge of programming in R that want to use in their work
either of the standard versions of GP that RGP offers ready-made, or small varia-
tions of them.

For a standard symbolic regression problem, we have available a set of mea-
surement data, divided into input (independent) and output (dependent) variables.
The task is to discover a mathematical expression that explains best the functional
relationship between the variables. In the following simple example, we will con-
sider a synthetic dataset, sampled from the (simple) function sinðxÞ þ 1. Let us
consider the following R data frame:

1RGP can be freely downloaded from http://cran.r-project.org/web/packages/rgp/index.html.
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> data

x y

1 1 1.84147098

2 2 1.90929743

3 3 1.14112001

4 4 0.24319750

5 5 0.04107573

6 6 0.72058450

7 7 1.65698660

8 8 1.98935825

9 9 1.41211849

10 10 0.45597889

Let us assume we want to use RGP to find a formula that models the dependent
variable Y with respect to independent variable X. We can use the symbolicRe-
gression SymbolicRegression high-level function to set up and run a GP
instance. In this case, we provide the model formula we are seeking that computes
Y using X (y * x). We also provide the training data that the algorithm will use as a
selection environment for its individuals. Finally, we provide the stopping criterion
to use: The algorithm will stop after running for 30 s. The chart that describes the
solution obtained in 30 generations of the GP run is depicted in Fig. 14.

Other options would be to stop the algorithm once it reaches a certain fitness
(makeFitnessStopCondition), after a certain amount of evaluations
(makeEvaluationsStopCondition), or a certain number of steps (make-
StepsStopCondition). For advanced scenarios, these simple criteria or custom
ones can be combined in more complex expressions using the orStopCondi-
tion, andStopCondition, and notStopCondition linking functions.

Fig. 14 R plot of the solution
to the simple symbolic
regression problem
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> result <- symbolicRegression(formula = y * x,
data = data, + stopCondition = makeTimeStopCondition(30))
> best <- result$population[[which.min(result
$fitnessValues)]]

Apart from the parameters presented above, symbolicRegression has
many other parameters that allow various parts of the algorithm to be configured.
For example, the populationSize parameter controls the size of the population,
individualSizeLimit controls the maximum size of individuals, and
functionSet and constantSet control the symbols that GP can use in its
expressions.

The third way of using RGP is via its graphical user interface. This is by far the
fastest way to get started with RGP, while still making use of its advanced features.
If you want to use the graphical user interface of RGP, you will also have to install
and load the rgpui package, using the similar install and library commands from
page 18, but with the rgpui parameter instead of rgp. After the library is loaded,
the symbolicRegressionUi() command will start the RGP user interface.

The rgpui window is divided into four major sections. The first section, called
Data, is used for importing existing data files into RGP. In the left column, click on
Choose file to import a text file that contains the data. The file formatting features
are presented below the button. After the import is completed, the data can be
visualized in the Table area on the right. If any error is detected in the file, the
import will stop and the errors will be displayed in the Table area. An important
part of this section is the Data-partitioning controls. Using these settings, the user
can select if and how to split imported data into training and validation sets.

In the following, the problem we use as test bed for GP concerns the estimation
of reservoir rocks permeability from two-dimensional pore images, an interesting
problem for the community of petroleum engineers (Jurgawczynski 2007). While
complex tools are used in the industry to address this problem (Jurgawczynski
2007), we employ a symbolic regression approach by means of GP, in order to
obtain a model for the estimation of the rock permeability based on measurements
of the areas and perimeters of the individual pores.

The R package datasests provides a sample of data representative for this
problem (Katz 1995), which we use in our experiments—the “rock” dataset. The
dataset contains measurements from 12 core samples from petroleum reservoirs,
sampled each by 4 cross sections. For each core, a measurement of permeability is
available. For each cross section, the total area of pores, the perimeter of pores, and
the shape are recorded. Our purpose, in the following, is to exemplify the use of
RGP to derive a mathematical formula that explains best the permeability based on
the area, perimeter, and shape of the pores, not present a fully described solution for
the problem.

The dataset consists of only 48 samples. Each sample registers the variables area,
perimeter (for short, peri), and shape—that will pertain to the terminal set of the GP
algorithm. The dependent variable is permeability (for short, perm), for which a
mathematical formula must be inferred. For our tests, we randomly split the data in
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training and validation sets (80 % of the data for training and 20 % for validation),
as in Fig. 15. Prior to running the GP algorithm, the data is normalized, by sub-
tracting the mean and by dividing the standard deviation.

After the data are imported into the system, it is time to define our problem based
on it (Fig. 16). In the Objective section, you can define which of the data columns
hold the dependent variable and which of the columns contain the variables that will
be used as inputs of our formula. Below, the Building Blocks field defines the
functional symbols that our formula can contain. Independent variables and random
constant symbols are always included in the terminal set, in addition to these

Fig. 15 Data section

Fig. 16 Objective section
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functional symbols, so they do not need to be explicitly declared here. The Error
Measure field defines the metric that will be used to measure the quality of each
individual. For our experiments, we only set the dependent variable and used the
default value for the rest of settings.

After the problem formulation is ready, we can define the algorithm that we will
use to tackle it. We do this in section Run (Fig. 17). The left side of this section
controls the most frequently tuned parameters that RGP offers. Among these, you
will find parameters for the size and structure of the population, operators’ prob-
abilities, selection scheme, and other parameters. After the parameters have been set
to the desired values, the Start Run button builds the GP algorithm according to the
settings, feeds it with the problem definition, and starts the evolution process. An
overview of the entire search process is presented in the right part of the Run
section.

The algorithm can be paused, resumed, or restarted at any time during the run.
The best solution area provides information about the best solution found so far
(Fig. 18). In our case, even though we used real-world data, within 1 min of
running, the RGP evolved complex and quite accurate models for the problem data.

When the algorithm is stopped, the last section (Results) presents information
about the various solutions that were identified, in addition to the best one (Fig. 19).
Although these might have higher errors than the best solution, their visualization
can still provide additional insight about the addressed problem.

Fig. 17 Run section. The evolution of the fitness of the best individual is depicted on the right
side
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4 Applications of GP in the Oil and Gas Industry

Applications of GP techniques in the context of petroleum and natural gas engi-
neering problems are focused on problems of data estimation and forecasting,
where classical mathematical modeling methods fail to provide satisfactory results,
due to various causes. Among these causes, we mention the complicated nature of

Fig. 18 Best solution statistics

Fig. 19 Results section
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the interrelationships among the parameters, the fact that the parameters of the
model may be insufficiently known, or that the simple application of traditional
methods is very time consuming or impossible.

Reservoir characterization is a topic of intense research (Cranganu and Bautu
2010; Irani and Nasimi 2011; Kaydani et al. 2014; Saemi et al. 2007; Yu et al.
2007; Yu et al. 2008). GP was used to construct a proxy for a reservoir simulator in
(Wilkinson et al. 2010; Yu et al. 2007; Yu et al. 2008). The GP proxy is highly
efficient, and it evaluates large numbers of reservoir models that are further used to
forecast production. Permeability in a heterogeneous oil reservoir in Iran is pre-
dicted using a multi-gene genetic programming algorithm in Kaydani et al. (2014).
Oil recovery from a deepwater reservoir is forecasted by means of reservoir char-
acterization and prediction of its producibility. A novel framework for deepwater
reservoir characterization is proposed in Yu et al. (2011). It is based on a coevo-
lutionary GP system and fuzzy logic and automates the stratigraphic interpretation
(in particular, the gamma ray log is the subject of the interpretation). Dew point
pressure measurements are oftentimes not available, yet they are important for
forecasting the performance of condensate reservoirs (Eissa and Shokir 2008).
A GP-based approach is used to derive a linear model for the dew point pressure,
using as inputs the reservoir fluid composition, the reservoir temperature, and the
molecular weight of the heptanes-plus fraction. An extensive study involving 245
gas condensate systems for training and 135 systems for validation of the obtained
model proved the efficiency of the proposed method in the case of unavailable
measurement data.

The soil–water characteristic curve is used in geophysics to describe unsaturated
soil behavior. It is estimated successfully by the use of GP in Johari et al. (2006),
where it is compared with empirical methods and several indirect methods that
prove costly and time consuming. In Garg et al. (2014a), the authors apply a multi-
gene genetic programming algorithm to estimate pore water pressure based on soil
depth and the soil–water characteristic curve input variables. In Garg et al. (2014b),
the previously mentioned GP approach is compared to support vector regression
and artificial neural network. The obtained model explains the relationship between
water content, stress, and suction. The GP model is satisfactory enough such that it
is used to predict water content values by specialists. GP and GEP are used along
with evolutionary polynomial regression in order to obtain a model to be used for
forecasting settlements of shallow foundation on cohesionless soils (Shahnazari
et al. 2014). The problem involves uncertainties around factors such as the com-
pressibility of the soil or the heterogeneous nature of soils, among others.

GEP is used to predict the amount of gas produced by coalfaces in Li et al.
(2004). In Qiong et al. (2007), the same problem is approached by GEP, but its
application is preceded by feature extraction by means of principal component
analysis. GEP outperformed ANN in the task of forecasting performance and
emission parameters of an experimental engine in Roy et al. (2014). Prediction
models of peak ground acceleration, involved in assessing the damage of structures
following an earthquake, are obtained with GEP in Güllü (2012). The models are
further evaluated using a likelihood estimation measure, and the results proved the

Genetic Programming Techniques … 123



GEP models to be competitive to regular regression models used previously for this
task. GEP is used to infer a model for the estimation of the compressional acoustic
(sonic) log (DT) in a given well based on measurements of the natural gamma ray
log (GR) and the deep resistivity (REID) in the same well in Cranganu and Bautu
(2010). The obtained models allowed the prediction of overpressure zones within
the wells used in the experiments.
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Application of Artificial Neural Networks
in Geoscience and Petroleum Industry

Rahman Ashena and Gerhard Thonhauser

Abstract It has been shown that artificial neural networks (ANNs), as a method of
artificial intelligence, have the potential to increase the ability of problem solving to
geoscience and petroleum industry problems particularly in case of limited avail-
ability or lack of input data. ANN application has become widespread in engi-
neering including geoscience and petroleum engineering because it has shown to be
able to produce reasonable outputs for inputs it has not learned how to deal with. In
this chapter, the following subjects are covered: artificial neural networks basics
(neurons, activation function, ANN structure), feed-forward ANN, backpropagation
and learning (perceptrons and backpropagation, multilayer ANNs and backpropa-
gation algorithm), data processing by ANN (training, over-fitting, testing, valida-
tion), ANN and statistical parameters, an applied example of ANN, and applications
of ANN in geoscience and petroleum Engineering.

Nomenclature

a Learning rate
ANN Artificial neural network
AAPE Average absolute percent error
APE Average percent relative error
ARMSE Average root-mean-square error
BB Backpropagation
f Activation or transfer function
Inputi The input value corresponding to neuron i
Logsig Logistic sigmoid activation/transfer function
m Number of output neurons or nodes
MSE Mean square error
OANN Predicted output value by the artificial neural network
R Pearson correlation coefficient
R2 Squared pearson correlation coefficient
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SD Standard deviation
T Number of training samples from known data point given for training the

network
V Variance
Vexpected Expected real value (known or measured value of output)
Wi The weight corresponding to link or connection i

1 Introduction

Artificial neural networks (ANNs) and their application in geoscience and petro-
leum industry are considered in this chapter. Application of ANNs has shown to be
an effective tool to solve nonlinear complex engineering problems particularly
when there are no straightforward analytical or even numerical solutions.

Frequently, when there is no analytical solution or approach to a complex or
non-straightforward problem wherein the involved parameters and their exact
relationship are not known clearly, ANN is applied. However, one can use ANN
even in linearly behaving problems having an analytical solution so that its accu-
racy and functionality can be determined.

Indeed, a so-called flow of information in the ANN model takes place utilizing
basic processing units which are artificial neurons connected to each other. In this
way, processing of the data takes place through a network of neurons.

In petroleum industry applications to date, the commonly utilized ANN structure
has been Feed-forward artificial neural network (FF-ANN) due to its simplicity
compared to other neural structures. FF-ANNs are network structures in which the
information or data will propagate only in one direction. This network has a
learning ability to recognize the relationship between the inputs and outputs pro-
vided that adequate training data are supplied. The FF-ANNs typically consist of
three layers including input layer, hidden layer, and output layer. There are other
structures of ANNs which are not discussed in this chapter because of their limited
usage in petroleum industry. In terms of number of hidden layers, perceptrons and
multilayer networks will be discussed.

Although it is possible to have more than one hidden layer in the network,
normally a single layer is preferred in many applications. The number of neurons in
the input and output layers is normally determined by the problem. However, the
optimal number of neurons in the hidden layer (and even the number of hidden
layers) must be determined by trial and error in order to obtain a proper network
size with highest possible performance.

The network learning or training is attained by adjustment of the weights cor-
responding to connections or links between the neurons to produce outputs with
acceptable errors. After training, the network performance is tested in two stages
(test and validation). If the network performance was successful in these three
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stages, the network would be recognized as a capable tool for simulation using new
inputs and obtaining new results. Recognition and prevention of over-fitting will be
discussed.

In most of geoscience and petroleum engineering applications, the FNN will
employ backpropagation as its training or learning algorithm. The algorithm is
called backpropagation because the output error is propagated backward to the links
between neurons in the previous layers during training. In this way, backpropa-
gation helps to modify the weights of links in order to achieve a desired output. The
work mechanism of backpropagation algorithm is adjustment of each weight of the
network individually based on selection of the path of the steepest gradient descent
to minimize the error function (which is usually mean squared error or MSE). As
each ANN performance is evaluated by the corresponding errors, knowledge about
the relevant statistical model error parameters such as MSE is of great importance.

In this chapter, an attempt is made to give a comprehensive applied discussion of
neural networks from basics to application. Thus, an applied example of ANN
application in petroleum industry is given after presenting the basics. Then, a short
overview of applications of neural network approach would be given.

2 Artificial Neural Networks (ANNs) Basics

2.1 ANN Structure in General

Artificial neural networks’ structure and function are indeed an extremely simplified
version or simulation of the biological human brain. ANNs have been developed as
simplification of the mathematical models of biological neural networks (Fig. 1) by
having some assumptions which include processing of information takes place in
some processing elements called neurons (first assumption). In this simplification,

Fig. 1 Biological and artificial neuron similarity
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the information is transferred between neurons using connection links (2nd
assumption), and a specified weight is allocated to each link to be multiplied by the
information or signal which is passing each link (3rd assumption). Then, each
neuron allocates a desired bias or threshold value to be added to the sum to yield a
net value (4th assumption), the net value is given as input to an activation or
transfer function (which is normally nonlinear function) and in this way the output
of the neuron would yield (5th assumption). Simply, the function of the whole ANN
structure is just the calculation of the output of all the neurons existing in the
network.

2.2 Artificial Neurons

A typical neuron structure is shown in Fig. 2. As can be seen in this Figure the
inputs are multiplied by the corresponding weights, and then, their summation is
found. In addition, a bias is added to the summation as an error correction. This
value is called the net value. The net value (as the input) is passed through a
function called the activation function (Fig. 3). The output of this function is indeed
the output of the neuron which would be used as the input to the other neurons in
the next layer. This is what actually happens inside each individual neuron.

Please note that the weights and inputs could be assumed as vectors and thus
their multiplication is in reality considered as their inner product.

Fig. 2 A typical neuron structure and the neuron output by applying the activation function on net
value
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The weight allocated to each connection link, to be multiplied by each input of
the neuron, is indeed representative of the importance of the input in the problem,
and in this way, this input importance or strength is transferred to the next layer
through the corresponding link. For example, in bottom hole pressure (BHP) pre-
diction downhole, there are several input parameters which are of importance and
must be taken into consideration. A good trained ANN would allocate higher
weights to be multiplied by the more important or stronger input parameter values.

2.3 Activation Function

It should be noted that the activation function (Fig. 3) takes the net as its input and
its output is considered as the output of the neuron. Typical activation functions are
as follows:

• Threshold Function { f = 0 when x < 0, 1 when x ≥ 0},
• Piecewise Linear Function {f = 0 for x ≤ −0.5, f = 0 for −0.5 ≤ x ≤ 0.5 and f = 1

for x > 0.5},

• Logistic Sigmoid Function f xð Þ ¼ 1
1þe�x

n o
which has values between 0 and 1,

• Sigmoid Hyperbolic Tangent Function {f (x) = tanh (x)} with values between −1
and 1.

Among the activation functions, the sigmoid functions are very common. In
Fig. 3, the common sigmoid functions have been illustrated, wherein a is a constant.
The sigmoid functions are more frequently used because they are continuous and of
course have positive smooth and derivative. The sigmoid functions, unlike some
other functions, do have valid derivatives in all points. The derivative of the logistic
sigmoid function is indeed smooth as shown below:

Fig. 3 Two popular sigmoid
activation/transfer functions.
a logistic function f xð Þ ¼

1
1þe�ax and b hyperbolic
tangent function
f (x) = tanh (x)
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f
0
xð Þ ¼ �e�ax

ð1þ e�axÞ2 ¼ af ðxÞ � f1� f xð Þg ð1Þ

The derivative of the sigmoid hyperbolic tangent function is also smooth as
shown below:

f
0
xð Þ ¼ 1� tanh2ðxÞ ¼ f1� f 2 xð Þg ð2Þ

It is just to note that the derivative of the activation or transfer function in ANN
is of great importance in order to give more ability to the network. This is because
the neuron activation function must be differentiable and continuous at each point.
Consequently, depending on the purpose, the logistic sigmoid and sigmoid
hyperbolic tangent functions are normally performing better than the rest.

It is also to be noted that in ANN with no hidden layers, no activation functions
are applied and the output of each neuron is the net value (summation plus bias).
These ANNs are usually used for simple problems.

3 ANN Structure and Feed-forward Artificial Neural
Networks (FF-ANNs)

As said above, ANNs structurally consist of some neurons which are linked to each
other and cooperate to transform inputs into outputs in the best possible manner.
However, on a larger scale, ANN structure is in turn made up of an input layer, one
or several hidden layers, and also an output one. In each layer, there are one or
several neurons.

There exists only one input and only one output layer all the time. However,
there can exist a different number of hidden layers. They can be none, one, two, or
even more. As a matter of fact, the number of hidden layers depends on the
complexity of the problem.

The FF-ANN has been the first and simplest ANN yet introduced. In this type of
ANN, as seen in Fig. 4, the flow or movement of information takes place from the
input neurons, through the hidden neurons (if any) to the output neurons (only in
the forward direction, without any cycles or loops). Simplicity of this network has
helped it to be in common use in most of the petroleum engineering applications to
date. FF-ANN is normally capable of learning the implicit governing relationship
between the inputs and outputs.

The numbers of neurons in the input layer and output layer are normally
determined by the problem. However, the number of neurons in the hidden layer
has to be specified by the user. Based on the experience of the user, the optimal
number of neurons must be determined so that an efficient neural network is
obtained. Yet, the only way to determine the optimal number of neurons in the
hidden layer is performed by trial and error (based on the user’s experience).
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4 Backpropagation and Learning

In petroleum engineering application, FF-ANN employs backpropagation of errors
in the training phase as their training algorithm (with a supervised learning method).
Indeed, backpropagation gets its name from the fact that, during training, the output
error is propagated backward to the links or connections between neurons in the
previous layers. During this backpropagation of errors, the weights of the links
between neurons are adjusted. This process is continued in an iterative manner. In
this way, the weights corresponding to links are modified in order to obtain a
desired output (with less error), or in other words better learning of the algorithm.

To obtain a more real understanding of the learning mechanism of backpropa-
gation, the expected real output and the predicted output by ANN are compared and
an error function is evaluated. Before the training begins, some initial values are
allocated to the links between neurons as the weights. Afterwards, by start of
training process, a number of data points are fed to the network to be trained using
these real examples. For simplicity, a perceptron1 ANN (with no hidden layers)
consisting of 2 input neurons and one output neuron is considered. The training data
points have the frame of (Input1, Input2, Vex). Commonly, the error function utilized
to measure the deviation of the expected real output (Vex) and the output by ANN is
the mean squared error (MSE). The MSE is found by:

Fig. 4 Typical feed-forward artificial neural networks (FF-ANNs)

1A neural network without hidden layer(s).
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MSE ¼ ðVex � OANNÞ2

where
Vex Real expected output value corresponding to a specified input data point

(a fixed value, already known)
OANN Evaluated value by whole ANN using specified input data points

(the output value of the output neuron of the network)

In the mentioned perceptron above (Fig. 5), for instance, suppose a data point of
(2, 1, 1) is taken into account for training the network. Please note that the values 2
and 1 are input independent parameter values, and 1 is the dependent value. In this
data point, the value of 1 is the expected real output value. If the mean squared error
(MSE) values are plotted on the y-axis versus the possible output values computed
by ANN (OANN) on the x-axis, a parabolic shape is resulted as shown in Fig. 6. The
minimum of the parabola is corresponding to the global minimum of the error or
MSE (the most favorable point with error equal to zero). The nearer the predicted
output value by ANN (OANN) is to the expected real value (Vex), the less the MSE
would be.

Considering OANN ¼ Input1w1 þ Input2w2 (ignoring the bias for simplicity), the
3-D map of the error surface (MSE) could be drawn considering the known data
point of (2, 1, 1) as an example (Fig. 7).

The work mechanism of backpropagation algorithm is adjustment of each
weight of the network individually based on selection of the path of the steepest
gradient descent to minimize the error function (which is usually MSE). In more
details, backpropagation calculates the gradient descent or derivative of the error of
the ANN prediction with respect to all the weights existing in the network. For
further simplicity of understanding, the learning mechanism by which backpropa-
gation reduces MSE of the ANN (highest gradient descent) is analogous to the way
a mountain climber can descend a hill just by selecting the steepest path down the
hill at each point. The hill steepness and path that the climber has to select and go

Fig. 5 Example perceptron with 2 input neurons and 1 output neuron for MSE consideration
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through at each point could be, respectively, considered as representative of the
slope and gradient of the error surface at that point.

Ideally, it is assumed that only one global minimum exists in the error surface.
But this is not necessarily the case (there may be a lot of local minima and also
maxima in the error surface as shown in Fig. 8). In reality, backpropagation learning
algorithm (with gradient descent) would finally converge to an error minimum
which is actually a local minimum of error. Undoubtedly, this local minimum of
error may not be necessarily global at all. All optimizing algorithms such as genetic

Fig. 6 Ideal 2-D graph of (MSE) error versus predicted output by ANN (OANN) considering a
known data point of (2, 1, 1) as an example. The value of 1 is the expected real output. Thus,
MSE ¼ ð1� OANNÞ2

Fig. 7 Ideal 3-D map of error
surface (MSE) versus x (w1)
and y (w2) considering a data
point of (2, 1, 1) for training a
perceptron with 2 input
neurons
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algorithm, ant colony, particle swarm optimization have been designed to give the
ANN backpropagation more capability to escape local error minima and reach
global minimum of error.

If the initial point of the gradient descent process in backpropagation is some-
where between a local minimum and a local maximum, the training of the network
would finally lead to the local minimum, which is not desirable to the user. This
dependence of the ANNs which learn by backpropagation algorithm on the initial
starting point is an important limitation to this algorithm (Fig. 8). Giving several
different random initial values prior to each training is required to prevent trapping
into local minima.

It is just to note that weights corresponding to the links of the network are the
only variables that can be modified by the network to minimize the error. Still, to
the authors’ information, modification of ANN structure (number of neurons and
hidden layers) with the objective of error reduction is not possible by the network
itself, except by self-user’s trial and error or automatic procedures.

As backpropagation is based on calculation of the MSE gradient with respect to
all weights existing in the network, one of the requirements of the backpropagation
is that differentiable activation functions should be used in neurons. This is the
reason why sigmoid functions, as differentiable functions, are so popular in
petroleum engineering and geoscience applications.

As said before, the MSE is found by:

MSE ¼ 1
2
ðVex � OANNÞ2 ð3Þ

Please note that the ½ factor has been added so that the derivative has no
coefficient: MSE

0 ¼ ðVex � OANNÞ.
For perceptrons (ANNs with no hidden layers), the activation function is linear

or OANN is simply the weighted sum of the inputs as follows:

Fig. 8 Backpropagation (with gradient descent error mitigation mechanism) can only find the
local minimum of error, which is not necessarily the global minimum of error
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OANN ¼
Xn
i¼1

Wi � Inputi þ Bias ð4Þ

where
Inputi Input value to output neuron from neuron i
Wi Weight corresponding to link i (between input neuron i and the output

neuron)

For multilayer ANNs, OANN is found after application of a nonlinear activation
function as follows:

OANN ¼ f Netð Þ ¼ f ð
Xn
i¼1

Wi � Inputi þ BiasÞ ð5Þ

where
f Activation function (usually a sigmoid function)

Since backpropagation applies gradient descent method for error reduction (as
said before), the derivate of MSE gradient with respect to weights in the network is
calculated utilizing the chain rule of partial derivatives as follows:

@MSE
@Wi

¼ @MSE
@OANN

� @OANN

@Net
� @Net

@Wi
ð6Þ

where

@Net
@Wi

Rate of change of net value with respect
to weight i
Note Net =

Pn
i¼1 Wi � Inputi

¼ Inputi

@OANN
@Net

Rate of change of the output value from
output neuron with respect to net value.
Note Activation functions (f) is normally
considered as sigmoid functions (logistic or
tangent hyperbolic sigmoid function):
OANN ¼ f ðNetÞ ¼ 1

1þe�Net,
f Netð Þ ¼ tanhðNetÞ

¼ @f
@Net ¼ OANN � ð1� OANNÞ

(for logistic f)
¼ @f

@Net ¼ ð1� OANNÞ2 for tanh

@MSE
@OANN

Rate of change of MSE with respect to the
output value from output neuron.
Note MSE ¼ 1

2 ðVex � OANNÞ2
¼ Vex � OANN

@MSE
@Wi

Rate of change of MSE with respect to
weight i
(weight corresponding to link from
neuron i)

Note @MSE
@Wi

¼ @MSE
@OANN

� @OANN

@Net � @Net
@Wi

¼ðVex � OANNÞ � OANNð1� OANNÞ
� Inputi

(for logistic f)
¼ðVex � OANNÞ � ð1� OANNÞ2
� Inputi

(for tanh)
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To summarize the above calculations, the gradient of MSE with respect to Wi is
equal to:

@MSE
@Wi

¼ ðVex � OANNÞ � f
0 � Inputi ð7Þ

If the logistic sigmoid function is used for the activation function or f, we have:

@MSE
@Wi

¼ ðVex � OANNÞ � OANNð1� OANNÞ � Inputi ð8Þ

If the sigmoid hyperbolic tangent function is used for the activation function (f),
we have:

@MSE
@Wi

¼ ðVex � OANNÞ � ð1� O2
ANNÞ � Inputi ð9Þ

DWi is found by multiplying @MSE
@Wi

by the learning rate (a). Thus, for a multilayer
ANN, the value of weight change is equal to:

DWi ¼ aðVex � OANNÞ � f
0 � Inputi ð10Þ

For the logistic sigmoid activation function, we have:

DWi ¼ aðVex � OANNÞ � OANNð1� OANNÞ � Inputi ð11Þ

For the tangent hyperbolic sigmoid activation function, we have:

DWi ¼ aðVex � OANNÞ � ð1� O2
ANNÞ � Inputi ð12Þ

For a perceptron ANN, f is linear (or f
0
is equal to 1). Thus, the value of weight

change is equal to:

DWi ¼ aðVex � OANNÞ � Inputi ð13Þ

Please note that in the above calculations, for simplicity, the value of weight
change (stated above) has been evaluated using only one data point. It is also
reminded, in the MSE function yet considered, it was assumed that only one neuron
exists in the output layer. Generally, mean square error (MSE) can be evaluated
using:

MSE ¼ 1
2

XT
k¼1

Xm
j¼1

ðVex;jðKÞ � OANN;jðKÞ
� �2 ð14Þ
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where
T Number of training samples from known data point given for training

the network

ð1Þ ðInput1; Input2; . . .;Vex;1;Vex;2; . . .
ð2Þ ðInput1; Input2; . . .;Vex;1;Vex;2; . . .
. . .
ðTÞ ðInput1; Input2; . . .;Vex;1;Vex;2; . . .

m Number of output neurons or nodes
Vex;jðKÞ Expected real value of output no. k (Input1, Input1, …., Vex;1ðKÞ
OANN;j Kð Þ Predicted or estimated value by ANN

4.1 Perceptrons and Backpropagation Algorithm

The ANN structure, in which there are no hidden layers, is called perceptron. A
percepron is indeed just like a simple neuron. Perceptrons are only applicable in
linear simple problems. In perceptrons, only the simple bias/threshold activation
function is utilized, namely by adding a bias/threshold value to the summation. A
typical perceptron neural network (with no hidden layer) is shown in Fig. 9.

It is noted that training is usually performed in an iterative manner. An epoch is
indeed the process of providing the network with the entire training data points,
calculating the network output and error function, and modifying the network’s
weights for the next epoch. An epoch is composed to several iterations (providing
or presenting one data point to the network can be considered as an iteration). Based
on complexity of the problem and the ANN, sometimes a large number of epochs
are required for training the network.

Fig. 9 A typical perceptron
as an ANN example
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Indeed, when the input data are presented to the network, the flow of information
is forward (FF-ANN). However, as said previously, backpropagation is the back-
ward error propagation of weight adjustments.

The calculations corresponding to the composing neurons of the perceptron in
Fig. 9 are shown below.

In each one epoch, the net value (summation plus the bias) and final output value
of the neuron (O) are calculated by the perceptron by the ANN as follows:

Output ¼ 1� �3:6ð Þ þ �1ð Þ � 5þ �2ð Þ � 3þ 16:46 ¼ 1:86

Now, suppose that the real expected output value is equal to 1. If so, in each next
epoch for each data point, the weight values are changed such that the output value
gets nearer to the real expected value. This process continues until nearest possible
output values to the real expected values are obtained. In this simple ANN, the
modified weights are evaluated as follows:

DWi ¼ aðVexpected � OANNÞ � Inputi

Wi;modified ¼ Wi;previous þ aðVexpected � OANNÞ � Inputi ð15Þ

where
DWi Magnitude of change of the weight corresponding to link i (between

neuron i and output neuron)
a Learning rate (a constant)
Vexpected Real expected output value corresponding to a specified input data point

(already known)
OANN Evaluated value by whole ANN using specified input data points (the

output value of the output neuron)
Inputi Input value to output neuron from neuron i
Wi;previous Value of the weight in the previous epoch

Thus, assuming a (called learning rate) to be equal to 1, the modified weights are
as follows:

W1;mod: ¼ �3:6þ 1� ð1� 1:86Þ � 1 ¼ �4:46

W2;mod: ¼ 5þ 1� ð1� 1:86Þ � ð�1Þ ¼ 5:86

W3;mod: ¼ 3þ 1� ð1� 1:86Þ � ð�2Þ ¼ 4:72

Thus, after training the network during one epoch using the data point {(1, −1,
−2) as input and 1 as output}, the above modified weight values would be used in
the next epoch.
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4.2 Multilayer ANNs and Backpropagation Algorithm

For more complex problems, normally the ANN should have hidden layers. These
neural networks are called multilayer ANNs. Multi-layer ANNs could be consid-
ered as a developed or extended perceptron. The structure of a multilayer ANN with
one hidden layer has been shown in Fig. 10. Application of multilayer ANN is not
only restricted to very simple linear problems, but can also utilized for complex or
non-straightforward problems.

Unlike perceptrons, in multilayer ANN, the activation function is not just a bias/
threshold, but activation functions (usually sigmoid functions) are usually applied.
As could be seen in Fig. 10, the ANN structure is composed of one input layer
(consisting of 3 neurons), one output layer (consisting of one neuron), and also one
hidden layer (consisting of 2 neurons) as a typical example. For most engineering
purposes, only one or 2 hidden layers at most are normally adequate to be used in
the structure. The number of neurons in the hidden layers is crucial in the perfor-
mance and functionality of the network. However, depending on the complexity of
the problem, an optimization should be made not to use too many neurons in the
hidden layers as this causes over-fitting or over-training.

For the multilayer ANN shown in Fig. 10, in each one epoch, the net value and
the output of each neuron in the hidden and output layers are calculated by the ANN
as follows:

H1: the net value and output of this neuron are found as follows:

Net ¼ 1� �3:6ð Þ þ �1ð Þ � 5þ �2ð Þ � 3þ 16:46 ¼ 1:86

Output ¼ 1
1þ e�1:86 ¼ 0:86

Fig. 10 A multilayer ANN with one hidden layer (a logistic sigmoid function has been considered
as the activation/transfer function)
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H2:

Net ¼ 1� �2ð Þ þ �1ð Þ � 2þ �2ð Þ � �4:1ð Þ � 11:85 ¼ �7:65

Output ¼ 1
1þ e�ð�7:65Þ ¼ 4:75� 10�4

O: the net value and output of this neuron (which is the output of the ANN) are
found as follows:

Net ¼ 0:86� �1:1ð Þ þ 4:75� 10�4 � 8:7þ 3:132 ¼ 2:187

Output ¼ 1
1þ e�2;187 ¼ 0:9

Now suppose that the real expected value is equal to 1. If so, in each next epoch
for each data points, the weight values are changed or modified such that the output
value gets nearer to the real expected value (here equal to 1). This process continues
until nearest possible output values to real expected values are obtained. In this
multilayer ANN, the modified weights are evaluated as follows:

DWi ¼ f
0
output � ðVexpected � OANNÞ � Inputi

Replacing the logistic sigmoid activation function derivative for the output
neuron yields:

DWi ¼ aOANNð1� OANNÞ � ðVexpected � OANNÞ � Inputi

The modified weight for this sigmoid function is as follows:

Wmodified ¼ Wprevious þ aOANNð1� OANNÞ � ðVexpected � OANNÞ � Inputi ð16Þ

Replacing the hyperbolic tangent sigmoid activation function derivative for the
output neuron yields:

DWi ¼ að1� OANNÞ2 � ðVexpected � OANNÞ � Inputi

The modified weight for the hyperbolic tangent sigmoid function is as follows:

Wmodified ¼ Wprevious þ að1� OANNÞ2 � ðVexpected � OANNÞ � Inputi ð17Þ

where
OANN Evaluated value by whole ANN using specified input data points (the

output value of the output neuron). This is fixed value for each epoch

142 R. Ashena and G. Thonhauser



f
0 The derivative of the activation function corresponding to the output

neuron
Inputi Input value of the neuron i
Wi;previous Value of the weight corresponding to link i in the previous epoch
Wi;modified Value of the weight corresponding to link i to be used for the next epoch

Input value is the value enters to each neuron. If the neuron is in the hidden
layer, the input value is the net value (summation plus bias) to the neuron. In
perceptrons (without hidden layer ANN) which are applicable to simple linear
problems, the activation function is indeed f(x) = a x. Therefore, applying the above
relations to perceptrons would yield f

0
to be equal to 1 or a (15).

Thus, assuming a (called learning rate) to be equal to 1, the modified weights are
evaluated as follows:

Wmodified ¼ Wprevious þ aOANNð1� OANNÞ � ðVexpected � OANNÞ � Inputi

WI1�H1 ¼ �3:6þ 1� 0:9 1� 0:9ð Þ � ð1� 0:9Þ � 1 ¼ �3:591

WI2�H1 ¼ 5þ 1� 0:9 1� 0:9ð Þ � ð1� 0:9Þ � ð�1Þ ¼ 4:991

WI3�H1 ¼ 3þ 1� 0:9 1� 0:9ð Þ � ð1� 0:9Þ � ð�2Þ ¼ 2:982

WI1�H2 ¼ �2þ 1� 0:9 1� 0:9ð Þ � 1� 0:9ð Þ � 1 ¼ �1:991

WI2�H2 ¼ 2þ 1� 0:9 1� 0:9ð Þ � ð1� 0:9Þ � ð�1Þ ¼ 1:991

WI3�H2 ¼ �4:1þ 1� 0:9 1� 0:9ð Þ � 1� 0:9ð Þ � �2ð Þ ¼ �4:118

WH1�O ¼ �1:1þ 1� 0:9 1� 0:9ð Þ � ð1� 0:9Þ � 1:86 ¼ �1:083

WH2�O ¼ 8:7þ 1� 0:9 1� 0:9ð Þ � ð1� 0:9Þ � ð�7:65Þ ¼ 8:631

Thus, after training the network during one epoch using the data point {(1, −1,
−2) as input and 1 as output}, the above modified weight values would be used in
the next epoch. This process takes place for all the data points given to the network
in the training stage.

It is noted that if the learning rate is too low, the learning process would be too
slow. If the learning rate is too high, the weights and objective function would
diverge and no good learning would occur. In linear problems, proper learning rates
could be computed using the Hessian matrix (Bertsekas and Tsitsiklis 1996). It is
also possible to adjust the learning rate while training. A number of proposals exist
in the neural network literature to adjust the learning rate while training. However,
most of them are not effective. Among these works, Darken and Moody (1992)
could be named.
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Please note that the ANN structures discussed above are feed-forward ANN (FF-
ANN) with backpropagation algorithm for weight modification. This has been very
popular in petroleum engineering practices. Thus, these types of neural networks
are further discussed as follows.

5 Data Processing by ANN

Typically, processing of ANN data is performed in three sections including train-
ing, testing/calibration, and validation/verification phases. For this purpose, the
number of the known data points comprising input and output values is divided into
two categories. In most of the petroleum engineering practices performed by the
authors, typically the number of available data points (inputs and output values
available) is divided into two independent parts: (1) 60 % of the data points for
utilization in the training phase and (2) 40 % of the data points for utilization in
testing. Some users test the trained neural network in two stages: (a) 20 % of the
data points for first testing of the trained network and (b) 20 % of the data for
second testing purposes. Depending on the number of data points available and
experience of the users (which is very important), different users adopt different
division of the data. Some may take 70 % of the available data points for training
and the rest for testing. The number of the data points plays an important role in
successful training. Fake data points could cause trouble for successful training
particularly if their number is many.

Then, if testing gives promising results, the user can go for validation or veri-
fication phase. In this phase, some new input data is applied to the trained ANN to
get the network outputs. The network outputs are thus considered to be very near to
the real ones and could be used for instance in petroleum engineering.

Indeed, during the training phase, the desired network is developed. Then, it is
tested. When the training and testing process has been finished successfully (after
training and simultaneously testing the network by test data points), the network is
applied to the validation data points in order to predict outputs using new input data.

5.1 Training

As one of the main similarities between artificial neural networks (ANNs) and bio-
logical neural networks, both have the ability to learn or to be trained. As said earlier,
the output of a neuron is a function of the net value (which is the weighted sum of the
inputs plus a bias). Indeed, after successful training, an ANN can have the capability
of creating reasonable outputs using new inputs (during testing and validation pha-
ses). The more reasonable the neural networks respond to the new data, the neural
networks has got higher functionality in terms of generalized prediction. Good
training is thus of great importance to enhance the functionality of ANN.
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In the beginning, the ANN allocates a random weight to each input value. Then,
during the training process, when the inputs are introduced to the network, the
weights (corresponding to the links between all the neurons of the network) would
be adjusted or modified such that finally the ANN output(s) is/are very near to the
expected real output value(s). Depending on how close the output created by ANN
is to the expected real output, the weights between the neurons are modified such
that if the same inputs are introduced to the network, the network would provide an
output pattern closer to the expected real output.

Surely, if the difference between the created data (by ANN) and real data is
considerable, more modification of the weights is performed during training. In this
way, at any time in training, a kind of memory is attached to the neurons which
store the weights in the past computations. Finally, if convergence is attained after
training, we expect the ANN to give outputs which are in proximity to expected real
outputs. In Fig. 9 (perceptron) and the corresponding calculations, it was previously
shown how the weights were modified (W1,mod, W2,mod, W3,mod) during training.

In more details, it could be stated that the training or the learning stage of the
network is accomplished by summing up the errors at the output and creating a cost/
risk function in terms of network inputs and weights and minimizing the cost
function with respect to the network inputs. The cost function is basically based on
mean squared error (MSE) of the outputs. The process of MSE error mitigation
during training takes place in an iterative process during many iteration times. Each
iteration, which is indeed the process of providing the network with inputs and
modifying the network’s weights, is called an epoch. Normally, a lot of epochs are
required to train a typical ANN.

Training continues as said above until the created output value or pattern
complied with the quality criteria based on statistical error values. In other words,
the stopping criteria is based on the minimization of MSE (Cacciola et al. 2009).
This type of training wherein both inputs and actual outputs are supplied to the
network (called Supervised Training) is usually more common in practice. In
unsupervised training, only input values are supplied and ANN adjusts its own
weights such that similar outputs are given out of the network while inserting
similar inputs. Most of the neural network applications in the oil and gas industry
are based on supervised training algorithms (Mohaghegh 2000).

5.2 Over-fitting

In iterative backpropagation ANNs which are commonly used in petroleum
industry, there is a serious problem which arises after too much training of the
network. It is important to know when to stop training the network and go for
testing and validation phases. As a matter of fact, too much training would cause
over-fitting or over-training. Over-fitting is also called memorization as well
because in this case, the network would indeed memorize the data points used in
training and give a very accurate match with them, but it would lose its
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generalization capability which is required in testing and validation phases. Please
note that over-fitting does not really apply to ANNs which are trained using non-
iterative processes. However, it can be said that ANNs used in petroleum are
normally iterative.

Indeed, during the initial phase of training, both the training and validation set
errors show a decreasing trend with time or number of epochs. It is noted that
training and validation set errors are, respectively, errors corresponding to training
and validation data points. Nevertheless, when the over-fitting of the ANN starts,
the validation error suddenly starts to increase, while the training error still con-
tinues its decreasing trend (Fig. 11). The blue dots in Fig. 12 illustrate the train data
points (X, Y). The blue and red lines in Fig. 12, respectively, show the true func-
tional relationship and the ANN learned function. As can be seen, due to too much
training, there is a large difference between the true functional curve and the ANN
learned function in points other than train data points. This is representative of over-
fitting. The input values have been shown in the x-axis for simplicity, and the output
values have been denoted by the values in the Y-axis. The saved ANN weights and
biases/thresholds are corresponding to the minimum of the validation set error.

Fig. 11 The sudden increase of validation set error (black arrow) shows over-fitting in the graph
of MSE versus time/epoch number

Fig. 12 Over-fitting. Too much complexity of the ANN due to too much learning (red curve) has
caused the ANN estimated values by ANN learned function at inputs other than train values to be
very different from true functional relationship or curve (blue curve). x-axis and y-axis are,
respectively, representative of inputs and ANN outputs
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Figure 12 illustrates the problem of over-fitting in machine learning. The blue
dots represent training set data. The blue line represents the true functional rela-
tionship, while the red line shows the learned or trained function, which is shown to
be under the effect of over-fitting.

It is noted that if the test set error had shown a considerable increase before the
validation set error, it could be guessed over-fitting could have happened. Thus, in
Fig. 13, for instance, there are no worries about over-fitting until stopping point at
epoch number 6. But surely after epoch 6, again over-fitting would happen. The
minimum validation error is at epoch no. 6, but the training has continued 6 more
epochs until epoch number 12 (the user has instructed the network do so). Thus, it is
possible to rely on the ANN weights and biases adjusted based on stopping point at
epoch 6. Just to remind that as times passes by (epoch increase), the ANN is getting
more and more complex.

In order to prevent over-fitting, first it is required that the network is not too much
complex that models even the noises. Second, before the termination of the training
process, the process is commonly stopped from time to time so that the network
generalization capability is checked using the test data points. If the network per-
formed well in the test phase (if theMSE in the test phase is in the magnitude of 0.001
or a little higher), no further training is required. Since the outputs of the test data
points are not utilized in the training phase, the network prediction or generalization
capabilities could be analyzed by comparing the network outputs (using the input
values in testing phase) with the real test output values.

5.3 Testing

After the training stage, we reach to the testing or calibration stage wherein the
weights between the neurons are tested. Testing takes place using input–output
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Fig. 13 At epoch no. 10, the
error of second test or
validation error (MSE as its
set error function) and also
first test set error increased,
while training set error is still
decreasing. But, as the
increase of the validation set
error is not too much sharp, it
is no sign of over-fitting
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pairs that have not been utilized in the training stage. The difference between the
desired and the actual output can show if enough training has happened. It is noted
that it is usually a common fault among users with not enough experience to test/
calibrate the ANN using the same data points used for training.

5.3.1 Validation

Validation is the last stage in the ANN application or neural data processing by
ANN. To summarize the data processing by ANN, during the training phase, a
trained network is developed. Then, it is tested. If it shows good performance
during testing, it is a recognized as a proper network to be used with new data.
During validation, the user can apply the trained network to obtain results. In this
stage, new input data (with unknown outputs) is supplied to the trained ANN in
order to obtain the network outputs. As the trained network has performed well in
the testing stage, the outputs obtained in the validation stage are considered to be
trustworthy and are taken for granted as nearest to real.

It must be noted that the validation stage is usually considered as the second test.
If so, the validation and test error curves versus the number of epochs are plotted
along with the training error curve. The validation and test error curves should also
have the declining trend just like the training error curve before convergence. After
convergence, the validation and test error curve would rise, while training error
curve would continue declining showing too much training (over-fitting). There-
fore, if the training curve is declining while the validation and test ones are rising
and do not show a decline before convergence, it indicates a problem with the
network. To help remove the problem with the network, it is suggested to follow the
steps below:

1. Re-check the data: Among the data points, there might be some wrong or faulty
ones. Try to detect them and delete them from the available data points.

2. Reconsider the effective parameters: Try to consider one or more new input
parameter whose effect on the output parameter might have been ignored. This
requires a review of the problem and identifying the effective parameters to find
its corresponding values.

According to author’s experience, the error was reduced dramatically using the
above two methods.

Sometimes, the output is not dependent on some of the data or in other words its
corresponding sensitivity is very small. This case can be found by sensitivity test
analysis.

Please note that normalizing the data can also help to obtain better results from
the network performance. Normalizing means arranging all the available data
values in the range of 0–1. By knowing the maximum and minimum value among
of the data, normalizing is possible. Thus, the normalized value is found by the
following relation:
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d ¼ d � dmin

dmax � dmin
ð18Þ

It is noted that some users consider the MSE error in the validation phase as the
model quality. Some others may consider the error in the test phase.

6 ANN and Validation Error Statistical Parameters

As mentioned in the text, MSE is the main error function to compare the neural
network models and performance and in more detail the discrepancy between the
expected real values and the output by ANN. Additionally, several other statistical
parameters are also utilized to report this discrepancy. Collectively, these error
parameters include mean squared error (MSE), average root mean squared error
(ARMSE), average percent error (APE), average absolute percent error (AAPE),
Pearson correlation coefficient (R), squared Pearson correlation coefficient (R2),
standard deviation (SD), and variance (V). It is noted that variance is simply the
square of standard deviation.

It is to note that R2 can be used along with R to analyze the network perfor-
mance. MSE and R2 collectively can give an indication of the performance of the
network. Generally, a R2 value greater than 0.9 indicates a very satisfactory model
performance, while a R2 value in the range 0.8–0.9 signifies a good performance,
and the value less than 0.8 indicates a rather unsatisfactory model performance
(Coulibaly and Baldwin 2005).

Definitions and mathematical relations of these parameters are given in the
Appendix.

7 Sequential Forward Selection of Input Parameters (SFS)

As said before, one of the challenges in neural network modeling is the determi-
nation of the important effective input parameters on the output. Certainly, expe-
rience and knowledge of the problem could help in determination of the effective
parameters or selection criterion. However, it is better to utilize a systematic method
to determine the impact of each parameter, rank them. Using sequential forward
selection (SFS), each of the input parameters is considered individually. Then, the
input parameters with the highest impact on the output parameters are detected in
successive stages so that ranking of the parameters could be performed on the basis
of highest to lowest impact. For more clarity of the procedure, an example is given
below:

Suppose 5 input parameters denoted by a to e have been characterized as important
parameters of a problem and pressure is the output parameter. To utilize SFS for
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ranking of the parameters which have the greatest impact, in the first stage, 5 neural
network models are constructed each just using one single input parameter. To com-
pare their performance, the errors of all these single input parameters are evaluated. As
it is illustrated in Fig. 14, using single parameter c, for instance, network creation leads
to least error of all. Thus, parameter c is the most effective input parameter or with
highest impact on output parameter which is bottom hole pressure (BHP).

In the second stage, 4 neural networks using 2 input parameters are constructed
such that input parameter c is surely considered (fixed parameter) and the second
parameter is changed among the 7 remaining parameters. In this way, 4 neural
networks are constructed. Now, their corresponding errors are calculated. Out of
these 4 networks, the second parameter of the network with the least error is
selected as the second most effective parameter. For instance, this could be
parameter no. e (Fig. 15).

At the third stage, 3 neural networks are constructed using 3 input parameters
such that input parameters c and e as the first two most influential parameters are
considered (fixed parameters) and the third input parameter is changed among the 3
remaining parameters. The above SFS process is continued until the ranking of all
the input parameters is performed (Fig. 16). Collectively, 15 neural networks will

Fig. 14 1st stage of SFS. The MSE error corresponding to the 5 neural networks each just trained
by a single input parameter (a to e). The input parameter with the most impact is c

Fig. 15 The MSE error corresponding to the 4 neural networks each just trained by a single input
parameter (a to e). The second most effective parameter is e
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have been considered to know the final ranking. After finding the input parameters
with maximum to minimum effect, the errors of five neural networks corresponding
to each stage of SFS (first constructed with the single most effective input
parameter, second constructed with two most effective input parameter, etc.) are
compared with each other. Finally, Fig. 16 is yielded which shows how adding
input parameters could reduce error.

8 Applied Examples of ANN in Geoscience and Petroleum
Engineering

Among the many applications of ANN in geoscience and petroleum engineering,
some applied examples are given as follows.

8.1 Multiphase Flow

Among really complex problems, multi-phase flow problems could be considered.
One important parameter in two phase flow in wells is the bottom hole pressure
(BHP). In underbalanced drilling (UBD), the BHP should be kept less than for-
mation pore pressure and above wellbore collapse pressure (to prevent wellbore
instability). Thus, the prediction capability of predicting BHP in UBD operations is
of great importance which could leave the necessity of measuring devices bottom
hole. Different approaches have their own defects. For the following reasons, the
errors of the mentioned approaches are not small:

Because of the complexity of the phenomenon, indeed no analytical solutions
exist for multi-phase problems. Empirical multi-phase flow correlations sometimes
over-predict, make extrapolations risky, and are susceptible to uncertainties.

Fig. 16 Final ranking of
input parameters

Application of Artificial Neural Networks … 151



The use of mechanistic modeling approaches has been increasing in multi-phase
flow problems in pipes; however, utilizing them in annular flow problems has not
been very promising.

Taking into account the lack of analytical solutions in multi-phase problems,
artificial neural network was utilized to evaluate BHP in multi-phase annular flow
while UBD operations (Ashena et al. 2010). Thus, BHP was considered as the
output parameter. An attempt was made to find the parameters which have influence
on the output parameter (BHP) or BHP depends on. This is obtained just by a brief
studying of multi-phase flow relations and also experience. Seven parameters were
found as effective parameters:

Rate of liquid or diesel injection (in gallon per minute or gpm)
Rate of gas or nitrogen injection (in standard cubic foot per minute or scfm)
Measured depth or MD (in meter)
True vertical depth or TVD (in meter)
Inclination angle from the vertical (in degrees)
Well surface pressure (in psi)
Well surface temperature (in degrees celsius)

Qualitatively speaking, it must be noted that the more the value of item 1 (rate of
liquid injection), the more the value of BHP. The more the value of item 2 (rate of
gas injection), the less the value of BHP. Please note that as items 3–5 (measured
depth, true vertical depth, and inclination angle) collectively take the hole depth in
vertical and directional wells into account, they were considered as input param-
eters. Normally, the neural network structure is itself responsible for recognizing
the extent of the input parameter strength or importance.

The number of 163 data points with the above 7 input parameters and measured
BHP (the only output parameter) was collected. About 10 data points were found to
cause too much error. After their deletion, the ANN performance was enhanced.

A 153 collected data points should be divided for use in training and testing
phases. 60 % of them were allocated to training, 20 % to testing-1, and 20 % to
validation (or testing-2) purposes. Some additional data have been used as simu-
lation data with known measured values as well. As the number of the available
collected data points was limited, only limited number of neurons and layers was
tried to be utilized. Feed-forward ANN with backpropagation algorithm of learning
was set as the neural network. Input data were inserted from the MATLAB
workspace. All the data values were normalized (with the range between 0 and 1).

The training function was set as Levenberg–Marquardt algorithm (trainlm). It is
noted that Levenberg–Marquardt algorithm makes an interpolation between the
Gauss–Newton algorithm and the gradient descent method. MSE was selected as
the performance or error function. The hyperbolic tangent sigmoid function (tansig)
was selected as the transfer or activation function. We could have also selected the
logistic sigmoid function (logsig). According to the authors’ experience, it would be
good to consider 2–2.5 times the number of the inputs as the number of neurons in
the hidden layer as one option. In this study, it was shown that the case with 3
layers (2 hidden layers) has the least error and hence is used to simulate the input
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data. However, normally 1 hidden layer can meet the engineering needs. In this
study, as the number of layers was increased, the error was decreased. As can be
seen from case 3 to 4 (Table 1), since the number of data points to train the network,
92, is not that many, increasing the number of neurons may not necessarily decrease
the MSE. It is just to note that it is required to first reinitialize the weights at each
time of running neural networks.

In Fig. 17, the value of MSE versus the number of epochs for one case of the
above example has been given. It is shown that the value of error (MSE) of training,
first testing (test), and second testing (as only named validation in Fig. 17) is
decreasing with the number of epochs before convergence is reached. Upon con-
vergence, the errors of one of the tests or both start increasing, while the training
error still decreasing. The criterion for MSE calculation is the error value at the
convergence (MSE: 0.007 for the case given).

Please note that if the starting increase of the validation (or second test) and test
(or first test) MSE curves is not too much sharp at the convergence point, the neural
network performance is considered to be valid. In Fig. 17, at the convergence point
(epoch 3), the starting increase in the validation (second testing) MSE is not too
sharp.

In Fig. 18, the values of the Pearson coefficients (R) for the training, first testing
(test), and second testing (validation) have been shown. The y-axis and x-axis,
respectively, show the predicted outputs by ANN and the expected real values
(targets). The closer these values are to the value 1, the better the indication of
convergence. In our example, these values are good enough (about 1) and thus

Table 1 Different ANN structures used in the example and the validation error

ANN Type No. of
hidden
layers

AAPE % APE % SD V R R2 MSE

Case-1 FF-BB 1 with10
neurons

20.99 20.99 30.46 927.81 0.8872 0.787124 0.007

Case-2 FF-BB 1 with 20
neurons

18.55 11.08 30.12 907.21 0.9134 0.8343 0.006

Case-3 FF-BB 1 with 33
neurons

26.7 9.73 93.99 8834.1 0.8982 0.806763 0.003

Case-4 FF-BB 1 with 42
neurons

16.19 12.15 33.06 1093 0.8625 0.743906 0.005

Case-5 FF-BB 2 with 18
and 18
neurons

18.87 18.67 47.2 2227.8 0.9313 0.86732 0.003

Case-6 FF-BB 2 with 26
and 26
neurons

15.81 14.59 36.15 1306.8 0.9337 0.871796 0.004

Case-7 FF-BB 2 with 32
and 32
neurons

16.99 16.96 18.97 359.86 0.9375 0.878906 0.003
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show good convergence. This graph is an important indication of the validity of the
trained neural network. Suppose only the R2 corresponding to training was near to 1
(e.g. 0.9), and the first and second test values were not (e.g. 0.4). If so, the neural
network performance was weak and validity of the work was under question.

To analyze the performance of different neural network models, several statis-
tical parameters were utilized. These parameters include average absolute percent
error (AAPE), average percent error (APE), average root mean squared error
(ARMSE), Pearson correlation coefficient (R), squared Pearson coefficient (R2),
standard deviation (SD), and variance (V) as shown in Table 1. In the Appendix,
the required statistical parameters have been described.

The trained ANN above, which has been validated successful after two testing,
could be used for simulation using new input data.

8.2 Well Hydraulics

Drilling hydraulics simulation is indeed a non-straightforward problem which is
more sophisticated in complex wells (slim holes and extended reach wells). There
are many unknowns in this problem. As simulation by hydraulics simulators is time
consuming, they are not suitable for application in real-time drilling.

Because of the above reasons, Fruhwirth et al. (2006) utilized a number of 11
generations of a special ANN called by them as completely connected perceptron
(CCP) for prediction of pump pressure or hydraulic pressure losses.

It is noted that CCP is a more general type of perceptron which could be
considered as multilayered as seen in Fig. 19. In each generation, one hidden layer
was added to the CCP (first generation without any hidden layer and the 11th
generation with 10 hidden layers). Out of the available data, 50 % was devoted to
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Fig. 18 The Pearson coefficients for the training, testing 1(test), and testing 2 (validation). The
y-axis and x-axis, respectively, show the predicted outputs by ANN and the expected real values
(target). The values are near to 1 and thus ANN has good valid performance

Fig. 19 Growing completely connected perceptron (cVision Manual)
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training. Then, 25 % of the data points were allocated to each test or validation. The
real data of two wells were utilized for training the ANN. The input drilling
parameters considered include bit measured depth (MD in m), bit true vertical depth
(TVD in m), block position (in m), rate of penetration (ROP in m/hr), average mud
flow rate (in m3/s), average hook load (in kg), average drill string revolutions
(RPM), average weight on bit (WOB in kg), and average mud weight out of hole (in
kg/m3). Average pump pressure (in bar) was considered as the output parameter.

Utilization of a completely connected perceptron (CCP) has the advantage of
eliminating the need to find an optimal number of hidden layers (Fruhwirth et al.
2006). The schematics of different generations of ANN are shown in Fig. 20.

The results of modeling by ANN were promising. As seen in Fig. 21, the RMS
error (in bar) is low enough, and there is not much change in the error from a
generation on (the number of hidden layers does not have much effect from a
number on). It is reminded that pump pressure is the output parameter. In Fig. 22a,
the measured, calculated pump pressures by ANN (as the output) and also the
corresponding error versus time have been shown for one of the wells. In Fig. 22b,
a good match of the data could be observed in the cross-plot of the measured
(expected real data) and the calculated (or predicted) output by ANN.

Fig. 20 Schematics of
completely connected
perceptron (cVision Manual)

Fig. 21 The RMS error
corresponding to learning or
training, test and validation
phases (Fruhwirth et al. 2006)
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Although the results obtained by the authors have enough accuracy, the authors
have added some more features to the input data including MD-TVD ratio, dog leg
severity (DLS), sine and cosine of well inclination, and three features corresponding
to Reynolds number (NRe). Reynolds number was considered because it is related to
the mud rheological properties, well geometry, and mud flow rate (which all have
an effect on hydraulics).

In a further study, torque and bit measured depth have been added as additional
input parameters and it has been concluded that 95 % of the theoretical predicted
standpipe pressure values lie within 10 bars of the real measured data (Fig. 23).
Also, in the cross-plot of predicted (y-axis) and measured pressure (x-axis) as
shown Fig. 24, the squared Pearson coefficient has been found to be equal to 0.9677
(Todorov et al. 2014). Also, the simulated pressure losses clearly follow the trend of
the measured standpipe pressure (Fig. 23). All the above discussions indicate the
capability of ANN in handling complex hydraulics problems.

Fig. 22 a Measured, calculated by ANN pump pressure and error versus time and b cross-plot of
calculated versus measured pump pressure (Fruhwirth et al. 2006)

Fig. 23 Measured standpipe pressure and calculated pressure drop by ANN versus time (Todorov
and Thonhauser 2014)
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8.3 Drilling Optimization

Many studies have been performed on the application of ANN for drilling opti-
mization of rate of penetration (ROP) in the literature.

In a recent work, four ROP models with, respectively 6, 9, 15, and 18 input
parameters or data channels were constructed using ANN with the objective of
investigating the effect of vibration parameters on ROP (Esmaeili et al. 2012). In the
first two models, the vibration parameters were not considered. In the third model,
formation mechanical properties were not considered though vibration parameters
were taken into consideration.

In the first ROP model, only the drilling parameters (average and standard
deviation of WOB, average and standard deviation of RPM of drill string, and
average and standard deviation of torque) were considered as input parameters or
channels.

In the second ROP model, the drilling and mechanical properties (uniaxial
compressive strength UCS, Young’s modulus of elasticity, and Poisson’s ratio)
were considered as input parameters.

In the third ROP model, the drilling and vibration parameters were considered as
input parameters. The vibration parameters include standard deviation, and first and
second order frequency moment of X, Y, and Z component of vibration.

In the fourth ROP model, all the drilling, mechanical properties, and vibration
parameters were considered as input parameters or channels.

In Fig. 25, the ranking of input parameters (including drilling, mechanical, and
vibration) has been made for the fourth model using sequential forward selection
(SFS) which shows the parameters UCS, standard deviation of Z component of
vibration, average WOB, etc. that have the most impact on ROP.

Fig. 24 cross-plot of
predicted (y-axis) and
measured pressure (x-axis)
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Eventually, Esmaeili et al. (2012) reached the results in Table 2.
Most of the common ROP models (Bourgoyne, Warren, Maurer, etc.), which are

based on only the drilling and mechanical properties, do not consider the vibration
properties. The RMS error corresponding to the second ROP model, which looks
like the mentioned models, was calculated as 0.208 mm/min. Nevertheless, in the
fourth ROP model wherein the vibration parameters were considered, the RMS
error was calculated as 0.194 mm/min which shows vibration parameters have
important effects on ROP modeling.

In Fig. 26, the cross-plot of actual ROP values (predicted by ANN) and desired
ROP values (measured or expected real values) have been shown which shows a
better match in the fourth model.

Some similar drilling optimization studies using neural networks to be men-
tioned are as follows: Gidh et al. (2012) in prediction of bit wear, Lind and Ka-
birova (2014) in prediction of drilling problems, and Bataee et al. (2010).

Fig. 25 Ranking of input channels (or parameters) for the fourth ROP Model using sequential
forward selection (Esmaeili et al. 2012)

Table 2 Summary of ROP models and corresponding RMS errors (Esmaeili et al. 2012)

Model No. of input channels Number of hidden units RMS error (mm/min)

First ROP model 6 6 0.301

Second ROP model 9 6 0.208

Third ROP model 15 6 0.231

Fourth ROP model 18 5 0.194
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8.4 Permeability Prediction

Permeability is one of the important parameters which have been estimated using
ANN in many applications.

In an application of ANN to predict permeability (Naeeni et al. 2010), the input
parameters considered in the FF-ANN with backpropagation algorithm, include
depth, CT (true conductivity), DT (sonic travel time), NPHI (neutron porosity),
RHOB (bulk density), SGR (spectral gamma ray), NDSEP (neutron-density log
separation), northing of well, easting of well, SWT (water saturation), and FZI (flow
zone indicator). The number of three hidden layers (with 13, 10, and 1 neurons) was
selected for the network. In order to estimate permeability, determination of dif-
ferent hydraulic flow units (HFU) is the first stage because it leads to FZI values

Fig. 26 Actual ROP (predicted by ANN) versus desired ROP (expected real or measured values)
for all four ROP models from a–d (Esmaeili et al. 2012)
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which are needed for the first stage. At the same time, FZI which is related to pore
size and geometry has the following relation with RQI:

FZI ¼ RQI
£z

ð19Þ

It is also noted that RQI and £z are evaluated by:

RQIðlmÞ ¼ 0:031

ffiffiffiffiffiffiffi
K
£e

s
ð20Þ

£z ¼
£e

1�£e
ð21Þ

where £e is the effective porosity.
Thus, taking logarithms from both sides leads to:

Log RQIð Þ = Log £zð Þ þ Log FZIð Þ ð22Þ

Therefore, Log FZIð Þ is the intercept of the plot of RQI versus £z in log–log
scale. Thus, first RQI (rock quality index) values versus normalized porosity values
(£z) were plotted in log–log scale using core data. Second, RQI values versus £z
were plotted in a log–log scale. Third, some straight lines are selected to intersect
with line £z ¼ 1 such that reasonable initial guesses of intercepts are obtained as
mean FZI values.

Fourth, the data points are assigned to the adjacent straight lines and are con-
sidered as different HFUs (clustering technique). This stage requires considerable
time. Fifth, the intercept or FZI of each HFU is recalculated utilizing regression
equations and is compared with the guess in the fourth stage. If the difference
between the recalculated FZI value and the guess value in the fourth stage is
considerable, it is required to come back to the fourth stage so that the guessed FZI
can be updated.

Following the above procedure, finally different rock types could be determined
with good accuracy (HFU determination is done) and also permeability values
could be estimated as shown in Figs. 27 and 28.

As the second step, an ANN was trained with well log and RQI data as input and
permeability data as output. Eventually, it is possible to simulate the ANN using
well log data in uncored wells to estimate their permeability values.

As the cross-plot of predicted versus measured values of permeability is shown
in Fig. 29, the performance of the ANN in permeability prediction was promising
with the Pearson coefficient of 0.85 for the validation phase

In another study with a rather similar approach (Kharrat et al. 2009), the pre-
dicted permeability values show a good match with the core measured values. The
well FZI profile versus depth has been shown on the left of Fig. 30 (with dots
showing the values corresponding to core measured values). The predicted and core
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measured permeability values versus depth have been illustrated on the right of
Fig. 30.

Some similar reservoir engineering studies using neural networks are as follows:
Thomas and Pointe (1995) in conductive fracture identification, Lechner and Zangl
(2005) in reservoir performance prediction, Adeyemi and Sulaimon (2012) in
predicting wax formation, and Tang (2008) in reservoir facies classification.

Fig. 27 The number of 15 rock types has been identified in the collected data from the reservoir
(Naeeni et al. 2010)

Fig. 28 For each rock type of the reservoir, one permeability curve versus porosity has been
determined (Naeeni et al. 2010)
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Fig. 29 Predicted permeability values or output values as y-axis versus core permeability values
as x-axis (Naeeni et al. 2010)

Fig. 30 FZI profile of one well based on log and core data (left) and its permeability predictions
(Kharrat et al. 2009)
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9 Conclusion

Artificial neural networks (ANNs) have shown to be an effective tool to solve
complex problems with no analytical solutions. In this chapter, the following topics
have been covered: artificial neural networks basics (neurons, activation function,
ANN structure), feed-forward ANN, backpropagation and learning, perceptrons and
Backpropagation, multilayer ANNs and backpropagation algorithm, data process-
ing by ANN (training, over-fitting, testing, validation), ANN and statistical
parameters, and some applied examples of ANN in geoscience and petroleum
engineering.

Appendix: Important Statistical Parameters

The corresponding relations of a few important statistical parameters to compare
performance and accuracy of different neural network models are given as follows:

1. Average percent relative error (APE):
This error is defined as the relative deviation from the measured data.

APE ¼ 1
n

Xn
i¼1

Ei ð23Þ

Ei ¼ Pm � Pe

Pm

� �
i

i ¼ 1; 2; 3; . . .; n; ð24Þ

2. Average Absolute Percent Relative Error (AAPE):
This error gives an idea of absolute relative deviation of estimated outputs from
the measured or expected output data.

AAPE ¼ 1
n

Xn
i¼1

eij j ð25Þ

ei ¼ Pm � Pe½ �i ð26Þ

3. Mean squared error (MSE):
This error is corresponding to the expected value of the squared error loss.

MSE ¼ 1
n

Xn
i¼1

e2i ð27Þ
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4. Average root-mean-square error (ARMSE):
This error is an indeed measure of scatter or lack of accuracy of the estimated
data.

ARMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

e2i

s
ð28Þ

5. Standard deviation (SD):
This error shows the dispersion of the values from the average value or mean.

SD ¼ n
Pn

i¼1 E
2
i � ðPn

i¼1 EiÞ2
n2

" #1
2

ð29Þ

6. Variance or V, r2:
This error is the square of the standard deviation.

r2 ¼
P

X �Mð Þ2
N

ð30Þ

7. Correlation coefficient or Pearson coefficient (R):
It represents the degree of success in reduction of the standard deviation (SD). It
is normally used as a measure of the extent of the linear dependence between
two variables. The nearer R is to 1, the better the convergence and ANN per-
formance is.

R ¼
Pn

i¼1 Pm;i � Pm;av
� �� Pe;i � Pe;av

� �	 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 Pm;i � Pm;av
� �2h i

�Pn
i¼1 Pe;i � Pe;av

� �2r ð31Þ

Pav ¼ 1
n

Xn
i¼1

Pi ð32Þ

8. Squared Pearson coefficient: R2
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On Support Vector Regression to Predict
Poisson’s Ratio and Young’s Modulus
of Reservoir Rock

A.F. Al-Anazi and I.D. Gates

Abstract Accurate prediction of rock elastic properties is essential for wellbore
stability analysis, hydraulic fracturing design, sand production prediction and
management, and other geomechanical applications. The two most common
required material properties are Poisson’s ratio and Young’s modulus. These elastic
properties are often reliably determined from laboratory tests by using cores
extracted from wells under simulated reservoir conditions. Unfortunately, most
wells have limited core data. On the other hand, wells typically have log data. By
using suitable regression models, the log data can be used to extend knowledge of
core-based elastic properties to the entire field. Artificial neural networks (ANNs)
have proven to be successful in many reservoir characterization problems. Although
nonlinear problems can be well resolved by ANN-based models, extensive
numerical experiments (training) must be done to optimize the network structure. In
addition, generated regression models from ANNs may not perfectly generalize to
unseen input data. Recently, support vector machines (SVMs) have proven suc-
cessful in several real-world applications for its potential to generalize and converge
to a global optimal solution. SVM models are based on the structural risk mini-
mization principle that minimizes the generalization error by striking a balance
between empirical training error and learning machine capacity. This has proven
superior in several applications to the empirical risk minimization (ERM) principle
adopted by ANNs that aims to reduce the training error only. Here, support vector
regression (SVR) to predict Poisson’s ratio and Young’s modulus is described. The
method uses a fuzzy-based ranking algorithm to select the most significant input
variables and filter out dependency. The learning and predictive capabilities of the
SVR method is compared to that of a backpropagation neural network (BPNN). The
results demonstrate that SVR has similar or superior learning and prediction
capabilities to that of the BPNN. Parameter sensitivity analysis was performed to
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investigate the effect of the SVM regularization parameter, the regression tube
radius, and the type of kernel function used. The result shows that the capability of
the SVM approximation depends strongly on these parameters.

Keywords Poisson’s ratio � Young’s modulus � Artificial neural networks �
Support vector machines � Log data � Core data

Nomenclature
AAE Absolute average error
b Bias term
BPNN Backpropagation neural networks
C Regularization parameter
E Young’s modulus, psi
f An unknown function
g Overburden stress, psi
G Shear modulus, psi
h Vapnik–Chervonenkis dimension
K Bulk modulus, psi
L Lagrangian equation for a dual programming problem or Loss function
MAE Maximum absolute error
r Correlation coefficient
RBF Radial basis function
RMSE Root mean square error
Remp Empirical risk
R Structural risk
P Pressure, psi
SVMs Support vector machines
SVR Support vector regression
x Input variable
y Output variable
ŷ Estimated output value
v Velocity
w Weight vector

Greek Symbols
α,α* Lagrangian multiplier to be determined
ε Error accuracy/strain
u Porosity, fraction
u Mapping function from input space into a high-dimensional feature space
η,η* Lagrangian multipliers
κ, ϑ Sigmoid function parameters
μ Poisson’s ratio, dimensionless
q Density, g/cc
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σ Stress/variance
σ2 Standard deviation
ξ,ξ* Slack variables

Subscripts and Superscripts
a Axial
b Bulk
h Horizontal
k, l Indices
N Number of samples
n Input space dimension
p Pore/compressional
r Radial
s Shear

1 Introduction

Elastic properties of reservoir rock are important geomechanical data required in
hydraulic fracture design, wellbore stability analysis, reservoir dilation, surface
heave (especially for high-pressure processes such as cyclic steam stimulation), and
sand production anticipation as in cold heavy oil production. Rock properties
including Poisson’s ratio, μ, shear modulus, G, Young’s modulus, E, and bulk
modulus, K, can be determined under static test conditions by using triaxial stress
cells or under dynamic conditions by measuring compressional and shear velocities
and density of reservoir core samples measured by acoustic or sonic logging tools
(Gatens et al. 1990; Barree et al. 2009; Khaksar et al. 2009).

Core-measured elastic properties of reservoir rock obtained from detailed lab-
oratory analysis are often considered to be the most direct and accurate method
(Ameen et al. 2009). However, due to the costs of obtaining and handling core
samples, most often, a limited number of samples are analyzed and often correla-
tions are established between core and log data to estimate elastic properties of
other reservoir rocks where core data are not available. Acoustic log measurements
provide compressive and shear wave velocities which can be combined with density
log and elasticity theory to estimate elastic properties of reservoir rock (Gatens et al.
1990; Abdulraheem et al. 2009). In complex reservoirs, acoustic theory may be
insufficient to describe its actual behavior, thus limiting the accuracy of the derived
rock correlations (Barree et al. 2009; Khaksar et al. 2009). Therefore, an integrated
knowledge of the logging tool responses and understanding of underlying geology
in addition to the use of advanced statistical techniques are necessary to determine
an interpretation model that can effectively map the dependency between well log
data and elastic rock properties. Due to several different factors that control log
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responses and the construction of the mapping function between log data and the
elastic properties, this can be a challenging task since the mapping can be nonlinear.
To deal with this nonlinearity, artificial neural networks (ANNs), fuzzy logic (FL),
and functional networks (FN) approaches to predict Poisson’s ratio and Young’s
modulus have been used in the literature with varying degrees of success (Wi-
darsono et al. 2001; Abdulraheem et al. 2009).

A further complication is that the data available to train artificial intelligence
methods is scarce. The smaller the training data set, the greater the risk of poor
estimation of rock properties. This is especially the case if data are missing from
specific intervals along a well. Recently, support vector machines (SVMs) have
been recognized as an efficient and accurate tool with strong learning and prediction
capabilities (Al-Anazi and Gates 2010a, b, c, d). The SVM learning machine
approach is novel and is based on the principle of structural risk minimization
(SRM), which aims to minimize an upper bound of the generalization error. On the
other hand, ANNs follow the principle of empirical risk minimization (ERM) which
attempts to minimize the training error. The SRM principle is based on bounding
the generalization error by minimizing the sum of the training error and a confi-
dence interval term depending on the Vapnik–Chervonenkis (VC) dimension
(Vapnik and Chervonenkis 1974; Vapnik 1982, 1995). To accomplish this, in
support vector regression (SVR), a regularization term is used to determine the
trade-off between the training error and VC confidence term. Consequently, the
SVM approach provides a promising tool to generalize to unseen data. To capture
nonlinear behavior of the mapping, kernel functions are used to project the input
space into a higher dimensional feature space where a linear regression hyperplane
is devised (Kecman 2005).

The accuracy and robustness of the SVM approach has been robustly demon-
strated in many real-world applications; for example, face recognition, object
detection, hand writing recognition, text detection, speech recognition and predic-
tion, porosity and permeability determination from log data, and lithology classi-
fication (Li et al. 2000; Lu et al. 2001; Choisy and Belaid 2001; Gao et al. 2001;
Kim et al. 2001; Ma et al. 2001; Van Gestel et al. 2001; Al-Anazi and Gates 2010a,
b, c, d). In this study, the potential of SVR to establish an interpretation model that
relates core and log data to elastic rock properties is evaluated from data originating
from a well in a hydrocarbon reservoir. Two separate interpretation models were
constructed: one for Poisson’s ratio and the other for Young’s modulus. The first
model for Poisson’s ratio was developed by using the density and compressive and
shear wave velocities, whereas the second one for Young’s modulus was devised by
using variables chosen from a fuzzy selection scheme. For the well used in this
study, the available core-derived input variables are porosity, minimum horizontal
stress, pore pressure, and overburden stress, whereas the available well log data
include bulk density and compressional and shear velocities.

In this research, the performance of SVM was compared with that of a back-
propagation neural network (BPNN) to evaluate its potential to predict elastic rock
properties under scarce data conditions. For SVM nonlinear approximation, a radial
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basis function (RBF) kernel function is used. During the machine learning stage of
the SVM, the kernel function parameter, insensitivity tube parameter, ε, and penalty
parameter were selected through grid search and pattern search schemes. To avoid
overfitting the data, a ten-fold cross-validation was used to select the optimal
parameter to control the trade-off between the bias and variance of the model. Error
analysis was done by examining the correlation coefficient, r, root mean square
error (RMSE), absolute average error (AAE), and maximum absolute error (MAE)
between target and predicted values. The study also investigated the impact of the
penalty parameter, insensitivity tube radius, and the type of kernel function on the
SVM approximation capability.

2 Backpropagation Neural Network (BPNN)

Backpropagation multilayer perceptron neural networks (BPNN) have been
extensively used to interpret rock physical and elastic properties in hydrocarbon
reservoirs (Rogers et al. 1995; Huang et al. 1996, 2001; Fung et al. 1997; Helle and
Ursin 2001; Helle and Bhatt 2002; Abdulraheem et al. 2009). BPNN can approx-
imate any continuous nonlinear function over a compact interval to any desirable
accuracy depending on the number of hidden layers. They use activation functions
in the processing neurons to facilitate the modeling of nonlinear mapping functions
(Suykens et al. 2002). During learning, in BPNNs, the input patterns are propagated
forward through hidden layers toward the output, while error is backpropagated
toward the input layer. Here, a conjugate gradient algorithm is used to train the
BPNN by minimizing the square of the residuals between target and training data.
One well-known issue with such training algorithms is that it may become trapped
in local minima since it is sensitive to the starting weight values (Hastie et al. 2001).
Here, an Nguyen–Widrow algorithm was used to select the initial range of weight
values and the conjugate gradient algorithm was then used to optimize the weights.
Optimization is done several times with different random weight values to ensure
convergence to the global optimal solution. One shortcoming of BPNNs is its
susceptibility to overfit training data which results in poor generalization capability
to interpret new input data. In this work, three layers (input, hidden, and output)
were used with neurons being automatically optimized. A ten-fold cross-validation
technique was used to stop training (DTREG v9.1 2009).

3 Support Vector Regression

SVMs are learning algorithms originally developed to solve classification problems.
By using Vapnik’s ε-insensitive loss function, SVMs can be used to solve nonlinear
regression problems by using kernel functions (Vapnik 1995). Given a data set
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(yk, xk) of dimension N where yk is the output value at input variable values
expressed in the vector xk, the relationship between the input and output variables
can be expressed by the following linear regression function:

f xkð Þ ¼ wTxk þ b ð1Þ

where w is a set of weights and b is an offset or bias. The empirical risk (to be
minimized) can be expressed by

Remp ¼ 1
N

XN
k¼1

v yk � wTxk � b
� � ð2Þ

where v(·) is the Vapnik’s ε-insensitive loss function defined by

v y� f ðxÞð Þ ¼ 0 if y� f ðxÞj j � e
y� f ðxÞj j � e otherwise

�
ð3Þ

The optimization problem in the primal space that has to be solved to achieve an
optimal linear function in terms of the weights, w, and bias, b, is given by

min JP wð Þ ¼ 1
2
wTw ð4Þ

subject to
yk � wTxk � b� e; k ¼ 1; . . .;N

wTxk þ b� yk � e; k ¼ 1; . . .;N

(

The value of ε in Vapnik’s loss function, v, characterizes the radius of an
approximation tube which in turn controls the accuracy of the model. Slack vari-
ables, nk; n

�
k for k ¼ 1; . . .;N, are introduced to the optimization problem given by

Eq. 4:

min JP w; n; n�ð Þ ¼ 1
2
wTwþ C

XN
k¼1

nK þ n�K
� � ð5Þ

subject to
yk � wTxk � b� eþ nk; k ¼ 1; . . .;N
wTxk þ b� yk � eþ n�k ; k ¼ 1; . . .;N
nk; n

�
k � 0; k ¼ 1; . . .;N

8<
:

The regularization (penalty) constant, C, is positive and determines how large
the deviation from the desired accuracy is tolerated. The Lagrangian form of the
problem is expressed by
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L w; b; n; n�; a; a�; g; g�ð Þ ¼ 1
2
wTwþ C

XN
k¼1

nk þ n�k
� ��XN

k¼1

ak eþ nk � yk þ wTxk þ b
� �

�
XN
k¼1

a�k eþ n�k þ yk � wTxk � b
� ��XN

k¼1

gknk þ g�kn
�
k

� �

ð6Þ

where ak; a�k ; gk; g
�
k are positive Lagrange multipliers. The solution is obtained by

solving a saddle point problem: The Lagrangian, L, must be minimized with respect
to w; b; n; n� and maximized with respect to a; a�; g; g�. The following conditions
are satisfied at the saddle point:

@L
@w

¼ 0 ! w ¼
XN
k¼1

ak � a�k
� �

xk

@L
@b

¼ 0 !
XN
k¼1

ak � a�k
� �

xk ¼ 0

@L
@nk

¼ 0 ! C � ak � gk ¼ 0

@L
@n�k

¼ 0 ! C � a�k � g�k ¼ 0

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð7Þ

The primal optimization problem can be re-formulated as a dual problem as
follows:

max JD a; a�ð Þ ¼ � 1
2

XN
k;l¼1

ak � a�k
� �

al � a�l
� �

xTk xl

� e
XN
k¼1

ak þ a�k
� �þXN

k¼1

yk ak � a�k
� � ð8Þ

subject to
PN

k¼1 ak � a�k
� �

ak; a�k 2 0; c½ �
�

By solving Eq. 8, the optimal Lagrange multiplier pairs can be found and the
linear regression is then given by

f ðxkÞ ¼
XN
k¼1

ak � a�k
� �

xTk xk þ b ð9Þ

with
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w ¼
XN
k¼1

ak � a�k
� �

xk ð10Þ

The training points with nonzero αk values allow the calculation of the bias term,
b (Kecman 2005). Generalization of the SVM approach to nonlinear regression
estimation is accomplished by using kernel functions. Typical kernel functions that
are used are linear ones, Gaussian RBF, and polynomial and sigmoid functions as
listed in Table 1. In the primal weight space, the regression model is given by

f xð Þ ¼ wTuðxÞ þ b ð11Þ

with given training data xk; ykf gNk¼1 and uð�Þ: Rn ! Rnh is a kernel mapping
function which projects the input space to a higher dimensional feature space. The
primal problem is then formulated as follows:

min JP w; n; n�ð Þ ¼ 1
2
wTwþ C

XN
k¼1

nk þ n�k
� � ð12Þ

subject to
yk � wTuðxkÞ � b� eþ nk; k ¼ 1; . . .; k
wTuðxkÞ þ b� yk � eþ n�k ; k ¼ 1; . . .; k
nk; n

�
k � 0; k ¼ 1; . . .;N

8<
:

The dual problem is then formulated as follows:

max JD a; a�ð Þ ¼ � 1
2

XN
k;l¼1

ak � a�k
� �

al � a�l
� �

K xk; xlð Þ

� e
XN
k¼1

ak þ a�k
� �þXN

k¼1

yk ak � a�k
� � ð13Þ

subject to

XN
k¼1

ak � a�k
� � ¼ 0

ak; a
�
k 2 0; c½ �

8><
>:

Table 1 Common kernel
function and corresponding
mathematical expression

Kernel function Mathematical expression

Linear k xi; xð Þ ¼ xi; xh i
Gaussian radial basis
function k xi; xð Þ ¼ e�

xi�xk k2
2r2

Sigmoid k xi; xð Þ ¼ tanh j xi; xh i þ #ð Þ
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By setting K xk; xlð Þ ¼ uðxkÞTuðxlÞ for k; l ¼ 1; . . .;N, the explicit calculation of
the kernel function is avoided. The nonlinear regression representation of the dual
problem is given by

f ðxÞ ¼
XN
k¼1

ak � a�k
� �

Kðx; xkÞ þ b ð14Þ

where ak; a�k are the solution of Eq. 13 and the bias term b is calculated as an
average value over the support vectors corresponding to the training data set. The
solution to Eq. 13 is unique and is a global minimum so long as the kernel function
is positive definite (Suykens et al. 2002).

4 Bounds on the Generalization Error

The VC theory underlying the SVM formulation characterizes the generalization
error instead of training (empirical) error. Given a set of functions f(x, θ) charac-
terized by different adjustable parameter vector θ with a training data set
xk; ykð Þf gNk¼1 where xk 2 RN�n and yk 2 Rn. The empirical error is defined as

follows:

Remp hð Þ ¼ 1
N

XN
k¼1

yk � f x; hð Þð Þ2 ð15Þ

whereas the generalization error is defined by

R hð Þ ¼
Z

yk � f x; hð Þð Þ2p x; yð Þdxdy ð16Þ

measures the error over all patterns that are extracted from an underlying proba-
bility distribution p(x, y) which is typically unknown in practical applications.
However, from Eqs. 15 and 16, the upper bound on the generalization error is given
as follows:

Table 2 Error measures used
for accuracy assessment Accuracy measure Mathematical expression

Correlation coefficient, r
Pl

i¼1
yi��yið Þ ŷi��̂yið ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPl

i¼1
yi��yið Þ2

PNP
i¼1

ŷi��̂yið Þ2
q

Root mean square error,
RMSE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
l

Pl
i¼1 yi � ŷið Þ2

q

Average absolute error, AAE 1
l

Pl
i¼1 yi � ŷij j

Maximum absolute error,
MAE

max yi � ŷij j; i ¼ 1; . . .; l
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R hð Þ�Remp hð Þ þ 1

1� c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h ln aN=hð Þþ1ð Þ�ln gð Þ

N

q
0
B@

1
CA

þ

ð17Þ

where h is the VC dimension of the set of approximating functions and the notation
ðxÞþ indicates that ðxÞþ ¼ x if x[ 0 and 0 otherwise. The upper bound given by
Eq. 17 holds for probability 1� g. This is the probability (or level of confidence) to
approximate functions at which the generalization bound holds (Schölkopf and
Smola 2002; Kecman 2005). The confidence term (second one in Eq. 17) also
depends on the VC dimension which in turn characterizes the capacity of the set of
approximating functions which in turns reflects model complexity (Vapnik 1998;
Schölkopf and Smola 2002; Suykens et al. 2002). In this research, a = c = 1
(Cherkassky and Shao 2001).

5 SVR Parameter and Model Selection

To determine the optimal set of parameters (C, ε, and kernel function shape factors,
e.g., the variance of the Gaussian RBF) for the SVR model, iterative grid and
pattern searches are used. The grid search aims to use values extracted from a
specified range controlled by geometric steps, whereas pattern search is based on
the idea that a range is specified and that the search starts at the center of the range
and takes trial steps in each direction for each parameter. If the parameters at the
new point enhance the fit of the regression function, the search center moves to the
new point and the process is repeated. Otherwise, the step size is reduced and the
search is resumed. This iterative process is stopped after the step size drops below a
pre-defined tolerance. Grid search is computationally demanding since the model
must be evaluated at many points within the grid for each parameter. This limitation
may be exaggerated if cross-validation has been adopted as a model selection
technique. Pattern search requires far fewer evaluations of the model than that of
grid search. However, pattern search can potentially converge to a local instead of a
global optimum. Here, both search methods are used to overcome the shortcomings
of each method: The optimization process starts with grid search seeking to locate a
region close to the global optimal point. Next, pattern search is done over a narrow
range that surrounds the best point located by the grid search.

6 Elastic Properties Prediction Methodology

6.1 Well Log and Core Data Description

Figure 1 displays a subset of the core and log data versus depth used in this study.
The input variables used to model the Poisson’s ratio, μ, and Young’s modulus, E,

176 A.F. Al-Anazi and I.D. Gates



at each depth, xk, are core-derived porosity ϕ, minimum horizontal stress σh, pore
pressure Pp, and overburden stress g, and log data including bulk density ρb,
compressional wave velocity vp, and shear wave velocity vs. Elastic rock properties
were extracted from samples tested in a laboratory-based triaxial pressure test cell.
The input data set consists of 601 multidimensional data points spanning over
300 ft. of wellbore length. To evaluate the methods, the input data are randomly
separated into training subsets consisting of 10, 20, 30, 40, 50, and 60 % of the total
data set. The complements of the training data subsets are the testing subsets.

Acoustic logging tools measure the characteristic propagation speed of the
P (compression) and S (shear) waves which are related to the elastic properties of
the formation (Serra 1984). For core samples, elastic rock properties are determined
from the stress–strain relationship that results from changes of stress with changes
of the core strain (Montmayeur and Graves 1985, 1986):

E ¼ dra
der

where ra is the axial stress applied to the core sample and er is the radial strain, and

l ¼ der
dea

where l is the Poisson’s ratio and ea is the axial strain.

Fig. 1 Subset of raw log data
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7 Modeling of the Poisson’s Ratio, μ

Feature Selection

Here, a model is developed that uses core-derived porosity ϕ, minimum horizontal
stress σh, pore pressure Pp, and overburden stress g, and log data including bulk
density ρb, compressional wave velocity vp, and shear wave velocity vs. Following
Al-Anazi and Gates (2009), a Two-stage fuzzy ranking algorithm is used to identify
information-rich core and log measurements and filter out data dependencies. The
result of fuzzy ranking analysis, listed in Table 3, shows that the significant input
variables, in order of importance, are σh, vs, vp, ρb, Pp, and ϕ. Therefore, these
variables are the best correlators of Poisson’s ratio and will be used in SVM model
construction.

Poisson’s Ratio Training and Prediction

The BPNN and SVR methods were compared by using different data training
fractions (10, 20, 30, 40, 50, and 60 %) of the total available data to examine the
impact of data scarcity on the predictive capabilities of the generated models. For
example, a 10 % data training fraction means that 10 % of the total data available is
selected randomly and used to train the model. The remaining 90 % of the data are
used to test the correlation. For the SVR model, the Gaussian RBF kernel function
was used.

Table 4 lists the error measures for the BPNN model results at different data
training fractions when it is used to reproduce the training data set values. Learning
performance is measured by correlation coefficient (r) and error statistics including
RMSE, average absolute error (AAE), and MAE as defined in Table 2. The results
reveal that the correlation coefficient is low and that as the data training fraction is
enlarged, the capability of the BPNN to reproduce the training data set does not
improve; in other words, the errors do not diminish as the training fraction grows.
Table 5 lists the results of the SVR method. Even with training fraction as low as
10 %, the correlation coefficient is essentially equal to 1 and the errors are much
smaller than that of the BPNN. In other words, the SVR method fully reproduces
the training data set. These results demonstrate that for this data set, the SVR has
superior learning capability to that of the BPNN.

Table 6 lists the error measures for the BPNN model results at different training
fractions when it is used to predict the testing data set. The results show that the
method does not provide a good prediction of the testing data set. The SVR results
for the predicted testing data set are presented in Table 7. The results demonstrate
an excellent prediction performance by the SVM revealing that the trained corre-
lation models have captured the underlying relationships and have the potential to
generalize accurately to new data. It can also be observed that consistent prediction
capabilities are maintained over all data training fractions.
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Table 3 Two-stage fuzzy ranking analysis for Poisson’s ratio

Fuzzy curves ranking for Poisson’s ratio data

Input x j Pci Pci=PcR Pyic Pvic

σh 0.6494 0.6512 0.6812 0.0489

vs 0.8643 0.8667 0.8776 0.0154

vp 0.8748 0.8773 0.8859 0.0127

ϕ 0.9194 0.9220 0.9279 0.0092

ρb 0.9540 0.9567 0.9723 0.0192

Pp 0.9740 0.9767 0.9794 0.0056

g 0.9740 0.9767 0.9794 0.0056

Second fuzzy surfaces ranking performance for Poisson’s ratio data

Input x j Ps1;j Ps1;j=Ps1;R Ps1;j=Pc1 Py1;js
Pv1;js

vs 0.3530 0.5475 0.5436 0.4110 0.1642

ρb 0.5759 0.8931 0.8869 0.6169 0.0711

Pp 0.5997 0.9300 0.9235 0.6496 0.0831

g 0.5997 0.9300 0.9235 0.6496 0.0831

ϕ 0.6282 0.9742 0.9674 0.6685 0.0641

vp 0.6340 0.9832 0.9763 0.6763 0.0667

Third fuzzy surfaces ranking performance for Poisson’s ratio data

Input x j Ps2;j Ps2;j=Ps2;R Ps2;j=Pc2 Py2;js
Pv2;js

vp 0.6325 0.7365 0.7319 0.6665 0.0538

ϕ 0.7135 0.8308 0.8256 0.7468 0.0467

g 0.7878 0.9173 0.9116 0.8048 0.0215

Pp 0.7878 0.9173 0.9116 0.8048 0.0215

ρb 0.8085 0.9414 0.9355 0.8436 0.0434

Fourth fuzzy surfaces ranking performance for Poisson’s ratio data

Input x j Ps3;j Ps3;j=Ps3;R Ps3;j=Pc3 Py3;js
Pv3;js

ρb 0.8380 0.9621 0.9578 0.8580 0.0239

Pp 0.8489 0.9746 0.9703 0.8708 0.0258

g 0.8489 0.9746 0.9703 0.8708 0.0258

ϕ 0.8495 0.9753 0.9710 0.8665 0.0200

Fourth fuzzy surfaces ranking performance for Poisson’s ratio data

Input x j Ps5;j Ps5;j=Ps5;R Ps5;j=Pc5 Py5;js
Pv5;js

Pp 0.8789 0.9294 0.9212 0.9190 0.0457

g 0.8789 0.9294 0.9212 0.9190 0.0457

ϕ 0.8794 0.9299 0.9218 0.9000 0.0235

Fifth fuzzy surfaces ranking performance for Poisson’s ratio data

Input x j Ps6;j Ps6;j=Ps6;R Ps6;j=Pc6 Py6;js
Pv6;js

ϕ 0.8461 0.8785 0.8687 0.8768 0.0363

On Support Vector Regression to Predict Poisson’s Ratio … 179



Table 4 Comparison of partition-based training error performance of BPNN using minimum
horizontal stress, P and S wave velocities, RHOB, pore pressure, and porosity for prediction of
Poisson’s ratio

10 % 20 % 30 % 40 % 50 % 60 %

r 0.6375 0.5394 0.5269 0.5940 0.5202 0.5628

RMSE 0.0291 0.0278 0.0289 0.0266 0.0295 0.0261

AAE 0.0239 0.0227 0.0224 0.0212 0.0229 0.0203

MAE 0.0852 0.0847 0.0984 0.0852 0.1043 0.1055

Table 5 Comparison of partition-based training error performance of SVR using minimum
horizontal stress, P and S wave velocities, RHOB, pore pressure, and porosity for prediction of
Poisson’s ratio

10 % 20 % 30 % 40 % 50 % 60 %

r 1.000 1.000 1.000 1.000 1.000 1.000

RMSE 0.0003 0.0003 0.0002 0.0003 0.0002 0.0002

AAE 0.0003 0.0002 0.0002 0.0002 0.0002 0.0002

MAE 0.0006 0.0006 0.0008 0.0012 0.0006 0.0006

Table 6 Comparison of partition-based testing error performance of BPNN using minimum
horizontal stress, P and S wave velocities, RHOB, pore pressure, and porosity for prediction of
Poisson’s ratio

10 % 20 % 30 % 40 % 50 % 60 %

r 0.5247 0.5330 0.5554 0.5005 0.5519 0.4997

RMSE 0.0277 0.0216 0.0271 0.0286 0.0256 0.0294

AAE 0.0214 0.0216 0.0213 0.0220 0.0204 0.0231

MAE 0.1062 0.1004 0.1050 0.1061 0.1014 0.1014

Table 7 Comparison of partition-based testing error performance of SVR using minimum
horizontal stress, P and S wave velocities, RHOB, pore pressure, and porosity for prediction of
Poisson’s ratio

10 % 20 % 30 % 40 % 50 % 60 %

r 0.9992 0.9998 1.000 0.9999 1.000 1.000

RMSE 0.0014 0.0007 0.0003 0.0004 0.0002 0.0003

AAE 0.0007 0.0004 0.0002 0.0003 0.0002 0.0002

MAE 0.0090 0.0051 0.0021 0.0030 0.0008 0.0013
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8 Modeling of Young’s Modulus, E

Feature Selection

Similar to the analysis on Poisson’s ratio described above, a two-stage fuzzy
ranking analysis was done to identify the most important variables to predict
Young’s modulus. The results, listed in Table 8, reveal that the ranking of input
data, in order of importance, are vs, ρb, vp, Pp, ϕ, g, and σh. As expected, the ranking
of the variables make it clear that the acoustic and density logs are most important
with respect to the Young’s modulus.

Young’s Modulus Training and Prediction

As above, Gaussian RBFs was the kernel function used in the SVM nonlinear
regression. Tables 9 and 10 list the results of the learning capabilities (the capability
of the methods to reproduce the training data set) of the BPNN and SVR,
respectively, at different training data fractions. For the BPNN, the results show that
the correlation coefficient is high for all training data fractions. However, the RMSE
and AAE do not exhibit a strong reducing trend as the training data fraction is
enlarged and the MAE, in fact, shows a growth trend as the training data fraction
increases. For the SVR, the correlation coefficients are high and are similar to that
of the BPNN, but there is a decreasing trend of the RMSE, AAE, and MAE as the
size of the training data fraction grows. Beyond 30 % training data set, all of the
error measures of the SVR are lower than that of the BPNN. The results suggest that
the SVM approach has higher learning capability than that of the BPNN for the data
set used here.

Tables 11 and 12 list the correlation coefficient and error measures for the BPNN
and SVR methods, respectively, at different training data fraction to predict the
testing data subset. The results reveal excellent prediction performance can be
observed by both techniques in terms of correlation coefficient. However, the
analysis of the error performance indicates that the errors of the trained SVR models
decline faster versus the size of the training data fraction than that of the BPNN and
that the errors are lower than that of the BPNN when the training data fraction is
40 % or higher.

9 SVM Parameter Sensitivity Analysis

The generalization capability of SVMs depends on the regularization parameter, C,
(see Eq. 5) that controls the trade-off between the training error (empirical error)
and the VC dimension (complexity) of the regression model. If the value of C is
very small, the training error is the primary error that is minimized, whereas if its
value is very large, the estimate on the prediction error dominates and the training
error plays a lesser role to construct the SVR model. Additional inputs of the SVR
model include the cost function parameter (the regression tube radius ε of the
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Table 8 Two-stage fuzzy ranking analysis for Young’s modulus

Fuzzy curves ranking for Young’s modulus data

Input x j Pci Pci=PcR Pyic Pvic

vs 0.2484 0.2507 0.3054 0.2295

vp 0.4010 0.4048 0.4620 0.1521

ρb 0.4676 0.4720 0.5206 0.1135

ϕ 0.4868 0.4913 0.5468 0.1234

σh 0.5026 0.5073 0.5589 0.1120

Pp 0.5848 0.5903 0.6181 0.0571

g 0.5848 0.5903 0.6181 0.0571

Second fuzzy surfaces ranking performance for Young’s modulus data

Input x j Ps1;j Ps1;j=Ps1;R Ps1;j=Pc1 Py1;js
Pv1;js

ρb 0.1344 0.5432 0.5412 0.1823 0.3559

vp 0.1447 0.5847 0.5826 0.1967 0.3596

g 0.1497 0.6051 0.6029 0.1993 0.3307

Pp 0.1497 0.6051 0.6029 0.1993 0.3307

σh 0.1514 0.6117 0.6095 0.2065 0.3642

ϕ 0.1567 0.6332 0.6309 0.2122 0.3540

Third fuzzy surfaces ranking performance for Young’s modulus data

Input x j Ps3;j Ps3;j=Ps3;R Ps3;j=Pc3 Py3;js
Pv3;js

vp 0.2415 0.5325 0.5166 0.3052 0.2636

Pp 0.3136 0.6912 0.6706 0.3856 0.2298

g 0.3136 0.6912 0.6706 0.3856 0.2298

σh 0.3141 0.6924 0.6717 0.3842 0.2231

ϕ 0.3551 0.7827 0.7594 0.4259 0.1995

Fourth fuzzy surfaces ranking performance for Young’s modulus data

Input x j Ps2;j Ps2;j=Ps2;R Ps2;j=Pc2 Py2;js
Pv2;js

Pp 0.2770 0.6983 0.6909 0.3477 0.2551

g 0.2770 0.6983 0.6909 0.3477 0.2551

ϕ 0.3054 0.7698 0.7616 0.3808 0.2469

σh 0.3436 0.8661 0.8569 0.4229 0.2307

Fourth fuzzy surfaces ranking performance for Young’s modulus data

Input x j Ps6;j Ps6;j=Ps6;R Ps6;j=Pc6 Py6;js
Pv6;js

ϕ 0.2909 0.5072 0.4975 0.3645 0.2531

σh 0.3599 0.6276 0.6155 0.4370 0.2140

g 0.5175 0.9023 0.8850 0.5717 0.1046

Fourth fuzzy surfaces ranking performance for Young’s modulus data

Input x j Ps4;j
Ps4;j

Ps4;R

Ps4;j

Pc4
Py4;js

Pv4;js

g 0.2909 0.6115 0.5977 0.3645 0.2531

σh 0.3595 0.7556 0.7385 0.4371 0.2160

Fifth fuzzy surfaces ranking performance for Young’s modulus data

Input x j Ps7;j Ps7;j=Ps7;R Ps7;j=Pc7 Py7;js
Pv7;js

σh 0.3599 0.6276 0.6155 0.4370 0.2140
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ε-insensitivity cost function) and the type of kernel function used and its associated
input parameters (for example, the variance of the Gaussian RBF kernel function).
In the above analysis, these parameters were chosen by using the cross-validation
method. Here, the impact of these parameters on the SVR model is investigated.
Here, 10 % data training fraction subset (with 90 % remaining for testing) is used.

Table 9 Comparison of partition-based training error performance of BPNN using minimum
horizontal stress, P and S wave velocities, pore pressure, overburden stress, and porosity for
prediction of Young’s modulus

10 % 20 % 30 % 40 % 50 % 60 %

r 0.9995 0.9995 0.9996 0.9995 0.9995 0.9995

RMSE 0.2336 0.2415 0.2635 0.2705 0.2864 0.2594

AAE 0.1903 0.1806 0.1990 0.2032 0.2181 0.1792

MAE 0.5223 0.9198 1.2780 1.2645 1.4517 2.0796

Table 10 Comparison of partition-based training error performance of SVR using minimum
horizontal stress, P and S wave velocities, pore pressure, overburden stress, and porosity for
prediction of Young’s modulus

10 % 20 % 30 % 40 % 50 % 60 %

r 0.9944 0.9993 0.9999 0.9999 0.9999 1.0000

RMSE 0.9389 0.3098 0.1619 0.1390 0.0954 0.0759

AAE 0.5270 0.1584 0.0845 0.0764 0.0460 0.0419

MAE 4.6358 1.7137 0.9692 1.0244 1.1114 0.4942

Table 11 Comparison of partition-based testing error performance of BPNN using minimum
horizontal stress, P and S wave velocities, pore pressure, overburden stress, and porosity for
prediction of Young’s modulus

10 % 20 % 30 % 40 % 50 % 60 %

r 0.9981 0.9989 0.9997 0.9987 0.9994 0.9994

RMSE 0.5426 0.4209 0.249 0.4658 0.2922 0.3159

AAE 0.3421 0.2731 0.1964 0.2609 0.2337 0.2002

MAE 4.0785 3.2514 1.3903 3.4581 1.5281 2.0031

Table 12 Comparison of partition-based testing error performance of SVR using minimum
horizontal stress, P and S wave velocities, pore pressure, overburden stress, and porosity for
prediction of Young’s modulus

10 % 20 % 30 % 40 % 50 % 60 %

r 0.9905 0.9986 0.9996 0.9994 0.9998 0.9999

RMSE 1.5067 0.5016 0.2405 0.3153 0.1547 0.1445

AAE 0.922 0.2747 0.1337 0.1378 0.0764 0.0786

MAE 7.5939 3.596 1.9554 2.2864 1.4729 1.0244
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10 Impact of C on SVM Regression Performance

The effect of the value of C on the SVR training regression model for Poisson’s ratio
and Young’s modulus were investigated with RBF kernel function with both
approximation tube radius ε and the variance of the kernel function σ kept constant at
values selected in the above analysis. Tables 13 and 14 list the training performance
as examined by correlation coefficient and error statistics to predict Poisson’s ratio
and Young’s modulus. The results indicate that the constructed regression model fits
the data perfectly as the values of the regularization parameter, C, increases. The
selection of higher values of C, however, does not always improve performance of
the SVR especially if the data itself does not describe the underlying function that
relates the input vector to the output scalar as would be the case with data polluted
with severe noise. In this case, the SVR would model the noise rather than the true
relationship between the input and output data.

11 Impact of ε on SVM Regression Performance

The radius of the regression tube, ε, within which the regression function must lay,
is a measure of the error tolerance of the predictive capability of the regression
model. If a predicted value lies within the tube radius, that is, its absolute value is
less than ε and the loss (error) is set equal to zero. For a predicted value lying
outside the ε-tube, the loss (error) equals the difference between the predicted value
and the radius of the tube ε. Here, to investigate the effect of the regression tube
radius on the capability of the SVR to generalize to unseen data, the regularization

Table 13 Comparison of partition-based training error performance of SVM over different
regularization constant, C values for prediction of Poisson’s ratio (σ = 0.1877, ε = 9 × 10−5)

1 × 10−4 1 × 10−3 1 × 10−2 1 × 10−1 1 1 × 101 1 × 102

r 0.6849 0.6849 0.7297 0.9865 0.9994 0.9999 1.0000

RMSE 0.0356 0.0351 0.0312 0.0092 0.0014 0.0004 0.0003

AAE 0.0287 0.0283 0.0250 0.0067 0.0009 0.0003 0.0003

MAE 0.0964 0.0959 0.0895 0.0292 0.0067 0.0010 0.0006

Table 14 Comparison of partition-based training error performance of SVM over different
regularization constant, C values for prediction of Young’s modulus (σ = 0.1208, ε = 4 × 10−5)

1 × 103 1 × 104 1 × 105 1 × 106 1 × 107 1 × 108 1 × 109

r 0.0000 0.7908 0.8246 0.9331 0.9944 0.9995 1.0000

RMSE 7.5444 7.4695 6.8751 3.8890 0.9389 0.2379 0.0432

AAE 5.8183 5.7562 5.2528 2.8527 0.5270 0.1476 0.0262

MAE 25.0131 24.7374 21.9113 12.1491 4.6358 0.9137 0.2444
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parameter, C, and the variance, σ, of the RBF kernel function were fixed at the
values determined above. The results listed in Tables 15 and 16 reveal that the
constructed training model of Poisson’s ratio and Young’s modulus fits perfectly
the data as the values of radius of the regression tube decreases as indicated by the
correlation coefficient and error statistics. On the contrary, as the size of the
insensitivity tube increases, the accuracy of the prediction model drops. The input
data for the Poisson’s ratio and Young’s modulus data are quite clustered, and there
are few outliers. As a result, when the radius of the regression tube enlarges, a fewer
number of training points is used, thus the number of support vectors drop, and
thus, the quality of the SVR model degrades. A further increase in the radius causes
the SVR model to overshoot the test data. The results reveal that an increase in the
radius of the insensitivity tube has a smoothing effect on modeling, whereas a
decrease in the size may lead to overfitting the data.

12 Impact of Kernel Function on SVM Regression
Performance

The kernel function is an integral part of the SVM formulation because it is nec-
essary to solve nonlinear regression problems. The kernel function maps the non-
linear input space into a high-dimensional feature space where a linear SVM
formulation can be applied. As such, the kernel function is assumed to have the
capability to provide or approximately provide the nonlinear mapping. Thus, the
choice of the kernel function will depend on the nature of the regression problem
being solved. Here, three kernel functions are investigated including the linear,

Table 15 Comparison of partition-based training error performance of SVM over different
approximation tube radius, ε values for prediction of Poisson’s ratio (σ = 0.1877, C = 45.66)

1 × 10−4 1 × 10−3 1 × 10−2 1 × 10−1

r 1.0000 0.9997 0.9907 0.000

RMSE 0.0003 0.0009 0.0060 0.0378

AAE 0.0003 0.0007 0.0051 0.0319

MAE 0.0005 0.0014 0.0104 0.0776

Table 16 Comparison of partition-based training error performance of SVM over different
approximation tube radius, ε values for prediction of Young’s modulus (σ = 0.1208, C = 1 × 107)

1 × 103 1 × 104 1 × 105 1 × 106 1 × 107

r 0.9944 0.9945 0.9934 0.9155 0.0000

RMSE 0.9389 0.9228 0.9868 3.8853 7.9617

AAE 0.5270 0.5303 0.7088 3.2992 6.0465

MAE 4.6358 4.5669 4.2223 8.4958 22.5317
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sigmoid, and Gaussian RBF functions. The prediction capabilities of SVR approx-
imation models based on these kernels to predict Poisson’s ratio and Young’s
modulus are compared are shown in Figs. 2 and 3, respectively. The corresponding
correlation coefficients and error statistics are listed in Tables 17 and 18. The results
reveal that all three kernel functions exhibit reasonably good capabilities to

Fig. 2 Comparison of SVM-LINEAR, SVM-SIGMOID, and SVM-RBF predictions of Poisson’s
ratio using 10 % of the data for training and 90 % for testing. The dots are data obtained from
triaxial tests of core samples

Fig. 3 Comparison of SVM-LINEAR, SVM-SIGMOID, and SVM-RBF predictions of Young’s
modulus using 10 % of the data for training and 90 % for testing. The dots are data obtained from
triaxial tests of core samples
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approximate the core-measured Poisson’s ratio values. The best results are achieved
with the RBF kernel function. Similarly, all three kernel functions performed well to
predict the core-measured Young’s modulus, but the RBF function performs slightly
better than the linear and sigmoid kernel functions.

13 Conclusions

SVMs integrated with a fuzzy-based curve and surface input variable ranking
analysis has demonstrated its potential applicability to develop interpretation
models of the Poisson’s ratio and Young’s modulus under limited core data con-
ditions. The main conclusions are as follows:

1. The SVM model is easier to construct than that of an artificial neural network
model.

2. The SVMs formulation facilitates unique global solution compared to BPNN
which often suffers multiple local minima.

3. The SVMs formulation offers natural means to deal with sparse data given that
the number of support vectors used is equal to the number of training data
points.

4. The SVMs shows high learning capability for both Poisson’s ratio and Young’s
modulus under the presence of limited core data.

5. The results show that SVR yields a better model to predict Poisson’s ratio than a
backpropagation neural networks model.

Table 17 Comparison of correlation coefficient, RMSE, AAE, and MAE of the errors between
SVM-LINEAR, SVM-SIGMOID, and SVM-RBF predictions of Poisson’s ratio using 10 % of the
data for training and 90 % for testing

Linear Sigmoid RBF

r 0.9935 0.9937 1.0000

RMSE 0.0040 0.0040 0.0003

AAE 0.0029 0.0029 0.0003

MAE 0.0193 0.0184 0.0006

Table 18 Comparison of correlation coefficient, RMSE, AAE, and MAE of the errors between
SVM-LINEAR, SVM-SIGMOID, and SVM-RBF predictions of Young’s modulus using 10 % of
the data for training and 90 % for testing

Linear Sigmoid RBF

r 0.9612 0.9203 0.9905

RMSE 2.8075 4.5299 1.5067

AAE 1.9659 3.3711 0.9219

MAE 11.6000 16.8300 7.6000
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6. The results demonstrate that the prediction errors for the Young’s modulus
obtained from the SVR decrease faster as the training data size grows than that
of the backpropagation neural network.

7. Linear, sigmoid, and Gaussian RBF kernel functions show high prediction
generalizability for Poisson’s ratio and Young’s modulus. The RBF function
exhibits slightly better performance than the other two kernel functions.
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Use of Active Learning Method
to Determine the Presence and Estimate
the Magnitude of Abnormally Pressured
Fluid Zones: A Case Study
from the Anadarko Basin, Oklahoma

Constantin Cranganu and Fouad Bahrpeyma

Abstract We discuss active learning method (ALM) as an artificial intelligent
approach for predicting a missing log (DT or sonic log) when only two other logs
(GR and REID) are present. Applying ALM approach involves three steps: (1)
supervised training of the model, using available GR, REID, and DT logs; (2)
confirmation and validation of the model by blind-testing the results in a well
containing both the predictors (GR, REID) and the target (DT) values; and (3)
applying the predicted model to wells containing the predictor data and obtaining
the synthetic (simulated) DT values. Our modeling approach indicates that the
performance of the algorithm is satisfactory, while the time performance is
significant. The quality of our simulation procedure was assessed by three
parameters, namely mean square error (MSE), mean relative error (MRE), and
Pearson product–momentum correlation coefficient (R). The values obtained for
these three quality-control parameters appear congruent, with the exception of
MRE, regardless of the training set used (reduced vs. complete). ALM performance
was measured also by the time required to attain the desirable outcomes: five depth
levels of investigation took a little more than one minute of computing time during
which MSE dropped significantly. We performed twice the regression analysis:
with and without normalization of input data sets (training well and validation well)
using the procedure indicated by previous works. The results show minimum dif-
ferences in quality assessment parameters (MSE, MRE, and R), suggesting that data
normalization is not a necessary step in all regression algorithms. We employed
both the measured and simulated sonic logs DT to predict the presence and estimate
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the depth intervals where overpressured fluid zone may develop in the Anadarko
Basin, Oklahoma. Based on our interpretation of the sonic log trends, we inferred
that overpressure regions are developing between*1250 and 2500 m depth and the
overpressured intervals have thicknesses varying between *700 and 1000 m.
These results match very well our previous results reported in the Anadarko Basin,
using the same wells, but different artificial intelligent approaches.

Keywords Active learning method � Well logs � Sonic log � Abnormally
pressured zones � Anadarko Basin

1 Introduction

In petroleum geosciences, it is necessary most of the time to characterize pore-fluid
pressures, rock lithologies, and a large number of petrophysical properties of res-
ervoir rocks (porosity, permeability, water/oil saturation, etc.). Those parameters are
best determined by in situ and core measurements. When such measurements are
not available, due to financial, technical, or other impediments, the next best
available way of obtaining those data is using a suite of geophysical and petro-
physical logs.

Common recorded logs, such as gamma ray (GR), dual induction, deep resis-
tivity (REID), density porosity, photoelectric absorption factor (PEF), or self-
potential (SP), provide information about a specific physical characteristic of the
rocks penetrated by and surrounding the borehole (e.g., natural radioactivity con-
tent, electric resistivity, density, mineralogy, etc.). Among various logs recorded by
petroleum industry, the compressional acoustic or sonic log (DT) has been used
many times to predict rock porosity (so-called “acoustic porosity”, Ellis and Singer
(2007)), to evaluate petrophysical properties or to characterize areas containing pore
fluids with abnormal pressure (overpressurized) (Hearst et al. 2000; Cranganu 2007;
Cranganu and Bautu 2010; Cranganu and Breaban 2013).

Despite its proven value in estimating rock porosity, or studying and estimating
the presence of abnormally pressured pore fluids in sedimentary basins containing
oil and gas reservoirs, the sonic log is not always a part of a commonly recorded
well logs. The reasons include lacking a full suite of logs, lacking of data due to
incomplete logging, instrument failure (damage or faulty), or poor-quality record-
ings (Bahrpeyma et al. 2013b; Cranganu and Bautu 2010; Cranganu and Breaban
2013). As a result, some wells may lack the sonic log entirely or the log is only
partially recorded.

To overcome such situations, we propose using a soft computing method—
active learning method (ALM)—to synthesize missing sonic (DT) logs when only
other common logs (e.g., GR and REID) are present. Thus, we will be able to more
effectively map porosity variations, to detect changes in pore-fluid pressure, and to
increase the density of control data in wells without recorded DT.
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As hinted above, a major use of DT logs is determining the presence and
estimating the amplitude of areas with abnormal pore-fluid pressures via effective
rock stress estimations. In other words, the sonic log can be used as a predictor of
pore-fluid pressures because it responds to changes in porosity or compaction
produced when abnormal pore-fluid pressures are present in a sedimentary basin. A
case study from the Anadarko Basin, Oklahoma, will be presented to illustrate this
use of DT log.

2 Active Learning Method—Background

ALM was originally introduced by Shouraki and Honda (1999) as a soft computing
tool for modeling unknown multiple inputs-single output (M.I.S.O.) systems. ALM
performs simulation based on the intelligent information-handling processes
existing inside the human brain. The engine of ALM is the ink drop spread (IDS)
(Saeed Bagheri and Honda 1997) operator, which acts as a fuzzification operator.
IDS works based on a non-exact processing procedure without suffering from
complex formulas (Murakami and Honda 2005a, b, c).

ALM has proved its ability for estimating missing logs in hydrocarbon reservoirs
(Bahrpeyma et al. 2013a), modeling chlorophyll and pigment retrieval (Shahraini
et al. 2005), modeling geophysical variables (Shahraiyni et al. 2007), and con-
trolling design problems (Behnia et al. 2011; Ghorbani et al. 2010; Sakurayi et al.
2003).

In ALM, the behavior of the output is depicted (projected) onto a two-dimen-
sional (2D) surface with respect to each input parameter in order to reduce the
complexity of the modeling procedure for M.I.S.O. systems. In fact, the projected
2D planes are single input-single output (S.I.S.O.) candidate models for the given
output parameter. The fuzzy interpolation is then responsible for aggregating the
candidate S.I.S.O. models into a unified model according to the degree of relativity
the candidate models exhibit for describing the behavior of the output (Fig. 1).

As shown in Fig. 1, ALM breaks an M.I.S.O. system into some S.I.S.O. sub-
systems in order to cope with less computational complexities when trying to
extract the relationships. The idea is originated from the fact that handling the
projected Input-Output 2D surfaces reduces the complexity imposed by extraction
of multi-dimensional relations existing between the dimensions inside an M.I.S.O.
system. Therefore, complexity is meaningfully reduced. At the end, the fuzzy
interpolation revives the impact of each input parameter on the output parameter.

The flowchart of ALM is illustrated in Fig. 2.
At the 2D surface of each S.I.S.O. sub-system, the general behavior of the output

with respect to the input is called the narrow path (NP). Figure 3 illustrates the
process of NP extraction through IDS and COG (Bahrpeyma et al. 2013a; Saeed
Bagheri and Honda 1997) operators in an operation board.

The NP is a continuous and function-like path representing the output as the
function of the input in a 2D space. The function-like path, as a model of an S.I.S.

Use of Active Learning Method … 193



O. system, should be extracted from a continuous path to provide generalization
ability for unseen data. However, the pure S.I.S.O. sub-system consists of some
discrete points in a 2D surface (Fig. 3a, b) which display no aspect of continuity.

The IDS operator is used inside ALM as a fuzzification method to extract fuzzy
continuity from a set of discrete points inside a 2D surface. Thus, inside the 2D
surface of a S.I.S.O. sub-system, for each projected data point, the IDS operator
propagates membership values to the neighborhood in an attenuated pattern. After
application of IDS operator on each data point in the 2D surface, the outcome is a
fuzzy continuous area that is called the IDS plane (Fig. 3c). The fuzzy continuous
area is then converted to a narrow function-like path by the application of the COG
operator. The outcome is a function that represents the general behavior of the
output with respect to the input, i.e., the NP (Fig. 3d).

To provide an environment for implementing the IDS operator, Bahrpeyma et al.
(2013a) used a d% margined operation board (Fig. 3), insuring that membership
propagation can be simulated through the neighborhood of rooms inside a 2D
board.

The domain of ith S.I.S.O. sub-system (Xi − Y) is defined as:

DXi : xjmin ðXiÞ\x\maxðXiÞ
DY : yjmin ðYÞ\y\max ðYÞ

(
ð1Þ

Fig. 1 Handling complexity by breaking the M.I.S.O. system into some S.I.S.O. sub-systems and
aggregating them into a unified model inside ALM
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The domain of d% margined domain is considered as:

D
X

_

i

: xjminðXiÞ �margind%Xi
\x\maxðXiÞ þmargind%Xi

D
Y

_ : yjminðYÞ �margind%Y \y\maxðYÞ þmargind%Y

8<
: ð2Þ

where margind%X is calculated by:

margind%X ¼ maxðXiÞ �minðXiÞ½ � � d
100

ð3Þ

Fig. 2 The flowchart of
ALM
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Finally, the size of each unit UM

X

_

i

;UM
�Y

� �
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� �
�min X

_
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� �
M
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Y

_ ¼
max Y

_
� �

�min Y
_

� �
M

8>>>>><
>>>>>:

ð4Þ

Propagation of fuzzy membership values is attenuated by distance to provide more
membership values for the closer neighbors. Regarding a linear function for
attenuation, a room inside the board receives μ from a projected point:

Fig. 3 Extracting the NPs by applying IDS and COG operators. a Projection of the M.I.S.O.
system onto a 2D surface. b Mapping the observations onto an operation board. c Applying IDS
operator on observed data points to form IDS planes. d Applying COG operator on IDS planes to
extract the NPs
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l ¼ R�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
þ 1; �R� u; v�R;

Dd xs þ u; ys þ vð Þ ) l; if l[ 0

0; otherwise

� ð5Þ

where R is the radius of the IDS operator, (xs, ys) are the coordinates of the
propagator, (u, v) is the distance between the receiver and:

Ddðxs þ u; ys þ vÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
ð6Þ

After forming the IDS planes, to extract the NP ψ(x), the COG operator is applied
on the IDS plane:

wðxÞ ¼
P

j2YðxÞ ljYjP
j2YðxÞ Yj

ð7Þ

where Y is the output axis of the board.
After extracting NPs, the NPs of multiple S.I.S.O. systems are unified into a

single model through a fuzzy interpolation. The fuzzy interpolation is a weighted
averaging mechanism in which each S.I.S.O. system participates in the aggregation
with a weight called the confidence level (CL). For each S.I.S.O. system, the spread
of data is measured around the corresponding NP:

Spreadk ¼
1
n

Xn
i¼1

wk xki
� 	� yi

� 	2 ð8Þ

where xi
k and yi are the coordinates of ith data point and ψk is the projection of the

ith point on kth NP.
The interpolation mechanism for an m inputs, single output system is imple-

mented by:

yfinal ¼
Pm

k¼1 wkykPm
k¼1 wk

; ð9Þ

where wk (CL) is the weight of kth candidate model:

wk ¼ 1
Spreadk

ð10Þ

An example of the NPs for a three inputs-single output system in presented in
Fig. 4.
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For the example in Fig. 4, the output of the unseen sample x1 = [x1
1, x1

2, x1
3] is

calculated by:

Out x11; x
2
1; x

3
1

� 	 ¼ C1 � w1 x11
� 	þ C2 � w2 x21

� 	þ C3 � w3 x31
� 	

C1 þ C2 þ C3
ð11Þ

In the end, ALM recursively localizes the entire modeling process in order to
improve the accuracy of the algorithm. The localization process, which is per-
formed by recursively partitioning the domain of the M.I.S.O. system into some
sub-domains, is performed to algorithmically model the local behaviors of the
system that is damped by the general IO behavior extraction procedure. Localiza-
tion can help including more local behaviors and improving the accuracy of the
entire process. Therefore, after localization, multiple localized M.I.S.O. systems are
processed by information-handling procedure of ALM (Fig. 5).

The recursive partitioning procedure inside ALM is similar to the training process
of a decision tree. Thus, to avoid overfitting, early stopping (which is one of the
well-known solutions to overfitting) is performed by ALM. Early stopping inside
ALM includes measuring the overall generalization error through cross-validation.
Thus, if the generalization error, which is measured via normalized nMSE, is less
than the threshold, partitioning will not happen. nMSE is calculated by:

nMSE ¼
PN

i¼1 Yi � Tið Þ2PN
i¼1 Yi � �Yð Þ2

ð12Þ

Fig. 4 The narrow paths of a rule for a 3 inputs-single output system
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Figure 6 depicts the decision process of partitioning for Threshold = 0.1;
partitioning stops at the terminating node.

In this paper, if the decision implies to carry on partitioning in the current stat
(node), the data are divided into two partitions from the midpoint of the input axis
inside the S.I.S.O. system (2D surface), which has gained the greatest weight in
the interpolation mechanism. Greater weight/confidence level implies on that the
underlying input parameter has more impact on determination of the behavior of the
output. Therefore, dividing the data based on this S.I.S.O. system helps preserving
the greatest CL, while the CLs of the other S.I.S.O systems may be improved in
aspect of accuracy. This approach is a heuristic, although the heuristic search is a
guided search and does not guarantee to present the optimal solution; it can cause to
reach to satisfactory solutions (Abbas et al. 2002).

Fig. 5 Partitioning the M.I.S.O. domain into some sub-domains and modeling based on localized
M.I.S.O. sub-models

Fig. 6 Choosing from inputs to divide the data at each node in ALM tree based on the spread
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3 Data Sets and Features

In order to use ALM to estimate missing sonic logs in the Anadarko Basin,
Oklahoma, we employed a 3-step approach: supervised training to create a simu-
lation model, verification and confirmation of the model, and application of the
model to new wells. More details about this approach can be found in our previous
work (Cranganu 2007; Cranganu and Bautu 2010; Cranganu and Breaban 2013).

The data sets are represented by GR1, deep resistivity2 (REID), sonic3 (DT), and
caliper4 (CAL) logs obtained from four wells drilled in the Anadarko Basin,
Oklahoma. The CAL log is not participating directly in the modeling process,
because it is not related unequivocally to a physical property. Rather, CAL log
serves as an indicator of the borehole environmental “health”: it points out to the
presence of such drilling problems as caverns, mud cake, wash out zones, etc. The
use of CAL log and the selection of most suitable depth intervals for simulation
(reduced data set vs. complete data set) are fully described in Cranganu (2005,
2007), Cranganu and Bautu (2010), and Cranganu and Breaban (2013).

4 Evaluation Measures

The quality of the training and verification models was assessed by using the
following parameters:

The MSE was computed as the average over all squared deviations of the
prediction from the real values:

MSEðf Þ ¼ 1
n

Xn
i¼1

f x ið Þ
� �

� y ið Þ
� �2

ð13Þ

The mean relative error (MRE) was computed as the average deviation reported to
the real value:

MRE fð Þ ¼ 1
n

Xn
i¼1

f x ið Þ� 	� y ið Þ

y ið Þ ð14Þ

The Pearson product–moment correlation coefficient, R, is also used throughout
this paper to measure the linear correlation between the measured and predicted
values.

1 Natural gamma radiation, in uAPI.
2 Electric resistivity variation, in Ωm.
3 Propagation time of seismic waves in and around a borehole, in μs/ft.
4 Measurement of the borehole diameter variations, in in.
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5 Training, Validation, and Application

We used a 3-step approach to perform our ALM simulation:

(a) Training: In this step, we computed the regression function based on a training
set consisting of selected values of GR, REID, and DT from well T&T 1–10
(aka the training well). Because in ALM, the learned regression function
depends on the values of input parameters and the procedural steps described
in Sect. 2, we had to run several configurations of the learning pattern. The
best model was considered the one that achieved the most accurate predictions
(equivalent to the lowest MSE) (Fig. 7).

(b) Validation: In this step, the ALM algorithm created during training phase was
evaluated on a data set from a validation well. This last data set consisted from
a suite of GR, REID, and DT log values, but only GR and REID were used to
simulate the DT values. Then, the simulated values were compared to the
recorded ones. This step is meant to verify and validate the algorithm ability to
simulate a DT log. The validation well was Whittenberg 3–29 (Fig. 8).

(c) Application: Once the ALM algorithm was verified and validated, it was
applied to two application wells (Ledbetter 1–18, Fig. 9, and Smith 1–13,
Fig. 10) where only GR and REID were recorded.

Fig. 7 Training results using T&T 1–10 well data set. The red DT curve is the simulated one. The
arrow indicates the location and depth extension of the overpressure

Use of Active Learning Method … 201



Fig. 8 Verification and validation results using Whittenberg 3–29 well data set. The red DT curve
is the simulated one. The arrow indicates the location and depth extension of the overpressure

Fig. 9 Predicted DT values for application well Smith 1–13. The arrow indicates the location and
depth extension of the overpressure
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6 Data Normalization

When doing data analysis, normalization is a popular pre-processing step. One main
goal of data normalization is speeding up of the convergence of the gradient descent
algorithm, which represents the basis of many machine learning jobs.

When using support vector regression, Cranganu and Breaban (2013) normal-
ized all their input data sets and found that normalization yielded significant
impacts on accuracy of predictions and a better compression of the training model.

However, data normalization is not a necessary step in all regression algorithms.
For example, while performing symbolic regression with genetic programing,
(Cranganu and Bautu 2010) found that data normalization does not have a sig-
nificant influence on the final results of regression analysis.

In this paper, we performed twice the regression analysis: with and without
normalization of input data sets using the procedure indicated by Cranganu and
Breaban (2013). The results are presented in Table 1.

7 Results

ALM took 67.09 s to perform five-level localization through the domain of the
problem (Fig. 11). At the end, results of validation in the Whittenberg well including
MSE = 90.99, MRE = −0.01251 and R = 0.8032, indicate that the performance of the

Fig. 10 Predicted DT values for application well Ledbetter 1–18. The arrow indicates the location
and depth extension of the overpressure
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algorithm is satisfactory while the time performance is significant. Table 2 illustrates
the results of the ALM process for training, and validation tests.

Table 3 and Fig. 12 illustrate the process of ALM for reaching to the desired
performance in the localized sub-models at different localization depth levels.

8 Estimating the Presence and Depth Extension
of Overpressured Zones in the Anadarko Basin, Based
on Sonic Logs

As detailed in our previous work (Cranganu 2007; Cranganu and Bautu 2010;
Cranganu and Breaban 2013) and references therein, many sedimentary basins may
experience pore-fluid pressures that differ from the hydrostatic (“normal”) pressure:

Table 1 The impact of normalization procedure on the prediction accuracy of the trained model
(DT = f(GR, REID)) measured by MSE, MRE, and R on the training and validation sets

T&T 1–10 Whittenberg 3–29

MSE MRE R MSE MRE R

Without
normalization

45.1622 0.0000886 0.8900 90.9971 −0.01251 0.8032

With
normalization

46.2572 0.0000980 0.8890 91.6786 0.00049 0.8020

Fig. 11 Time necessary for
reaching the depth levels of
localization process

Table 2 Results obtained
when the regression function
(DT = f(GR, REID)) was
trained by ALM on the T&T
1–10 well and validated on
Whittenberg 3–29 well

MSE MRE R

Training set:
T&T 1–10 Reduced

44.8996 0.0095 0.9032

Test set:
T&T 1–10 Complete

45.1622 0.0000886 0.8900

Validation set:
Whittenberg 3–29

90.9971 −0.01251 0.8032
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overpressure (pore-fluid pressure exceeds the hydrostatic pressure) or underpres-
sure (pore-fluid pressure is lower than hydrostatic pressure).

The existence of overpressured fluid zones, their depth locations, along with
estimated magnitude of overpressure, represents important decision factors when
drilling through those zones. The main danger is that unknowingly penetrating an
overpressured zone can create potential hazards, such as blowouts.

Along with other information (mud weight, repeat formation testing, drill-stem
testing), the sonic log (DT) proved to be a reliable predictor of overpressure zone
because it responds to changes in porosity or compaction generated by abnormal
pore-fluid pressure. It seems that DT log is preferred in oil industry because it is
accurate and sensitive to changes in rock stress subject to overpressured pore fluids,
especially in sequences dominated by shales (Asquith and Gibson 2004; Hearst
et al. 2000). Determining trends in DT log variations with depth is a conventional
method to predict the presence and estimate the depth intervals of overpressured
zones (Cranganu and Bautu 2010; Cranganu and Breaban 2013). Because the
acoustic transit time (recorded by DT log) in sedimentary rock is dependent on the
effective rock stress, an increase in DT values is indicating a lower effective rock
stress and, consequently, a zone with overpressure.

On Figs. 7, 8, 9 and 10, we predicted the existence of overpressured pore-fluid
zones in four wells drilled in the Anadarko Basin, Oklahoma. The vertical arrows
in those figures suggest that overpressure regime is developing between *1250
and 2500 m depth and the overpressured intervals have thicknesses varying
between *700 and 1000 m. These results match very well with previous results

Fig. 12 MSE in the process
of localization in different
depth levels

Table 3 The performance of
ALM for time and accuracy in
the process of localization in
different depth levels

Depth level Time MSE

0 2.3784 207.534

1 5.8774 114.947

2 14.9953 97.838

3 37.337 52.005

4 51.0026 46.885

5 67.0907+ 43.345
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reported in the Anadarko Basin, using the same wells, but different artificial
intelligent approaches (Cranganu 2007; Cranganu and Bautu 2010; Cranganu and
Breaban 2013).

9 Conclusions

This paper discusses Active Learning Method as a tool for predicting a missing log
(DT or sonic log) when only two other logs (GR and REID) are present. Applying
ALM approach involves three steps: (1) supervised training of the model, using
available GR, REID, and DT logs; (2) confirmation and validation of the model by
blind-testing the results in a well containing both the predictors (GR, REID) and the
target (DT) values; and (3) applying the predicted model to wells containing the
predictor data and obtaining the synthetic (simulated) DT values.

Our modeling approach indicates that the performance of the algorithm is sat-
isfactory, while the time performance is significant. The quality of our simulation
procedure was assessed by three parameters, namely MSE, MRE, and Pearson
product–momentum correlation coefficient (R).

The values obtained for these three quality-control parameters appear congruent,
with the exception of MRE), regardless of the training set used (reduced vs.
complete): MSE values are 44.8996 and 45.1622, respectively, while R values are
0.9032 and 0.8900, respectively. MRE values are more different: 0.0095 and
0.0000886, respectively, and we suppose that the difference is attributable to way
MRE formula works.

ALM performance was measured also by the time required to attain the desirable
outcomes: five depth levels of investigation took a little more than one minute of
computing time during which MSE dropped from 207.534 to 43.345.

We performed twice the regression analysis: with and without normalization of
input data sets (training well and validation well) using the procedure indicated by
Cranganu and Breaban (2013). The results show minimum differences in quality
assessment parameters (MSE, MRE, and R), suggesting that data normalization is
not a necessary step in all regression algorithms. For example, while performing
symbolic regression with genetic algorithm programing, Cranganu and Bautu
(2010) found that data normalization does not have a significant influence on the
final results of regression analysis.

We employed both the measured and simulated sonic logs DT to predict the
presence and estimate the depth intervals where overpressured fluid zone may
develop in the Anadarko Basin, Oklahoma. Based on our interpretation of the sonic
log trends, we inferred that overpressure regions are developing between *1250
and 2500 m depth and the overpressured intervals have thicknesses varying
between *700 and 1000 m. These results match very well our previous results
reported in the Anadarko Basin, using the same wells, but different artificial
intelligent approaches (Cranganu 2007; Cranganu and Bautu 2010; Cranganu and
Breaban 2013).
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ALM has the following advantages:

• ALM diminishes the heavy load of computational complexities, which naturally
exist in approximations methods like ANN, multiple regression, and TSK-FIS.
The computational complexities are always due to complex formulas.

• ALM has fast computational speed, which introduces itself as a proper suit for
real-time applications.

• Because ALM devotes confidence levels to the input parameters for aggregation,
the method can identify and exclude the unimportant inputs parameters from the
modeling process. Therefore, extra parameters cannot mislead the algorithm to
non-optimal partitioning and inference solutions.

ALM has the following disadvantages:

• Since the sub-domains are declared for NP extraction, ALM is limited to the
domain of the training data. Therefore, any test data outside of the training
boundaries can be denied by the algorithm and ALM cannot provide the
estimation.

• The radius of the IDS operator should match the nature of the training data, such
that the continuity of the IDS plane is guaranteed. Therefore, constant radius for
IDS cannot provide the best optimality.

• ALM uses a heuristic for partitioning, and heuristics cannot guarantee that the
best solution will be found.
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Active Learning Method for Estimating
Missing Logs in Hydrocarbon Reservoirs

Fouad Bahrpeyma, Constantin Cranganu
and Behrouz Zamani Dadaneh

Abstract Characterization and estimation of physical properties are two of the
most important key activities for successful exploration and exploitation in the
petroleum industry. Pore-fluid pressures as well as estimating permeability,
porosity, or fluid saturation are some of the important example of such activities.
Due to various problems occurring during the measurements, e.g., incomplete
logging, inappropriate data storage, or measurement errors, missing data maybe
observed in recorded well logs. This unfortunate situation can be overcome by
using soft computing approximation tools that will estimate the missing or
incomplete data. Active learning method (ALM) is such a soft computing tool
based on a recursive fuzzy modeling process meant to model multi-dimensional
approximation problems. ALM breaks a multiple-input single-output system into
some single-input single-output sub-systems and estimates the output by an inter-
polation. The heart of ALM is fuzzy measuring of the spread. In this paper, ALM is
used to estimate missing logs in hydrocarbon reservoirs. The regression and nor-
malized mean squared error (MSE) for estimating density log using ALM were
equal to 0.9 and 0.042, respectively. The results, including errors and regression
coefficients, proved that ALM was successful on processing the density estimation.
ALM is illustrated by an example of a petroleum field in the NW Persian Gulf.
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1 Introduction

In the petroleum industry, petrophysical and geophysical logs are considered as
important tools for reservoir evaluation, and they are frequently used to obtain
reservoir parameters. Loss of data is a common characteristic of the logging pro-
cedures which is commonly due to incomplete logging and other failures which are
addressed in Bahrpeyma et al. (2013), Cranganu and Bautu (2010), Cranganu and
Breaban (2013), El-Sebakhy et al. (2012), Rezaee et al. (2008), and Saramet et al.
(2008).

Soft computing tools have recently become very useful in the field of petroleum
industry because of their capability to estimate petrophysical and geophysical
parameters of oil wells (Cranganu and Bautu 2010; Cranganu and Breaban 2013).

Soft computing is a set of computational techniques for finding solutions to
problems for which there is no way to solve them analytically, or problems which
could be solved theoretically but practically impossible, due to the necessity of
huge resources and/or enormous time required for computation. For these problems,
methods inspired by nature are sometimes efficient and effective. Although the
solutions obtained by these methods are not always identical to analytical solutions,
a near optimal solution is sometimes enough in most practical purposes. The main
goal of soft computing tools is to support systems which need dealing with huge
amounts of data storage, complexity, and uncertainties. Time performance is
another factor which demands soft computing tools to improve their performance
wherever time is an important factor.

Active learning method (ALM) (Saeed Bagheri and Honda 1999) is a fuzzy-
based soft computing tool inspired from the ability of the human brain to model the
systems it faces. ALM as a macro-level brain imitation has been inspired by some
behavioral specification of brain and human active learning ability. The process of
ALM focuses on the remarkable human ability to effortlessly deal with intricate
information.

Taheri-Shahraiyni et al. (2011) used ALM for simulating runoff in the Karoon
basin. Taheri-Shahraiyni et al. (2007), showed how ALM can be used for the
estimation of geophysical variables in the Caspian Sea employing satellite ocean
color observations.

Bahrpeyma et al. (2013), used two ALM operators to model physical properties
of hydrocarbon reservoirs. Although they used the IDS method for modeling
purposes, they just used one step modeling procedure. This paper presents the
complete implementation of the ALM method to accurately synthesize missing log
data. In fact, this paper is an improvement on Bahrpeyma et al. (2013), to provide
more accurate and reliable modeling procedure by recursively localizing the
modeling process inside the problem domain.
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2 Methodology

Active learning method (ALM) is a powerful soft computing tool inspired by the
way the human brain deals with complexity when solving problems (Saeed Bagheri
and Honda 1997a). The human brain can solve modeling problems without dealing
with huge amount of computational complexities. Therefore, simulating the way the
human brain models a system enables us to achieve a modeling technique with low
complexity.

ALM uses different types of devoting membership functions called ink drop
spread (IDS), which acts as a powerful engine. IDS method (Saeed Bagheri and
Honda 1997a) is analogous to fuzzy logic since it is algorithmically modeled on the
processes of the information handling in the human brain (Afrakoti et al. 2013;
Sagha et al. 2008). Considering that conventional fuzzy logic uses linguistic and
logical processing, the IDS method employs intuitive image information. This
concept is derived from the hypothesis that humans interpret information as images
rather than in numerical or logical forms (Murakami and Honda 2004). The main
idea behind ALM is to break a multiple-input single-output (M.I.S.O) system into
some single-input-single-output (S.I.S.O) sub-systems and aggregate the behavior
of sub-systems to obtain the final output. This idea resembles the brain activity
which stores the behavior of data instead of their exact values. Each S.I.S.O sub-
system is expressed as a data plane (called the IDS plane), resulted from the
projection of the gathered data on each input–output plane (Murakami and Honda
2005; Saeed Bagheri and Honda 1997b).

Two types of information can be extracted from an IDS plane. One is the
behavior of the output with respect to each input variable. The other is the confi-
dence level for each input variable which is proportional to the reciprocal of var-
iance of data around the behavior of the output with respect to each input. Narrow
paths (NP) are estimated by applying IDS on data points and Center of Gravity
(COG) on data planes. IDS and COG are the first two main operators of ALM
(Saeed Bagheri and Honda 1999).

The flowchart of the modified ALM presented in this paper is illustrated in
Fig. 1.

The algorithm includes four steps:

Step 1: Projecting data on each Xi–Y plane

To observe the behavior of the target variable (as output of the system), the given
data which is a M.I.S.O system is projected into some two-dimensional (2D) input–
output systems. In fact, an M.I.S.O. system is broken into some S.I.S.O sub-systems
(Fig. 2).

The benefits of projection are as follows: (a) Observing and analyzing the
behavior of output with respect to each input; (b) Recognizing the most effective
inputs, and (c) Easing the processes of identification and computation.

The major problems of this projection are as follows: (a) Loosing the relation-
ship between inputs, and (b) Calculating the final output.
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Fig. 1 The flowchart of the proposed ALM

Fig. 2 Projecting an M.I.S.O system into some S.I.S.O sub-systems
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Step 2: Finding the NPs for each 2D plane

To observe the behavior of the output with respect to each input, ALM extracts a
function from each projected data samples. The function, called the NP, is a curve
which shows just a unique value for each value in the domain of the input. The goal
of extracting the NP function (as illustrated in Fig. 2) is to achieve a single model of
the output based on each input parameter, separately:

youti ¼ wiðxiÞ ð1Þ

where i, 1� i� n specifies the input index for n system inputs, youti is the model of
the output of the model constructed based on ith input, wi is the NP of the ith input,
and xi is a value in the domain of ith input.

Extraction of the NP in ALM is a two-stage process: Thickening and Thinning.
First, a thickening operator is applied on data samples in order to make a continuous
path (fuzzification). The process of thickening is a fuzzification operation on the 2D
plane of a S.I.S.O system. While observed data samples on inputi–output plane are
set of discrete points (Fig. 3a), the fuzzification operator thickens the 2D planes
such as to extract continuity (Fig. 3b) as a requirement of the generalization ability
of a model. The fuzzification operation in ALM is performed through IDS operator
(Bahrpeyma et al. 2013; Saeed Bagheri and Honda 1997a).

The implementation of propagating membership function for IDS operator with
a radius R is performed through Eq. 2. The amount of propagated darkness l is
calculated by (Murakami and Honda 2006):

s ¼ R� Dd þ 1; �R� u; v�R;

Ddðxs þ u; ys þ vÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
;

l ¼ s; if s[ 0

0; otherwise;

� ð2Þ

where ðxs; ysÞ are the coordinates of the propagator, which is an observed point in
the training dataset, u and v are the distances of x and y axes from the propagation
point, and Dd is the euclidean distance between the membership receiver and the
propagator.

Fig. 3 Extracting an NP. a Discrete observations. b Thickening operation. c Thinning operation
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Second, to extract a function like curve w; the continuous area obtained by IDS
operation on the IDS plane should be thinned. The thinning operation in ALM
(Fig. 3c) is performed as a defuzzification operation on the IDS plane by COG
operator (Bahrpeyma et al. 2013; Saeed Bagheri and Honda 1997a) to extract the
NP i.e. w (Eq. 3):

wðxÞ ¼
P

j2YðxÞ ljYjP
j2YðxÞ Yj

ð3Þ

Step 3: Calculating the spread of each Xi–Y plane

By extracting the NPs from the IDS planes, there are multiple S.I.S.O models for
the given M.I.S.O. model which express the output separately. ALM uses a crite-
rion to specify a confidence level for each model and uses the confidence level as a
fuzzy weight to calculate the model output. In ALM, the confidence level of inputi–
output plane is the reciprocal value of the spread of data samples around the
extracted NP of that plane. The confidence level indicates how much the NP is
proper to show the behavior of the output with respect to the underlying input. As
the spread increases, the variation of the data samples around the NP increases, too.
The spread of ith S.I.S.O. plane is calculated by Eq. (4):

mi ¼ 1
n

Xn
k¼1

wiðxkÞ � ykð Þ2 ð4Þ

where n is the number of data points, and ðxk; ykÞ is the coordinate of the kth data
sample of ith S.I.S.O. plane.

Thus, the confidence level is calculated by Eq. (5):

hi ¼ 1
mi

ð5Þ

Step 4: Evaluation of the model and dividing the data samples into several
partitions

The spread of data calculated by Eq. 3 is a measure to evaluate the accuracy of the
model. When the spread is big, it means that the model is not reliable enough. ALM
uses division of data samples in order to reduce the spread of data and extract more
accurately localized NPs. The evaluation of the models can be performed by the
means of measuring the generalization error which can be implemented though a
cross-validation operation (Jack 1983; Mori and Stephen 1991). To measure the
generalization error, the output is calculated by an interpolation mechanism:
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outputk ¼
Pn

i¼1 hi � wiðxkÞPn
i¼1 hi

ð6Þ

The generalization error is calculated by FVU relation (Murakami and Honda
2006):

FVU ¼
PK

k¼1 ðŷðxkÞ � ykÞ2PK
k¼1 ðyk � �yÞ2 ð7Þ

where ŷ is the output of the model, K is the number of test points and �y is:

�y ¼ 1
K

XK
k¼1

yk ð8Þ

If FVU satisfies the error threshold of ALM ðFVU�ErrthresholdÞ; the division is
not happening because the model is satisfactory; otherwise, ALM divides data
samples into partitions in order to gain more accurately localized sub-models.

According to the algorithm of ALM (Fig. 1), dividing the data samples into
partitions is performed in this step. An approach is to divide data based on a point in
one the projected S.I.S.O planes. A heuristic to choose a proper plane is dividing
the plane with the smallest spread, i.e., choosing the plane that has a higher degree
of confidence. The main reason to choose this heuristic is that at least it holds the
plane with the greatest degree of confidence unchanged while changing the others
(Taheri-Shahriyani et al. 2006). Choosing a proper place to divide the chosen IDS
plane requires another heuristic. Takagi and Sugeno (1985) used the midpoint to
divide a plane. The heuristic search is a guided search, and it does not guarantee an
optimal solution. However, it can often find satisfactory solutions (Takagi and
Sugeno 1985).

Figure 4 illustrates how ALM divides data into two parts at each stage:
In fact, ALM decides on dividing data samples based on a tree structure which is

implied on the recursive nature of ALM. Figure 5 illustrates the decision tree in
which its nodes are labeled by their generalization error.

Each node in the decision tree of ALM correspondents to a sub-model con-
structed by a partition of data samples. Figure 6 is an example decision making
about division in ALM for reaching to a state with value of 0.1 for generalization
error.

In the example of Fig. 6, the node labeled by “terminating node” corresponds
to a state satisfying the threshold of generalization error for stop division. At
each state which corresponds to a node in ALM decision tree, the generalization
error of the node is compared with the threshold so as to decide on continuing or
stop dividing.
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3 Experimental Results

In this paper, the experimental results are provided through modeling the log
density based on photoelectric log, neutron log, and sonic log.

Fig. 4 Localized M.I.S.O sub-systems resulted by recursive partitioning

Fig. 5 An example of ALM
decision tree in which the
nodes are labeled by
generalization error
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3.1 A Brief Overview of Petrophysical Logs

Density log (RHOB): The bulk density of the formation is measured by recording
the number of returning gamma rays affected by Compton scattering; this is pro-
portional to the electron density of the formation (Rider 2002). RHOB is used to
estimate porosity (so-called density porosity), identify mineral lithology (mainly
evaporite minerals), detect gas-bearing zones, determine hydrocarbon density,
evaluate source rocks, and recognize fractures.
Photoelectric log (PEF): The photoelectric (Litho-Density) log is a continuous
record of Pe (the cross-section index of effective photoelectric absorption) related
to the formation composition (Rider 2002). Lithology and mineral identification is
the major usage of this log.
Neutron log (NPHI): The hydrogen density of the formation is measured via the
neutron log. Neutron log is used as a hydrocarbon indicator for estimation of
porosity and lithology identification.
Sonic log (DT): Sonic log is the log which is the result of sending acoustic signal
through the rocks. DT is mainly used for lithology identification.

The dataset of this study is the collection of logs from a petroleum field in
Southern Iran (NW Persian Gulf), also used in (Bahrpeyma et al. 2013). The dataset
contains 4500 records which is separated into training and test sets in which 500
records are randomly selected as the test set, and the remaining are used as the
training set.

3.2 Modeling RHOB

Based on the methodology presented in Sect. 2, the collected data have to be
expressed as an M.I.S.O system. ALM projects an M.I.S.O system into some S.I.S.
O sub-systems. In this paper, the goal is to estimate RHOB. Therefore, inside each
recursion, first the M.I.S.O system {DT, NPHI, PEF → RHOB} is expressed as
three S.I.S.O sub-systems: {DT-RHOB}, {NPHI-RHOB}, and {PEF-RHOB}.

Fig. 6 An example of decision making about division in ALM at each state
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The stage of fuzzification and extracting the NPs begins by applying IDS
operator on the data for each IDS plane which is shown in Fig. 7.

The process of estimation using ALM needs numbers of iterations which are the
results of dividing planes/sub-planes. At each stage, the recursive algorithm of
ALM divides data into two parts, and the process is performed on data for each
part. Then, the algorithm estimates the output for the test data. The results of
matching measured and estimated data for 4 arbitrary exploration levels (3rd, 6th,
9th, and 12th levels) are shown in Fig. 8.

In this paper, the performance of the method is measured via two popular per-
formance measures: normalized mean squared error (nMSE) and regression (R). R is
the reliability which ranges from −1 to 1 to show how much linear relationship exists
between the measured and the simulated values of the output. R is calculated by:

R ¼
1
N

PN
i¼1 Yi � �Tð Þ Ti � �Yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N

PN
i¼1 Yi � �Tð Þ2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
i¼1 Ti � �Yð Þ2

q ð9Þ

Fig. 7 Applying IDS operator as the thickening operator on data: a IDS plane of PEF-RHOB,
b IDS plane of DT-RHOB, c IDS plane of NPHI-RHOB
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And nMSE is defined as:

nMSE ¼
PN

i¼1 Yi � Tið Þ2PN
i¼1 Yi � �Yð Þ2

ð10Þ

R for four depth levels (3rd, 6th, 9th, and 12th levels) is shown in Fig. 9.

Fig. 8 Comparison between measured and estimated outputs. a 3rd level of exploration; b 6th
level of exploration; c 9th level of exploration; d 12th level of exploration
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Figure 9 shows that ALM tries to model data more accurately when divides data
at each stage and converges better when models data locally on the divided data
samples.

The process of modeling depends on the accuracy of the modeling which needs
to be illustrated to show how much ALM was successful on estimation. Figure 10a
illustrates the sequences of resulted R between measured and estimated data.
Figure 10b also illustrates ALM tries to converge nMSE to zero which is the most
desired output of any types of estimating algorithm.

The most important part of ALM is the process of convergence to a stable state
which is required for the validation of the algorithm. This goal is achieved as a
result of the value of the given error. Results (Fig. 10) illustrate that ALM is
converged to the stable state (no further exploration is observed in the process).

Fig. 9 R for measured and estimated outputs. a R at 3rd level of exploration; b R at 6th level of
exploration; c R at 9th level of exploration; d R at 12th (final) level of exploration
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The stable state is the final depth level of the ALM tree. The depth level indicates
the maximum number of recursions that are allowed to hierarchically localize inside
the parameter domain.

4 Discussion

Based on the nature of ALM, there are several advantages for ALM when it is
compared with conventional estimation methods. In fact, the main characteristic of
ALM is the way it deals with the complexities of estimation when it receives its raw
data. Unlike other estimation methods, ALM does not tune weights or parameters
for foreseeing the behavior it sees from the training data; instead, it extracts the
general behavior of data locally and uses an aggregation mechanism to preserve the
structure of the effectiveness of each input on the output. Then, speaking about
ALM and its algorithm, there are some different points when compared with other
methods. One is the overfitting, a major problem of conventional methods. Based
on the learning methods and specifically, more related ones, like decision tree
characteristics, ALM uses threshold as the early stopping factor to avoid overfitting
(Jiang et al. 2009; Liu et al. 2008; Rynkiewicz 2012; Schittenkopf et al. 1997).

Figure 10 illustrates that the depth level of ALM decision tree is equal to 12, and
the algorithm has stopped at level 12. It means that the most localized sub-domain
required 12 level divisions to gain the required accuracy.

The results of applying ALM and different modeling techniques are illustrated in
Table 1 which includes comparison between the performance of artificial neural
network ANN (as a 3)20)1 trained by Levenberg–Marquardt learning algorithm),
fuzzy logic FL (a Takagi-Sugeno-Kang Fuzzy Inference System TSK-FIS), radial
basis function network RBFN, Neuro-fuzzy NF (fuzzy neural network), FFMM
(Bahrpeyma et al. 2013), and the ALM; except for FFMM and ALM, the other
methods are provided by the MATLAB 2008 toolbox.

Figure 11 illustrates visualized comparison between the performance of popular
modeling methods and ALM for modeling RHOB.

Fig. 10 The resulted R and nMSE gained by ALM at each depth level. a nMSE for each
exploration level of ALM; b R of measured and estimated outputs for each exploration level of
ALM
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Comparison between the results gained by modeling RHOB via ALM and other
modeling techniques (illustrated in Fig. 11) proves that ALM has acceptable per-
formance and performs well in comparison with popular modeling techniques.

As a result of dealing with computational complexities naturally exist in the
popular modeling methods through complex formulas, they generally suffer from
lowness of themodeling speed. In this paper, ALM is presented as amodelingmethod
that does not suffer from huge computational complexities. Therefore, ALM is
expected to show an acceptable time performance. Figure 12 compares time perfor-
mance between ALM and some popular modeling methods employed in this paper.

As shown in Fig. 12, ALM was successful to model RHOB without dealing with
huge computational complexity which results in reduction in the time required for

Table 1 The results of applying ALM and popular modeling techniques for estimating RHOB

FFMM ALM ANN FL RBFNN NF

nMSE 0.14 0.042 0.057 0.063 0.073 0.053

R 0.77 0.90 0.86 0.85 0.83 0.87

0.14

0.042
0.057 0.063

0.073

0.053

FFMM ALM ANN FL RBFNN NF

nMSE

0.77

0.9

0.86 0.85
0.83

0.87

FFMM ALM ANN FL RBFNN NF

R(a) (b)

Fig. 11 Comparison between the performance of popular modeling methods (ANN, FL, RBFNN,
and NF) and ALM for modeling RHOB. a nMSE, b R

1.8 9.6

59
39.4

132

43

FFMM ALM ANN FL RBFNN NF

Time (s)

Fig. 12 Time performance in seconds (s) for modeling RHOB, comparison between ALM and
some popular modeling methods addressed in this paper
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modeling process. Although FFMM (Bahrpeyma et al. 2013) with the best time
performance may be considered as the most successful method among the
employed methods, the nMSE and R for FFMM are not so satisfying comparing to
other employed methods in this paper.

5 Conclusions

In petroleum industry, the problems of incomplete data acquisition and loss of data
in the process of measurement require supporting methods which are able to
accurately estimate the unmeasured/lost data. This paper introduced a new soft
computing tool for the application of estimating missing/unmeasured data called
ALM. ALM is inspired from the ability of the human brain to model a multiple-
input multiple-output system actively. Results (0.042 and 0.9 for nMSE and R,
respectively) illustrate that ALM has excellent ability for modeling RHOB and can
be used as a reliable approximator in petroleum industry. Comparison between the
results obtained by modeling RHOB via ALM and other modeling techniques
proves that ALM has acceptable performance and performs well in comparison
with other popular modeling techniques.
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Improving the Accuracy of Active
Learning Method via Noise Injection
for Estimating Hydraulic Flow Units:
An Example from a Heterogeneous
Carbonate Reservoir

Fouad Bahrpeyma, Constantin Cranganu and Bahman Golchin

Abstract Due to many reasons, in many occasions, reservoir engineers should
analyze the reservoirs with small sets of measurements; this problem is known as
the small sample size problem. Because of small sample size problem, modeling
techniques commonly fail to accurately extract the true relationships between the
inputs and the outputs used for reservoir properties prediction or modeling. In this
paper, small sample size problem is addressed for modeling carbonate reservoirs by
the active learning method (ALM). In this paper, noise injection technique, which is
a popular solution to small sample size problem, is employed to recover the impact
of separating the validation and test sets from the entire sample set in the process of
ALM. The proposed method is used to model hydraulic flow units (HFUs). HFUs
are defined as correlatable and mappable zones within a reservoir which control
fluid flow. This study presents quantitative formulation between flow units and well
logs data in one of the heterogeneous carbonate reservoir in Persian Gulf. The
results for R and nMSE are equal to 85 % and 0.0042 which reflect the ability of the
proposed method when facing with sample size problem.

Keywords Active learning method � Noise injection � Overfitting � Hydraulic flow
unit � Ink drop spread � Carbonate reservoir
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1 Introduction

A fundamental approach to decrease uncertainty in estimation of reservoir prop-
erties (which is due to heterogeneity in carbonates) is rock typing based on pe-
trophysical characteristics. One of the popular methods to rock classification from
geology framework and physics of flow is through pore network scale (pore throat
geometric properties). Generally, the pore geometry is controlled by mineralogy
(type, abundance, location) and texture (grain size, grain shape, sorting, packing).
Different combinations of these properties can lead to identify distinct flow groups
which have similar fluid transport properties. Each group is referred to as a
hydraulic flow unit (HFU).

HFU is defined classically as the representative volume of total reservoir rock
within which geological and petrophysical properties that control the fluid flow.
They are internally consistent and predictably different from properties of other
rocks (Ebanks 1987; Jude et al. 1993). Briefly, it can be identified as a zone in a
reservoir where the similar flow of the oil or gas is continuous laterally and ver-
tically. It relates to geological facies distributions, however, do not necessarily
coincide with facies boundaries.

To identify HFU for formation evaluation, reservoir description, and character-
ization using flow zone indicator (FZI), permeability and porosity of the reservoir
rock have always been considered as two of the most important parameters. FZI,
which is measured based on core porosity and permeability, characterizes each flow
unit, and it is popular to derive the FZI value and its corresponding flow unit for each
sample. Conventional studies are executed on the core data to determine the FZI
values, however, such works are expensive, time-consuming, and limited. To solve
this problem, researchers use soft computing’s modeling techniques such as artificial
neural network (ANN), fuzzy logic (FL), support vector machine (SVM), and
committee machines (CM) to estimate FZI and other reservoir parameters by well
logs data. Kadkhodaei-Ilkhchi and Amini (2009) developed a FL model to determine
FZI from well logs at un-core wells. Ghiasi-Freez et al. (2012) compared two types
of CMs to estimate FZI. In this study, we developed new soft computing tool called
the active learning method (ALM), which is as fast and accurate modeling technique,
for determining HFUs in heterogeneous carbonate reservoir in Persian Gulf as one of
the world’s largest non-associated gas accumulation. ALM (Saeed Bagheri and
Honda 1999) is a solution to model multi-dimensional systems without dealing with
huge computational complexities exist in traditional modeling techniques.

The data set in this paper contains small set of samples that charges ALM with
small sample size problem. Due to many reasons, small sample size problem is one
of the common concerns in petroleum industry when trying to estimate the properties
in the carbonate reservoirs. In many occasions, this is not possible to provide ade-
quate sample size for the modeling techniques; it may degrade the performance of
the estimation process. The problem is more crucial when, to provide valid modeling
procedure, the modeling techniques split the entire sample set into three subsets:
1-the training set, 2-the validation set, and 3-the test set. The training set is used for
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constructing the model. The validation set is used for modeling inter-level valida-
tion. And the test set is used to evaluate the performance of the constructed model.
More importantly, for small data sets, splitting the data samples into training, vali-
dation, and test sets separates some of the useful information from the training set
which meaningfully degrades the generalization ability of the modeling procedure.

One of the popular solutions to small sample size problem is to improve the
generalization ability of the model by reviving the separated information through
noise injection (Rifai et al. 2011). In fact, noise injection can be regarded as a
regularization method. The problem of regularization has been broadly studied in
the context of learning methods specifically in the field of ANNs. Regularization is
commonly used by learning methods to improve the generalization ability for small
sample sets or when data samples are contaminated with noise, meaningfully. In the
context of ANNs, weight decay and output smoothing that are used to avoid
overfitting during the training of the considered model are the other popular
methods (Yulei Jiang et al. 2009).

Noise injection has been broadly studied in literature. In Raudys (2003, 2006), the
impact of using noise injection technique to fight with sample size problem is studied.
Rifai et al. (2011) used noise injection to the input with a regularized objective to
improve generalization performance in the ANNs. Yulei Jiang et al. (2009) studied
the effect of noise injection on the training of ANNs. Liu and Janusz (2008) proposed
an optimized approximation algorithm which employed noise injection in ANNs to
overcome overfitting. Skurichina et al. (2000) used K-nearest neighbors algorithm to
direct noise injection in multilayer perceptron training. Piotrowski and Napiorkowski
(2013) compared popular methods, such as noise injection, for avoiding overfitting in
ANNs training in the case of catchment runoff modeling.

In addition to the mentioned ability which noise injection provides, the
smoothness of the curve which provides more generalization ability is another
benefit of noise injection technique; an example of smoothness provided by addi-
tional noise is illustrated in Fig. 1.

The rest of the paper is organized as follows: the next section is on overview on
ALM. In Sect. 3, the proposed methodology for employing noise injection in ALM

Fig. 1 Additive noise for improving the smoothness and penalization ability of a curve gained by
training samples. a Actual arbitrary data curve, b Adding 5 % noisy samples to the data samples,
c Adding 10 % noisy samples to the data samples
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is described. The experimental results are illustrated and discussed in Sect. 4.
Finally, Sect. 5 states conclusions derived from the work.

2 An Overview on Active Learning Method

ALM algorithmically models a system similar to intelligent information manage-
ment procedure of the human brain. ALM works fundamentally based on the
hypothesis that the human brain observes an information system as an image in
which the information is stored as patterns (Saeed Bagheri and Honda 1999). The
main advantage of ALM is its ability to model multi-dimensional systems without
dealing with computational complexities.

ALM uses a recursive approach in order to model multi-dimensional systems
without dealing with computational complexities. This special approach is char-
acterized by the usage of a fuzzification engine called ink drop spread (IDS) which
is inspired by the way the drops of ink can create a continuous path that expresses
the overall continuity instead of dealing with a discrete appearance (Saeed Bagheri
and Honda 1997; Shouraki 2000). The main idea behind ALM is the projection of a
multiple-input single-output (M.I.S.O.) system into some single-input single-output
(S.I.S.O.) sub-systems and unifying the outcomes by an interpolation mechanism to
generate the final output of the modeling system in a recursive manner.

2.1 The ALM Algorithm

A practical implementation of ALM can be performed through a recursive process
which divides data hierarchically into small and smaller partitions, while proper
partitioning is the goal of the entire process. Recursive partitioning enables to
intuitively model a system based on the locality of the data distribution within the
data domains. Hierarchical partitioning helps figuring out the locality imagination
with the stopping parameter. The flowchart of ALM is illustrated in Fig. 2.

In the flowchart of ALM illustrated in Fig. 2, at each recursion, the IDS mod-
eling method is responsible to model the corresponding data domain. Then, if the
normalized mean-squared error (nMSE) of the model is greater than the threshold,
the recursive process of ALM divides the corresponding data and partitioning does
not continue for the corresponding data domain.

In Fig. 3, an example of applying ALM on a 2-input system is illustrated
showing how the hierarchical division mechanism divides the domain of inputs in
order to satisfy the predefined generalization threshold in a sub-domain.

In this example, starting from the entire domain, ALM divides training data into
sub-domains and for each sub-domain, dividing is stopped when the terminating
condition (nMSE’s threshold) is satisfied. A particular tail of the hierarchy in Fig. 3
starts from the entire 2-D domain (A0) to reach A6 area, which satisfied the
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Fig. 2 The flowchart of ALM (Shouraki 2000)
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terminating condition. Figure 4 illustrates that how modeling procedure (performed
by IDS) is localized through the recursive process of ALM. In this paper, at each
recursion, ALM divides data sub-domain into two partitions, i.e., the branching
factor is 2.

As illustrated in Fig. 4, IDS separately models each localized sub-domain which
is introduced by ALM.

2.2 IDS Modeling Method

As the engine of ALM, IDS modeling method models a multiple-input single-
output (M.I.S.O.) system (or sub-system when the system, as a domain, is divided

Fig. 3 2-Dimensional space
of inputs in a 2-input single-
output system

Fig. 4 Stages of recursively dividing data planes
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into some partitions) based on projection of the system into single-input single-
output (S.I.S.O.) sub-systems and then unifies the S.I.S.O. models into a single
model through an aggregation mechanism. IDS models each S.I.S.O. sub-system
separately through IDS and COG operators. Therefore, after projection, the process
of IDS method includes application of IDS and COG operators, (consequently) on
each S.I.S.O. sub-system and then unifying them into a single model.

• Applying IDS operator on the projected data planes (fuzzification)
IDS operator roles as a fuzzification operator. The goal of IDS operator is to
provide continuous paths between data samples (in 2D spaces of the S.I.S.O.
systems). IDS uses a different approach to devote membership values to the
elements in a data set. IDS operator extracts the relationships between data
points intuitively which are discrete in details, but the entire set is treated as a
continuous pattern. Figure 5 illustrates the application of IDS operator on a 2D
data plane.
As shown in Fig. 5, while the midpoints between A, B, and C, which are the
actual data samples, are not observed as the data samples, application of IDS
operator on the 2D domain of the S.I.S.O. system creates the sense of continuity
in an arbitrary unity. Therefore, propagation of membership values to the
neighbors from each actual data point which is attenuated by distance and
reinforced by other actual neighbors creates the sense of continuity in the 2D
input–output (I-O) domain. As Fig. 5 shows that, while A, B, and C are the
actual data samples and the domain formed by discrete units, quantization of the
domain by the means of a board and propagation of the membership values by
IDS extracts the continuity between actual data samples in each 2D I-O system.

• Applying center of gravity operator on the IDS planes (defuzzification)
Defuzzification in ALM is performed by COG operator (Saeed Bagheri and
Honda 1997). COG defuzzifies the results gained by IDS operator so as to make
a crisp world induction. The outcomes of COG operator on the IDS planes are
some curves called narrow paths (NPs) which express the overall behavior of the
output (parameter) with respect to the input (parameter) in each S.I.S.O. system.
This behavior ought to be unique for the input domain (acting like a function of
input domain).

Fig. 5 Extracting the
midpoints relationships
between observed data
samples in a S.I.S.O. system
(Bahrpeyma et al. 2013)
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• Aggregating the S.I.S.O. candidate models
The NPs are the models which are extracted by the IDS method for each S.I.S.O.
sub-system in the current M.I.S.O. sub-domain, separately. Each NP introduces a
particular candidate S.I.S.O. model which has to be unified to a unique M.I.S.O.
model. Therefore, at the final step of the modeling process in the IDS method, the
NPs are aggregated through an interpolation mechanism to form a singleM.I.S.O.
model.

3 The Proposed Methodology

A very popular approach to deal with small sample size problem is the noise
injection technique. Noise injection is known as a practical technique to improve
generalization ability of many different regions such as classifiers, approximators,
data-dependent analysis, and especially in NNs.

In this section, since the literature has not studied on the generalization ability
and overfitting in ALM, we briefly explore the topics and then the proposed
methodology is described.

3.1 Generalization in ALM

Inside ALM, generalization, which is the main goal of the entire modeling process,
is evaluated after modeling each data sub-domain in order to recognize whether
overfitting is occurred or the desired generalization ability (measured by nMSE) is
provided for the sub-domain. The goal of generalization is to provide a model so as
to be used to approximate unseen data samples. Generalization in a modeling
method is measured by the generalization error. The generalization error is a cri-
terion that measures how good a modeling method generalizes to unseen data.
Generally, the generalization error is measured as the distance between the error on
the training set and the test set in the process of learning which can be regarded
locally (for ALM) or in the entire training set.

In ALM, the recursive localization continues only if the generalization error
(which is measured by nMSE) is greater than a predetermined threshold. If the
generalization error is less than the threshold, ALM stops localization. In other
words, ALM tries to reach a certain value of generalization performance to model
the system and to avoid overfitting stops partitioning the data in the current level.

One of the most important methods for measuring the generalization error is the
cross-validation technique. Using cross-validation for measuring the generalization
error requires separating the entire training data set into two different sub-sets of
data: Training set and Validation set. This separation reduces the number of actual
training data which regarding that the entire data set is formerly separated into the
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training and test data obviously reduce the generalization ability of the trained
model. This issue becomes very more important when the size of data samples is
insufficient of the generalization faces with lack of enough data.

3.2 Overfitting in ALM

One of the most challenging problems with modeling techniques, which has an
important impact on the performance of the modeling process, is the problem of
overfitting and underfitting. While modeling techniques construct models from a set
of training samples, identifying the structure and the effective characteristics of data
used for constructing the models are the matter of concern. Overfitting is one of the
problems which is faced by the modeling techniques and is due to the data structure
and characteristics. Overfitting happens when the learning phase of the modeling
process converges to influence from a very specific part or characteristic of the
samples belonged to the training data which meaningfully degrades the general-
ization ability. As a result, when overfitting happens, the output cannot be guar-
anteed to exhibit the true formulation of what is actually expected from the learning
process through training samples and the output is unreliable.

One of the reasons for overfitting is due overtraining the model from the training
samples called overlearning. At the occurrence of overlearning, model trains until
almost all the model parameters converge to express characteristics of the training
samples (or specific parts).

Based on the modeling techniques, many different methods have been developed
for preventing the modeling process from overfitting to the training samples such as
early stopping, weight decay (in ANNs), and so on.

ALM uses the method called early stopping so as to prevent from overfitting. As
the flowchart of Fig. 2 exhibits, there is a level in the process of ALM for stopping
the localization (more localized learning) process. This level includes evaluating the
performance of the model and comparing the accuracy (nMSE) against a predefined
threshold of error, and stopping the learning/localization process for the corre-
sponding data sub-domain if a predetermined accuracy is reached.

One of the most popular approaches for avoiding overfitting is to divide the
entire data set into two separated sets: a set for training and another set for vali-
dation. This approach is called early stopping. Then, modeling and training are
performed just by the training set and evaluation of model or the performance of the
system is performed by the validation set. The validation data are independent of
the training data. This is due to have a proper measure for generalization which is
the goal of training. So, until the learning process continues, performance on the
validation set improves with training.

Schematic view of the learning process illustrating error through the training and
validation sets is shown in Fig. 6. To avoid overfitting, training stops at time
t where performance on the validation set is optimal.
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Choosing a threshold of error origins from the generalization disability of
learning method to identify well-sampled data and noise locations in overall view of
data and to prevent the learning process from minimization of overtraining from a
particular part of data samples. This leads to choose from several methods so as not
to lower the performance of the modeling process due to overlearning or overfitting.

One of the disadvantages of the early stopping approach is that commonly, most
part of data are not used for training which is broadly studied in the field of ANNs
(Rynkiewicz 2012; Schittenkopf et al. 1997; Liu and Janusz 2008; Yulei Jiang et al.
2009). Another possibility for early stopping detection is to use the whole part of
the data for training and perform validation on some other data samples which is not
always accessible.

3.3 Noise Injection in ALM

This section describes where and how to use noise inside the ALM process to
improve the generalization ability. Due to the need for independent training, vali-
dation, and test data sets, the early stopping used in ALM is only useful in a data-
rich situation. The main idea behind using noise injection in this paper is to provide
pseudo-training set for ALM in order to properly regularize the model when facing
with small sample size problem.

In the process of ALM, noise injection should be addressed inside the IDS
method which is responsible to construct the model inside the ALM process. The
modified flowchart of the IDS process with the aid of noise injection technique is
illustrated in Fig. 7.

According to the flowchart of Fig. 7, first, the data of the current localized M.I.S.
O. system (stated in the current recursion) divided into two subsets: the training set
and the validation set.

Based on the algorithm of the IDS method, the M.I.S.O. system is then projected
into some S.I.S.O. systems with respect to the number of the input parameters.

Fig. 6 Overfitting avoidance
by stopping learning process
at time t
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For each S.I.S.O. system, noise is added to the actual data m times independently
to increase the number of training samples and to smooth the 2D plane of the S.I.S.
O. system through scattered noise around the actual samples. At each time the IDS

Fig. 7 Noise injection phase added to the algorithm
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method is addressed, noise is added separately in random fashion to eliminate
possible memory of noise so as not to degrade the training performance acquired by
the pure behavior of the actual samples.

One of the most important characteristics which is required for preserving the
pure behavior of the actual samples inside the training phase is the zero mean of the
noise (Fig. 1).

This is important to note that the noisy data will not be participated to measure
generalization ability (nMSE). The noisy data are just involved in the process of
training, and the validation set is selected from the actual data in order to guarantee
true measurement.

Noise is mainly characterized by three characteristics: 1-mean, 2-variance,
3-density, and 4-fashion. In this paper, the noise is characterized by zero mean
value and scattered through normal distribution around each actual sample, inde-
pendent from the other actual samples.

Noise injection is employed to produce pseudo-training or pseudo-validation
data sets for enriching the sample sets. It can be done by adding random zero mean
vectors to training data set (Yulei Jiang et al. 2009). According to (Yulei Jiang et al.
2009), to make pseudo sets, a zero mean and small covariance noise vector can be
added to the training data set:

SNI ¼ SP þ N ð1Þ

where SP is the actual training samples, N is the noisy data added to the actual
training samples, and SNI the increased training sample set polluted by noise.

From now on, the entire process before measuring nMSE is performed on the
noisy data as the pseudo-training set. Implementation of the IDS operator requires
regarding a d % margined operation board to provide continuity through fuzzy
membership propagation. The operation board is a 2D board which enables the IDS
operator to propagate fuzzy membership from actual data sample around to make a
continuous fuzzy area.

The domain of ith S.I.S.O. sub-system for IDS operation board is defined as:

DXi : xjminðXiÞ\x\maxðXiÞ
DY : yjminðYÞ\y\maxðYÞ

(
; ð2Þ

where DXi and DY are the domains of the input and the output of ith the S.I.S.O.
system (Xi-Y).

Therefore, the domain of d% margined domain is regarded through:

D
X

_

i

: xjminðXiÞ �margind%Xi
\x\maxðXiÞ þmargind%Xi

D
Y

_ : yjminðYÞ �margind%Y \y\maxðYÞ þmargind%Y

8<
: ; ð3Þ

236 F. Bahrpeyma et al.



where margind%X is calculated by:

margind%X ¼ maxðXiÞ �minðXiÞ½ � � d
100

: ð4Þ

Finally, for an M �M board, each unit UM

X

_

i

;UM
�Y

� �
in ith S.I.S.O. sub-system is

calculated by:

UM

X

_

i

¼ maxðX_ iÞ �minðX_ iÞ
M

UM

Y

_ ¼ maxðY_Þ �minðY_Þ
M

8>>>><
>>>>:

: ð5Þ

For applying the IDS operator on the 2D planes of each S.I.S.O. system (which
is polluted by noise), the fuzzy membership l which is propagated by each sample
to the neighborhood is attenuated by distance. In this paper, attenuation is imple-
mented through a linear function:

l ¼ R�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
þ 1;�R� u; v�R;

Ddðxs þ u; ys þ vÞ )
l; if l[ 0

0; otherwise

(
;

ð6Þ

where R is the radius of the IDS operator, ðxs; ysÞ is the coordinates of the propa-
gator, ðu; vÞ is the distance between the receiver and:

Ddðxs þ u; ys þ vÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
: ð7Þ

After forming the IDS planes, to extract the NP wðxÞ, the COG operator is
applied on the IDS plane:

wðxÞ ¼
P

j2YðxÞ ljYjP
j2YðxÞ Yj

; ð8Þ

where Y is the output axis of the operation board.
The NPs are in fact the candidate S.I.S.O. models for the current (localized) M.I.

S.O. system which should be unified/aggregated to provide a true M.I.S.O. model.
Therefore, a weighted averaging is employed as an interpolation mechanism to
aggregate the candidate S.I.S.O. models:

yfinal ¼
Pm

k¼1 wkykPm
k¼1 wk

; ð9Þ
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In the weighted averaging of Eq. 9, the weight, as confidence level (CL),
devoted to each S.I.S.O. candidate model corresponds to the reciprocal value of the
spread:

wk ¼ 1
Spreadk

: ð10Þ

The Spread is calculated by

Spreadk ¼
1
n

Xn
i¼1

ðwkðxki Þ � yiÞ2; ð11Þ

where xki and yi are the coordinates of ith data point and wk is the projection of the
ith point on kth NP.

At the end of IDS modeling process, if nMSE is greater than the predetermined
threshold, the recursive algorithm of ALM divides data into two partitions from the
midpoint of the input sub-domain in which its CL has the greatest value. This
heuristic helps at least preserving the most reliable S.I.S.O. model for the two
resulting subsets.

4 Experimental Results

This section describes and discusses the experimental results of employing noise
injection for improving the generalization ability of ALM when is used for esti-
mating FZI with the small sample size problem.

4.1 Data Preparation

Jude et al. (1993) presented a theoretical methodology to identify the flow units. He
defined a concept called FZI, which is a unique and useful value to quantify the
flow character of a reservoir and one that offers a relationship between petro-
physical properties at small scale, such as core plugs, and large scale, such as well
bore level. FZI is defined by the following equation:

FZI ¼ 1ffiffiffiffiffi
Fs

p� �
sSgv

¼ RQI
/Z

; ð12Þ

where Fs is the pore throat shape factor, s is the tortuosity, and Sgv is the effective
surface area per unit grain volume. RQI is the reservoir quality index defined below.
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RQI ¼ 0:0314

ffiffiffiffiffiffi
K
/Z

s
; ð13Þ

where K is permeability and /Z is the pore volume (/) to grain volume ratio
defined as

/Z ¼ /
1� /

; ð14Þ

The above parameters were derived from a modified form of the Kozeny–
Carmen relation.

The present study used available data sets of two wells with name of well A and
well B from a carbonate reservoir in Persian Gulf. These wells contain both log and
core data. Core and log porosity values were plotted with respect to depth in order
to check whether the data need any depth shifts. Three most commonly logs were
selected as input to estimate FZI. These logs are neutron porosity (NPHI), sonic
(DT), and density (RHOB). Data from well A were used for the training the model
(with 720 data samples) while data from well B were used for testing the reliability
of the model (with 85 data points).

4.2 Numerical Results

In this paper, two statistical evaluation criteria were used to assess the model
performance including correlation coefficients (R) and mean square error (MSE):

1. The correlation coefficient ranges between 0 and 1 which defined as:

R ¼
1
N

PN
i¼1 Yi � �Tð Þ Ti � �Yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N

PN
i¼1 Yi � �Tð Þ2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
i¼1 Ti � �Yð Þ2

q ð15Þ

where Ti and ui represents the measured and estimated FZI for training data or
testing data i, respectively, while T and u are the mean value of measured and
estimated FZI, respectively, and n is the number of data in the training or
testing data set.
Higher values of R indicate the better performance of the model. Legates and
McCabe (David and Gregory 1999) argued that this indicator should not be
applied as fitness measure alone, and it is appropriate to quantify the error in
the same unit as for the variables.

(2) The mean square error (MSE) is one of the most commonly used measures of
success for numeric estimation, computed by taking the average of the squared
differences between each estimated FZI and its corresponding measured FZI.
It is defined as:
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nMSE ¼
PN

i¼1 ðYi � TiÞ2PN
i¼1 ðYi � �YÞ2

; ð16Þ

Model performance increases as MSE decreases.

For implementation of the IDS operator, the operation board is considered as a
256 × 256 board with the radius of 8 for fuzzy membership propagation. For the
experiments, noise injection has been characterized by zero mean value and vari-
ance of 8 units in the operation board for the I–O domain of the S.I.S.O. systems.
The final result is the average of 5 experiments in order to reduce the possible
impact of noise in training process. At each stage of recursion, noise is added
independently to each projected S.I.S.O. so as to eliminate the impact of “the
history of noise” in the modeling process.

According to the algorithm, through the modeling process of IDS method, for
each recursion, FZI should be projected into some 2D planes with respect to the
input parameters (DT, NPHI, and RHOB). Therefore, the three-input single-output
system is converted into three S.I.S.O. sub-systems. The first application of

Fig. 8 The application of IDS operator on the projected Xi–Y data planes. a Applying IDS
operator on DT-FZI plane b Applying IDS operator on NPHI-FZI plane c Applying IDS operator
on RHOB-FZI plane
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IDS operator (in the first recursion) on the projected noisy data planes is illustrated
in Fig. 8.

ALM tries to reach a predetermined value of generalization error, and until the
acquisition of this purpose, the process continues recursively and localized the IDS
modeling procedure. In this experiment, ALM took 12 localization levels and noise-
injected ALM (NIALM) took 13 localization levels to converge into a stable state.
After convergence when no changes in the performance is observed, ALM stops the
recursion and returns the simulated outputs.

Figure 9 illustrates the convergence process of ALM and NIALM convergence
to the final state for R and nMSE when regarding maximum of 20 levels for
localization.

Figure 10 illustrates R for the final results of ALM and noise-injected ALM
(NIALM).

Figure 11 illustrates a comparison between the performance of some popular
methods such as ANN, RBFN, FL, and Neuro-Fuzzy (which are provided by the
MATLAB toolboxes) with ALM and NIALM to demonstrate the effectiveness of
noise injection into ALM process.
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Fig. 9 The learning procedure of ALM and reaching the final state for R and nMSE
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Fig. 10 R for ALM and NIALM. a R of ALM, b R of NIALLM
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Fig. 11 Comparison between ALM, NIALM and some popular methods. a R, b nMSE
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Results illustrated in Fig. 11 shows noise injection improves the performance of
ALM while both ALM and NIALM express better modeling ability for FZI in
comparison with conventional modeling techniques.

5 Conclusions

In this paper, utilization of noise injection technique is addressed to improve the
performance of ALM for estimating HFUs in a small sample set. While early
stopping, which is used by ALM as the overfitting avoidance strategy, suffers from
low performance when insufficiency in data samples is observed, noise injection
technique helps improving the performance of early stopping when separation of
data samples set into training, validation, and test sets degrades the generalization
ability of ALM modeling process as a learning technique. Results exhibit satis-
factory performance in comparison with use of original ALM and other conven-
tional modeling technique such as ANN, FL, NF, and RBFNN. Increasing nMSE
and R by 20 and 10 %, respectively, is a significant improvement which is the result
of employing noise injection inside the modeling process of ALM.
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Well Log Analysis by Global
Optimization-based Interval
Inversion Method

Mihály Dobróka and Norbert Péter Szabó

Abstract Artificial intelligence methods play an important role in solving an
optimization problem in well log analysis. Global optimization procedures such as
genetic algorithms and simulated annealing methods offer robust and highly
accurate solution to several problems in petroleum geosciences. According to
experience, these methods can be used effectively in the solution of well-logging
inverse problems. Traditional inversion methods are used to process the borehole
geophysical data collected at a given depth point. As having barely more types of
probes than unknowns in a given depth, a set of marginally over-determined inverse
problems has to be solved along a borehole. This single inversion scheme repre-
sents a relatively noise-sensitive interpretation procedure. For the reduction of
noise, the degree of over-determination of the inverse problem must be increased.
To fulfill this requirement, the so-called interval inversion method is developed,
which inverts all data from a greater depth interval jointly to estimate petrophysical
parameters of hydrocarbon reservoirs to the same interval. The chapter gives a
detailed description of the interval inversion problem, which is solved by a series
expansion-based discretization technique. Different types of basis functions can be
used in series expansion depending on the geological structure to treat much more
data against unknowns. The high degree of over-determination significantly
increases the accuracy of parameter estimation. The quality improvement in the
accuracy of estimated model parameters often leads to a more reliable calculation of
hydrocarbon reserves. The knowledge of formation boundaries is also required for
reserve calculation. Well logs do contain information about layer thicknesses,
which cannot be extracted by the traditional local inversion approach. The interval
inversion method is applicable to derive the layer boundary coordinates and certain
zone parameters involved in the interpretation problem automatically. In this
chapter, it is analyzed how to apply a fully automated procedure for the determi-
nation of rock interfaces and petrophysical parameters of hydrocarbon formations.
Cluster analysis of well-logging data is performed as a preliminary data processing
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step before inversion. The analysis of cluster number log allows the separation of
formations and gives an initial estimate for layer thicknesses. In the global inversion
phase, the model including petrophysical parameters and layer boundary coordi-
nates is progressively refined to achieve an optimal solution. The very fast simu-
lated re-annealing method ensures the best fit between the measured data and
theoretical data calculated on the model. The inversion methodology is demon-
strated by a hydrocarbon field example, which shows an application for shaly sand
reservoirs. The theoretical part of the chapter gives a detailed mathematical for-
mulation of the inverse problem, while the case study focuses on the practical
details of its solution by using artificial intelligence tools.

Keywords Well-logging � Interval inversion � Global optimization � Simulated
annealing � Cluster analysis � Calculation of hydrocarbon reserves � Hungary

1 Introduction

Geophysical surveying methods with their measuring and evaluation results support
the exploration of the Earth and its outer environment. Borehole geophysics is
abounding in observed information on the geological formations that are intersected
by the drill hole. Well-logging data measured by different probes are recorded along
depth in the form of well logs. The processing of open-hole logging data enables to
determine some geometrical (e.g., thickness or dip of layers) and petrophysical
properties such as porosity, water saturation, composition of rock matrix, and
permeability that form an integral part of geological interpretation. Nowadays, there
is an ever-increasing claim to the quality of well logs and interpretation results. This
is especially important in oil field applications, where a precise calculation of
hydrocarbon reserves should be made in complex geological environments.

The advent of inverse modeling (abbreviated as inversion)-based data processing
methods was facilitated by the quick evolution of well-logging interpretation sys-
tems in the 1980s. In the early years, deterministic techniques solving linear sets of
equations or using cross-plot-based graphical methods were applied. These methods
gave a solution in several consecutive steps at which the petrophysical parameters
were extracted one by one in different procedures (Serra 1984). It was the increased
storage capacity and processor speed of computers that promoted the use of
simultaneous processing of well logs. The benefit of using the data and petro-
physical parameters as statistical variables was unequivocal in the improvement of
the quality of interpretation results. Nowadays, the inversion methods are widely
used in the petrophysical practice as they give a quick, largely automatic and
reliable estimate to the vertical distributions of petrophysical parameters and their
estimation errors. The biggest service companies offer inversion-based well-logging
interpretation systems, e.g., Global by Schlumberger (Mayer and Sibbit 1980),
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Ultra by Gearhart (Alberty and Hashmy 1984), or Optima by Baker Hughes (Ball
et al. 1987). The development of these methods is strongly focused in scientific
research, too.

Local inversion is the most commonly used technique for the evaluation of
borehole geophysical data. Several implementations used in the oil and gas industry
are well-known. They have in common that a local value of any petrophysical
property is estimated to one depth point using the data measured by different probes
in the same depth. In the terminology of geophysical inversion, it is a narrow type
of over-determined inverse problem, where the total number of data is barely more
than that of the unknown model parameters. The data and the model are connected
by probe response functions that are used to calculate theoretical logs in the forward
modeling phase of the inversion procedure. By assuming a petrophysical model,
one can calculate theoretical well logs, which are then compared with real mea-
surements. The actual model is progressively refined until a proper fit is achieved
between the predictions and observations. Local data processing comprises a set of
separate inversion runs in adjacent measuring points for the logging interval. It is a
general experience that in the inversion of small number of observations, the
inversion result is strongly influenced by the uncertainty of measured data. The
noise of data highly affects the quality of parameter estimation; thus, the accuracy
and reliability of local inversion results are relatively limited. The measurement
accuracy of logging tools is prescribed that can be improved seldom with the use of
any data processing method. It is a fundamental task to reduce the amount of
estimation errors of inversion parameters. In one hand, one can develop more
realistic probe response functions. This also means that one tends to set a model
approximating the geological structure better. As a result, one can calculate such
data by the response functions that are closer to the real observations. Petrophysical
research deals with the development of these types of procedures that reduces the
model errors. By the above contexture, it is unequivocal that another alternative to
improve the quality of parameter estimation can only be facilitated by the further
development of the inversion procedures. The most important requirement of the
development is the improvement of accuracy and reliability of parameter estima-
tion. For this purpose, the most essential task is the increase of data used in one
interpretation procedure. In the framework of local inversion, it leads to the
expansion of log types, which is of course restricted and implies additional charges.
There is a more effective technique to increase the number of data without extra
cost. In the so-called interval inversion procedure, all data of a longer logging
interval are processed jointly to determine the characteristic values of petrophysical
parameters of several rock units. As a result of the formulation of the interval
inversion problem, at least one order of magnitude higher number of data than
unknowns can be processed together compared with local inversion. This bears
great influence on the accuracy and reliability of the extracted petrophysical
parameters. The interval inversion method was introduced in Dobróka (1995),
where depth-dependent probe response functions were used (instead of local ones)
in the forward problem to give an estimate to the vertical distributions of petro-
physical parameters for the entire logging interval. The interval inversion procedure
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allows to treat increasing number of inversion unknowns without significant
decrease of over-determination (data-to-unknowns) ratio. As a new feature, addi-
tional unknowns can be determined together with conventional petrophysical
parameters in the same inversion procedure. In Dobróka and Szabó (2012), the
possibilities of the determination of formation thicknesses were studied, where the
starting model for layer-boundaries was set by external procedure. In this chapter,
we suggest a fully automatic inversion strategy using a series expansion-based
parameter discretization scheme to estimate the formation boundary coordinates
and petrophysical parameters in one inversion procedure for a more objective
calculation of hydrocarbon reserves.

2 Inverse Problem of Borehole Geophysics

In well-logging inversion, the model parameters of the geological structure are
determined in the knowledge of measurement data and approximate formulae of
response functions. The aim of interpretation was the lithological separation of
formations and the estimation of layer thicknesses and petrophysical properties of
formations such as effective porosity, water and hydrocarbon saturation, shale
content, mineral volumes, and permeability to infer the quantity and quality of
mineral resources. Among them, only those parameters can be determined by
inversion, which are contained explicitly in the set of probe response functions and
to which almost all types of data are sufficiently sensitive.

The inverse problem of borehole geophysics is classically a joint inversion
problem with the particular feature that the quantities included in probe response
functions can be divided into two groups. The first group comprises the so-called
zone parameters, which are either constants or varying slowly over a longer depth
interval (e.g., pore-water resistivity and cementation exponent). The layer param-
eters form the second group that are nearly constant in a given layer (e.g., porosity
and mineral volume). In the practice of well-logging inversion, the zone parameters
are treated as external constants that are a priori given in the inversion procedure.
This simplification is compulsory in local inversion because the total number of
suitable well logs is no more than 10–12, which sets a limit to the number of
designated unknown quantities. If the zone parameters were treated as unknowns,
an underdetermined (ambiguous) inverse problem would be encountered. In the kth
local response equation

uðkÞ ¼ gðkÞ m1; . . .;mP;M1; . . .;MLð Þ ðk ¼ 1; 2; . . .; SÞ ð1Þ

the layer parameters ðm1; . . .;mPÞ are only determined by inversion, while the zone
parameters ðM1; . . .;MLÞ are fixed during the procedure. On the left side of Eq. (1),
the calculated value of the kth logging data can be found (S is the number of applied
probes). As uðkÞ normally represents a nonlinear functional relationship, thus a
nonlinear over-determined inverse problem is posed in the case of S > P.
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2.1 Theory of Local Inversion

In formulating the local inverse problem, all data measured in a given depth point
are collected in a column vector

d ¼ d1; . . .; dNf gT; ð2Þ

where ðd1; d2; d3. . .Þ represent different types of logs such as natural gamma-ray
intensity, neutron porosity, and density (T is the symbol of matrix transpose). The
theoretical values of the above data can be calculated by the response equations
defined in Eq. (1). Let the computed data be represented by vector

- ¼ u1; . . .;uNf gT; ð3Þ

where the kth response equation is as follows:

uðkÞ ¼ gðkÞðm1; . . .;mPÞ: ð4Þ

The nonlinear functional relationship gðkÞ can be approximated by its Taylor
series truncated at the first order

uðkÞ ¼ uðkÞðmoÞ þ
XP
i¼1

@uðkÞ

@mi

� �
mo
dm; ð5Þ

where the series expansion is performed around point mo, which denotes the vector
of initial model parameters. Equation (5) is expressed in vector representation

- ¼ -ðoÞ þGdm; ð6Þ

where -ðoÞ ¼ -ðmoÞ and Gki ¼ @uk=@mi

� �
mo

is the Jacobi’s (parameter sensitiv-

ity) matrix. The parameter correction vector dm is estimated by the damped least
squares method, which minimizes the Euclidean norm of the following deviation
vector

e ¼ d� -ðoÞ �Gdm ð7Þ

with a side condition that dmj j2 is minimal. The objective function of the inverse
problem is as follows:

E ¼
XN
k¼1

e2k þ k
XP
i¼1

dm2
i ; ð8Þ
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where λ is a positive damping factor. With the substitution of dd ¼ d� -ðoÞ, the
following solution is derived

dm ¼ GTGþ kI
� ��1

GTdd: ð9Þ

By solving Eq. (9), the inversion procedure is continued in a given point of the
model space

m ¼ mo þ dm ð10Þ

until a stopping criterion is met. The local inversion procedure differs from the
Levenberg–Marquardt algorithm only in the consideration of a priori knowledge.
Thence some criteria for the lower and upper bounds of the unknowns as well as for
the sum of the specific volumes of rock constituents (material balance equation)
must be fulfilled. Besides applying these constrains, another program development
question is that any parameter may be set fixed in the iteration procedure. The third
group of unknowns of the well-logging interpretation problem is formed by the
layer boundary coordinates or layer thicknesses. Their role in local inversion is
unique, because they are not contained explicitly in the probe response equations.
Thus, their estimation by local inversion is out of the question. The measurement
data set does contain information on the boundaries that are of great interest in oil
field applications, e.g., in the estimation of hydrocarbon reserves. The determina-
tion of layer-boundaries is realized commonly in well log analysis not within the
inversion procedure.

2.2 Depth-Dependent Response Functions

For the calculation of layer thicknesses and zone parameters, a new inversion
strategy called interval inversion was developed. Consider the petrophysical (layer)
parameters ðm1; . . .;mPÞ as the function of depth. Based on Eq. (4), the kth depth-
dependent response function is as follows:

uðkÞðzÞ ¼ gðkÞ m1ðzÞ; . . .;mPðzÞð Þ: ð11Þ

In the general case, Eq. (11) contains also the functions of zone parameters
ðM1; . . .;MLÞ, which can be determined by the interval inversion method (Dobróka
and Szabó 2011). The discretization of model parameters m1ðzÞ; . . .;mPðzÞ can be
performed by several manners. In the case of layerwise homogeneous model, a
series expansion technique with proper basis functions including the coordinates of

boundaries answers the purpose. Let BðiÞ
1 ; . . .;BðiÞ

Qi

� �
be the series expansion coef-

ficients of the ith model parameter miðzÞ. The response function in Eq. (11) takes
the form as follows:
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uðkÞðzÞ ¼ gðkÞ Bð1Þ
1 ; . . .;Bð1Þ

Q1
; . . .;BðPÞ

1 ; . . .;BðPÞ
QP

; Z1; . . .; ZR; z
� �

; ð12Þ

where ðZ1; . . .; ZRÞ denote the coordinates of layer-boundaries (Qi is the requisite
number of expansion coefficients describing the relevant model parameter). The
above response function is valid in the entire interval, in which the series expansion
coefficients must be chosen in such a way that the values of uðkÞðzÞ in each depth fit
to measurement data dðkÞðzÞ with the highest possible accuracy. The aim of the
inversion procedure was the estimation of coefficients B, in which all data of the
observed interval are inverted. This inverse problem is highly over-determined,
because the number of data is several times higher than that of the unknown
expansion coefficients. In local inversion, the over-determination ratio is at the best
two. On the contrary, in interval inversion the same ratio may reach 50–60. Under
this circumstance, the boundary coordinates ðZ1; . . .; ZRÞ can be treated also as
inversion unknowns to determine them with the expansion coefficients without
significant reduction of the over-determination ratio. The above procedure is called
interval inversion including the depth interval where the series expansion is applied
for the model parameters (Dobróka 1995). It is assumed that dðkÞ in a given depth
represents a punctual data, i.e., the linear dimensions of the observed volume are
smaller than the thickness of layers.

3 The Theory of Interval Inversion Method

In geophysical data processing, the term of joint inversion is used when different
types of data sets are inverted together in one interpretation procedure. The data sets
are measured either by different physical principles or by the same principle but in
various measurement arrays. All data measured at different spread layouts carry
information on the same geological structure. The theoretical values of data sets
integrated into the joint inversion procedure are calculated in the knowledge of all
model parameters by a proper forward modeling algorithm, that is, the data may
depend on each model parameter. The more the parameters of the geological
structure appear in the determination of different data sets, the more successful the
solution to the inverse problem can be given. The use of such data sets that are
depending only on separated groups of model parameters is unbeneficial compared
with independent inversion. In the latter case, the solution will not be more accurate
or reliable at all. The local inversion of well-logging data utilizes several data sets
based on different physical principles (e.g., nuclear, acoustic, and electric methods),
where each datum in the inversion procedure is acquired from the same depth. The
observed datum does not depend on the parameters of outlying layers. In this case,
therefore, the term of joint inversion can be used only in a restricted sense. It can
readily be understood that in the interval inversion approach, it is easy to develop
such procedures that allow to exploit all the advantages of joint inversion.
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For approximating the depth variations of petrophysical parameters
m1ðzÞ; . . .;mPðzÞ, a series expansion technique is suggested as follows:

miðzÞ ¼
XQi

q¼1

BðiÞ
q wq z; Z1; . . .; ZRð Þ; ð13Þ

where BðiÞ
q are expansion coefficients, wqðz; Z1; . . .; ZRÞ are properly chosen (known)

depth-dependent basis functions including the layer-boundaries (Qi is the requisite
number of expansion coefficients describing the ith model parameter). Combining
Eqs. (12) and (13), the total number of unknowns is

P
Qi, while that of the data isP

Nk . Let us define the data vector of the kth well log as follows:

dðkÞ ¼ dðkÞ1 ; . . .; dðkÞNk

n oT
: ð14Þ

The kth data in the jth depth is calculated by

uðkÞ
j ¼ uðkÞðzjÞ ¼ gðkÞ Bð1Þ

1 ; . . .;Bð1Þ
Q1
; . . .;BðPÞ

1 ; . . .;BðPÞ
QP

; zj
� �

ð15Þ

and the vector of calculated data is as follows:

-ðkÞ ¼ uðkÞ
1 ; . . .;uðkÞ

j ; . . .;uðkÞ
Nj

n oT
: ð16Þ

The data vector of the joint inversion problem including S number of well logs is
as follows:

d ¼ dð1Þ1 ; . . .; dð1ÞN1
; dð2Þ1 ; . . .; dð2ÞN2

; . . .; dðSÞ1 ; . . .; dðSÞNs

n oT
; ð17Þ

and the vector of all calculated data analogously is as follows:

- ¼ uð1Þ; . . .;uðSÞ
n oT

: ð18Þ

The series expansion coefficients in Eq. (13) represent the unknowns of the joint
inversion problem, thus the combined parameter vector is as follows:

m ¼ Bð1Þ
1 ; . . .;Bð1Þ

Q1
; . . .;BðPÞ

1 ; . . .;BðPÞ
QP

n oT
; ð19Þ

with which the forward problem can be written as follows:
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- ¼ gðmÞ ¼ gð1Þ1 ðmÞ; . . .; gð1ÞN1
ðmÞ; . . .; gðSÞ1 ðmÞ; . . .; gðSÞNs

ðmÞ
n oT

: ð20Þ

The measurement data are always contaminated with some amount of noise. On
the other hand, the data calculated by Eq. (20) contain modeling errors resulting
from discretization and other physical simplifications. The overall error between the
two quantities is defined as follows:

e ¼ d� gðmÞ; ð21Þ

which is not a zero vector. Inversion methods find a solution at the minimum of
some norm of deviation vector e. The response functions are usually nonlinear,
thence the inverse problem can be solved by either global or linearized inversion
methods.

In case of using linearized inversion, the starting point mo in model space is
considered not too remote from the solution m. The vector of parameter corrections
in Eq. (10) is sought. The calculated data can be approximated by Eq. (5). The kth
element of the deviation vector defined in Eq. (21) is as follows:

ek ¼ dk � ukðoÞ �
XP
i¼1

@gk
@mi

� �
mo

dmi; ð22Þ

where ukðoÞ ¼ gkðmoÞ. By introducing the notation ddk ¼ dk � ukðoÞ and

Gki ¼ @gk=@mi

� �
mo
, the previous vector is as follows:

e ¼ dd�Gdm: ð23Þ

The determination of dm ensures to reach a closer point to the solution. The
optimal estimate can be extracted by an iterative method. The correction of the
actual model in the lth step is as follows:

mðlÞ ¼ mðl�1Þ þ dmðlÞ; ddk ¼ dk � ukðmðl�1ÞÞ; Gki ¼ @gk
@mi

� �
mðl�1Þ

: ð24Þ

If the solution is bound to the minimum of the Lp norm of the deviation vector
given in Eq. (23)

E ¼
XN
k¼1

ddk �
XP
i¼1

Gkidmi

�����
�����
p

; ð25Þ

then the undermentioned set of conditions
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@Lp
@mh

¼ 0 ðh ¼ 1; 2; . . .;PÞ ð26Þ

must be fulfilled. As a result of derivation, a nonlinear set of equations is obtained

dm ¼ GTWG
� ��1

GTWdd; ð27Þ

which can be solved by the iteratively reweighted least squares (IRLS) method that
re-calculates the diagonal elements Wks ¼ ekj jp�2dks of the weighting matrix W in
each iteration step.

3.1 Basis Functions Used in Interval Inversion

The selection of basis functions is not strictly limited, but the finding of suitable
ones may greatly improve the accuracy and reliability of the inversion result. In
case of proper basis functions, a relatively small number of additive terms are
enough to be used, because the effect of truncation in Eq. (13) is negligibly small.
One should tend to reduce the number of expansion coefficients to maintain the
numerical stability of the inversion procedure.

In geophysical inversion, there are several applications of using simple models.
In borehole geophysics, the layerwise homogeneous model is of high importance.
This situation can be described easily by substituting a combination of Heaviside
basis functions into Eq. (13)

miðzÞ ¼
XQi

q¼1

BðiÞ
q wqðzÞ ¼

XQi

q¼1

BðiÞ
q uðz� Zq�1Þ � uðz� ZqÞ
	 


; ð28Þ

where Zq is the depth coordinate of the qth layer and Q is the number of homo-
geneous layers. The basis function wq introduced in Eq. (28) is always zero except
in the qth layer, which is an element of an orthogonal sequence of functions

Zzmax

0

WqWq; dz ¼ 0;
Zq � Zq�1;

�
if
if
q 6¼ q0

q ¼ q0 : ð29Þ

It arises that the series expansion coefficient in the qth layer equals to the

petrophysical parameter in the same layer, that is, BðiÞ
q ¼ miðZq�1\z\ZqÞ. The

series in Eq. (13) can be rewritten as follows:
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miðzÞ ¼
XQi

q¼1

mðiÞ
q WqðzÞ; ð30Þ

where mðiÞ
q is the value of the ith parameter in the qth layer. It is obvious that the

inverse problem can be solved by the smallest possible number of unknowns. On
the other hand, the layer-boundaries appear in the argument of the basis function
wq, which can be extracted by the interval inversion method.

The variation of petrophysical parameters within the layer can be approximated
by polynomial series expansion

miðzÞ ¼
XQi

q¼1

BðiÞ
q PqðzÞ; ð31Þ

where PqðzÞ represents some polynomial, for instance Legendre polynomials. The
meaning of expansion is not demonstrative than in Eq. (30). Similarly, the selection
of parameter Q is less unequivocal. The number of unknowns can be much higher
than in the homogeneous case. A trade-off must be taken between the vertical
resolution of model parameters and the stability of the inversion procedure. To
relieve the task, in some practical cases the combination of Eqs. (30) and (31) is
used to get an adequate solution. If the layerwise homogeneous model contains an
inhomogeneous layer, the following series expansion can be used

miðzÞ ¼
XQi

q ¼ 1
q 6¼ q0

mðiÞ
q WqðzÞ þ

XU
u¼1

BuPu z� Zq0�1
� �

; ð32Þ

where U is the number of additive terms used in the approximation of variation in
the q0th layer. The above problem was solved by Dobróka and Szabó (2005) using a
combined inversion algorithm based on the subsequent use of global and linearized
optimization methods.

3.2 Layer-Thickness Determination by Interval Inversion

The greatly over-determined interval inversion method allows to treat increasing
number of inversion unknowns without significant decrease of accuracy in
parameter estimation. Some groups of the inversion unknowns are contained in
local response functions (e.g., zone parameters); some are not included (layer
thicknesses). The latter can be determined by the interval inversion of the combined
data set defined in Eq. (17). Consider the model vector of the inverse problem
including the layer boundary coordinates
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m ¼ Bð1Þ
1 ; . . .;Bð1Þ

Q1
; . . .;BðPÞ

1 ; . . .;BðPÞ
QP

; Z1; . . .; ZR
n oT

: ð33Þ

The number of unknowns is RþPQi that are substituted into Eq. (12) to calculate
theoretical well logs in the forward problem. The number of data is specified in
Eqs. (17) and (18). The connection between model and data - ¼ gðmÞ contains the
layer boundary coordinates; therefore, Eq. (5) modifies as follows:

uk ¼ gkðmoÞ þ
XP
i¼1

@gk
@mi

� �
mo
dmi þ

XR
r¼1

@gk
@Zr

� �
mo
dZr; ð34Þ

where dZr ¼ Zr � Zð0Þ
r is an element of the model correction vector dm. In Eq. (23),

the following Jacobi’s matrix is used

Gki ¼
@gk
@mi

� �
mo
; if i ¼ 1; 2; . . .;P

@gk
@Zi

� �
mo
; if i ¼ Pþ 1; . . .;Pþ R

:

8><
>: ð35Þ

The minimization of the Lp norm of the deviation vector leads to the solution of
the inverse problem given by Eq. (27). The iterative method gives an estimate for
the series expansion coefficients and layer boundary coordinates. The determination
of layer-boundaries can be made easily by using a series expansion based on
Eq. (28). However, if it is required, the method can be combined with the scheme of
polynomial discretization. The estimation of layer-boundaries can be performed
most efficiently by using a global optimization method.

4 Global Inversion by Simulated Annealing Method

The performance of inversion methods highly depends on how successfully the
optimum of the objective function defined in Eq. (25) is found. Conventional
interpretation systems offer linear optimization tools that give quick and satisfactory
results in case of having a suitable initial model. The weakness of these gradient-
based searching methods is that they tend to find a solution at a local optimum of
the objective function. This problem can be avoided by using a global optimization
method, which finds the absolute optimum of the same function. There is another
typical problem of linear interval inversion. In case of linear optimization, the
partial derivatives with respect to depth in the Jacobi’s matrix can only be deter-
mined in a rough approximation, because the difference quotient with a depth
difference being equal to the distance between two measuring points. This may lead
to a numerically instable inversion procedure. Global optimization does not require
the computation of derivatives. For the solution of global inverse problems,
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artificial intelligence tools can be used effectively. Szabó and Dobróka (2013)
published previously a float-encoded genetic algorithm-based interval inversion
algorithm for oil field and hydrogeological applications. In this study, a fast sim-
ulated annealing (SA) method is suggested for the determination of layer param-
eters and formation thicknesses.

The conventional SA method was developed by Metropolis et al. (1953). In
metallurgy, the removal of work-hardening is realized by a slow cooling manipu-
lation from the temperature of liquid alloy state. This process reduces progressively
the kinetic energy of a large number of atoms with high thermal mobility, which is
followed by the starting of crystallization. Theoretically, the perfect crystal with
minimal overall atomic energy can be produced by an infinitely slow cooling
schedule. This is analogous with the stabilization of the inversion procedure at the
global optimum of the objective function. A quick cooling process causes grating
defects and the solid freezes in imperfect grid at a relatively higher energy state. It is
similar to the trapping of the inversion procedure in a local minimum. However, the
atoms may escape from the high-energy state owing to a special process called
annealing to achieve the optimal crystal grating by a slower cooling process. The
SA algorithm employs this technology to search the global optimum of the
objective (in the terminology energy) function such as E defined in Eq. (25). At
first, the components of the model vector defined in Eq. (33) are modified properly.
The modification of the ith model parameter in the lth iteration step is as follows:

mðlþ1Þ
i ¼ mðlÞ

i þ b; ð36Þ

where b < bmax is a perturbation term (bmax is decreased appropriately as the
iteration procedure progresses). During the random seeking, the energy function E
(m) is calculated and compared with the previous one in every iteration step. The
acceptance probability of the new model depends on the Metropolis criteria

PðDE; TÞ ¼ 1; if DE� 0
e�DE=T ; otherwise

;

�
ð37Þ

where the model is always accepted when the value of energy function is lower in
the new state than that of the previous one. If the energy of the new model
increased, there is also some probability of acceptance depending on the values of
energy E and control temperature T. If P(ΔE) ≥ α fulfills, the new model is
accepted, else it is rejected (α is a random number generated with uniform prob-
ability from the interval of 0 and 1). These criteria assure the escape from the local
minima. Geman and Geman (1984) proved that the following cooling schedule is
the necessary condition to find the global optimum

TðlÞ ¼ T0
lnðlÞ ðl[ 1Þ; ð38Þ
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where T0 is a properly chosen initial temperature. The SA algorithm is very
effective, but the logarithmic reduction of temperature in Eq. (38) is rather time-
consuming. Several attempts were made to shorten the CPU time. Ingber (1989)
proposed a modified SA algorithm called very fast simulated re-annealing (VFSR).
Consider different ranges of variation for each model parameter

mðminÞ
i �mðlÞ

i �mðmaxÞ
i : ð39Þ

The perturbation of the ith model parameter at iteration (l + 1) is as follows:

mðlþ1Þ
i ¼ mðlÞ

i þ yi mðmaxÞ
i � mðminÞ

i

� �
; ð40Þ

where yi is a random number between −1 and 1 generated from a specified non-
uniform probability distribution function. The global optimum is guaranteed when
the decrease of the ith individual temperature follows

T ðlÞ
i ¼ T0;ie

�ci
ffi
lP

pð Þ ð41Þ

Equation (41) specifies different temperature to each model parameter, where T0,i
is the initial temperature of the ith model parameter, ci is the ith control parameter,
and P is the number of model parameters. The acceptance rule of the VFSR
algorithm is the same as that used in Metropolis SA method, but the exponential
cooling schedule assures much faster convergence to the global optimum than the
logarithmic one suggested in Eq. (38).

5 Selection of Initial Model by Cluster Analysis

Multivariate statistical methods such as regression, factor, and cluster analyses help
to find similarities between petrophysical properties of rocks, reduce problem
dimensionality or explore non-measurable (latent) information from the observa-
tions, and arrange data into groups to reveal different lithological characteristics of
the investigated formations. This a priori information can be useful in petrophysical
modeling, facies, or trend analysis and in geophysical inversion to set an initial
model as input for the inversion procedure. Clustering methods are applicable to
sort data into groups in such a way that the S dimensional objects specified by well
logs measured from given depths are more similar than other ones observed from
different depths. From the point of the interval inversion method, it is of great
importance that objects connected to the same cluster define approximately the
same lithological character, while other clusters represent dissimilar ones.

Agglomerative cluster analysis builds a hierarchy from the observations by
progressively merging clusters. At the beginning, we have as many clusters as
individual elements. In the first step, the closest points are coupled together to form
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a new cluster. In each following step, the distances between objects are re-calcu-
lated and the procedure is continued until all elements are grouped into one cluster.
Several distance definitions can be used as a measure of dissimilarity between the
pairs of observed objects such as Euclidean (L2 norm based), Manhattan (L1 norm
based), or Mahalanobis (sample covariance based). During the procedure, the
distances between the elements of the same group are minimized, while they are
maximized between the clusters simultaneously. For the reconnection of clusters,
the Ward’s linkage criterion is followed that minimizes the deviances of (xi − C),
where xi is the ith object and C is the centroid (average of elements) of the given
cluster (Ward 1963). The result of cluster analysis is a dendrogram that shows the
hierarchy of clusters and the connections between them at different distances.

In this study, cluster analysis is used as a preliminary data processing step before
inverse modeling. It is shown in Fig. 1 that clustering makes use of the complete
wellbore data set originated from the entire logging interval. By finding the simi-
larities between the well logs, the objects are grouped into clusters. The log of
clusters correlates well with the lithology variation along a borehole. The change in
the group number of clusters appearing on the log gives the positions of layer-
boundaries, which can be read automatically by computer processing. The esti-
mated layer boundary coordinates as important a priori information for constructing
the initial model serve as input for the interval inversion procedure. In an earlier
study, the layer-boundaries extracted by cluster analysis were fixed during the
interval inversion procedure (Szabó et al. 2013). However, similar to the layer
parameters, the layer boundary coordinates may be treated as unknowns in the
interval inversion procedure.

Fig. 1 Scheme of cluster analysis-assisted global inversion procedure
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6 Oil field Application

6.1 Results of Cluster Analysis

In a Hungarian hydrocarbon borehole (Well No. 1), nine well logs were used for
testing the interval inversion method. The following log types formed the input of
clustering such as caliper (CAL), compensated neutron porosity (CN), gamma–
gamma density (DEN), acoustic (primary wave) interval time (AT), natural gamma-
ray intensity (GR), deep resistivity (RD), microlaterolog resistivity (RMLL), shallow
resistivity (RS), and spontaneous potential (SP). In the first step of the procedure,
hierarchical cluster analysis was applied to find a proper initial model for inversion
processing (Fig. 1). In the processed interval, a sedimentary complex made up of
seven unconsolidated shaly sandy beds were deposited. Three lithological categories
were specified, namely shale, shaly sand, and sand. At this stage of interpretation, this
lithological resolution was enough for finding the layer-boundaries, because the rel-
ative volumes of rock matrix and shale could be estimated in the inversion phase. The
standardized Euclidean distance evaluating each datum in the sum of squares inver-
sely weighted by the sample variance was used for measuring the distance between
data objects. A hierarchical cluster tree was created by using the Ward’s linkage
algorithm (Fig. 2a). In Fig. 2b, the ordinal numbers of leaf nodes can be seen that were
assigned to each object. Since some leaf nodes corresponded to multiple objects, the
total number of nodes was 30. Three clusters can be separated if the tree is cut at
centroid distance 1. The layer-boundaries can be traced out in the well log of cluster
numbers. According to traditional interpretation, the inflection points of high ampli-
tudes in the GR log indicate rock interfaces. The layer boundary coordinates can be
well approximated by the steps between the clusters of sand and shale, i.e., cluster 2
and cluster 3. The depth coordinates indicated by black arrows in Fig. 2c were chosen
as initial model parameters for the subsequent interval inversion procedure.

The combination of well logs usually gives useful information on lithology,
petrophysical, and zone parameters. In Fig. 3, the three-dimensional cross-plots of
clustered well-logging data can be seen which specify several site-specific constants
for calculating data in forward modeling. These constants can be used directly in the
probe response functions. For instance in Fig. 3a, the neutron porosity of sand
(13 %) and shale (25 %) and the natural gamma-ray intensity of sand (45 API) and
shale (140 API) can be chosen for the given hydrocarbon zone. Several observed
data types show strong correlation with each other. In Fig. 3c, d, the nonlinear
connection between natural gamma-ray intensity and resistivity is eye-catching. The
detailed list of correlation relationships between the data is contained by the cor-
relation matrix including the Pearson’s correlation coefficients (Table 1). The
highest correlations are between lithology logs (GR and CAL, SP and GR) and
saturation logs (RS and RD). Porosity-sensitive logs also show strong correlations
with lithology logs (DEN and CAL, SP and CAL, SP and CN, GR and DEN, CN
and GR). The negative elements of the correlation matrix show inverse propor-
tionality between the data variables (GR and SP).
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6.2 Forward Problem of Well-Logging

Themathematical relationships between the petrophysical properties andwell-logging
data are dominantly empirical. In the case study, the parameters of the initial model are
effective porosity (POR), shale volume (VSH), water saturation of the invaded zone
flooded by drilling mud (SX0), water saturation of the virgin zone occupied by
original pore fluid (SW), and sand volume (VSD = 1 – POR − VSH). These
parameters and other derived ones underlie the calculation of hydrocarbon reserves.
The following set of response functions was used to approximate observable data

DENTH ¼ POR SX0 � DEMFð Þ þ ð1� SX0)DEHC½ �
þ VSH � DESHþ VSD � DESD; ð42Þ

GRTH ¼ GRSD þ 1
DENTH

VSH � GRSH � DESH
þ VSD � GRSD � DESD

 !
; ð43Þ

Fig. 2 Results of cluster analysis in Well No. 1. a Dendrogram. b Well log of leaf node numbers.
c Initial layer-thicknesses
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Fig. 3 Clustered data represented in the form of cross-plots in Well No. 1

Table 1 Correlation matrix of well logs measured in Well No. 1

CAL CN DEN AT GR RD RMLL RS SP

CAL 1.0 0.67 0.89 −0.34 0.83 −0.53 0.82 −0.52 −0.74

CN 0.67 1.0 0.68 0.16 0.88 −0.59 0.47 −0.56 −0.76

DEN 0.89 0.68 1.0 −0.51 0.84 −0.58 0.82 −0.59 −0.73

AT −0.34 0.16 −0.51 1.0 −0.01 0.16 −0.51 0.19 0.10

GR 0.83 0.88 0.84 −0.01 1.0 −0.59 0.68 −0.61 −0.81

RD −0.53 −0.59 −0.58 0.16 −0.59 1.0 −0.41 0.92 0.68

RMLL 0.82 0.47 0.82 −0.51 0.68 −0.41 1.0 −0.41 −0.59

RS −0.52 −0.56 −0.59 0.19 −0.61 0.92 −0.41 1.0 0.71

SP −0.74 −0.76 −0.73 0.10 −0.81 0.68 −0.59 0.71 1.0
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CNTH ¼ POR SX0 � CNMFð Þ þ ð1� SX0)CNHC½ �
þ VSH � CNSH þ VSD � CNSD; ð44Þ

ATTH ¼ POR SX0 � ATMFð Þ þ ð1� SX0)ATHC½ �
þ VSH � ATSHþ VSD � ATSD; ð45Þ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RDTH

p ¼ VSH 1�VSH=2ð Þffiffiffiffiffiffiffiffiffiffi
RSH

p þ
ffiffiffiffiffiffiffiffiffiffi
POR

p� �BMffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BA � RWp

" # ffiffiffiffiffiffiffiffi
SW

p� �BN
; ð46Þ

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
RSTH

p ¼ VSH 1�VSH=2ð Þffiffiffiffiffiffiffiffiffiffi
RSH

p þ
ffiffiffiffiffiffiffiffiffiffi
POR

p� �BMffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BA � RMF

p
" # ffiffiffiffiffiffiffiffiffi

SX0
p� �BN

: ð47Þ

On the left side of Eqs. (42)–(47), the theoretical (TH) values of the well-logging
data stand, while on the right, the layer parameters (POR, VSH, SX0, SW, and
VSD) and zone parameters can be found. The latter represent the physical prop-
erties of mud filtrate (MF), water (W), hydrocarbon (HC), shale (SH), and sand
(SD). They are treated as unvarying quantities known from cluster analysis (Fig. 3)
or other a priori information (laboratory and well-site reports). The textural con-
stants, such as cementation exponent (BM), saturation exponent (BN), and tortu-
osity factor (BA), can be estimated from the literature, laboratory data, or the
interval inversion method (Dobróka and Szabó 2011). In complex reservoirs, the
rock matrix may be composed of several mineral components. Depending on the
interpretation problem, the relative volumes of rock constituents can also be
extracted within the interval inversion procedure (Dobróka et al. 2012). By using
the response Eqs. (42)–(47), an estimate for the model (layer) parameters can be
given by the inversion procedure.

6.3 Results of Interval Inversion

The interval inversion procedure was performed on suitable well logs (CN, DEN,
AT, GR, RD, and RS) of Well No. 1. Based on the results of cluster analysis, the
following depth coordinates were chosen as initial model parameters for interval
inversion: 1871, 1880, 1882, 1888, 1890, and 1898 m. The last (seventh) coordinate
was the depth at the bottom of the logging interval. As a result, seven shaly sandy
layers were traced out. Within three permeable intervals, the separation between
DEN and CN logs confirmed the presence of hydrocarbons. In the model
approximation, constant layer parameters (POR, VSH, SX0, and SW) were
assumed (VSD was calculated deterministically in every iteration steps), which
represented a high over-determination ratio (62 with 2100 data, 28 layer parameters,
and 6 boundary coordinates) and very stable inversion procedure.
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The unknowns of the inverse problem were the series expansion coefficients
given in Eq. (28) and the layer boundary coordinates. The VFSR algorithm was
used to give a quick estimate to the global optimum of the L2-norm-based energy
function. The maximal number of iteration steps was set to 10,000. The logarithmic
cooling process based on Eq. (38) was applied with an initial temperature of 0.01.
The lower and upper limits of layer parameters were 0 and 1, respectively. The
layer-boundaries were allowed to vary within 0 and 10 m. The rate of convergence
of the inversion procedure was smooth and progressive as it is seen in Fig. 4, where
the root mean squared errors of the relative differences between the measured and
calculated data were plotted. The data distance of the final result is influenced by
the data noise and the model approximation. In Fig. 5, the change of layer thick-
nesses calculated from the boundary coordinates can be followed. Until the 7000th
iteration step, all thicknesses had attained to their optima. Then, only the layer
parameters showed considerable variation.

In the depth scale of Fig. 6, the boundary coordinates estimated by the interval
inversion procedure are marked. The method distinguished the permeable and non-
permeable intervals within the hydrocarbon zone and gave a proper estimate to rock
interfaces as they correlate well with the layer-boundaries inferred from the GR log.
The well logs of estimated layer parameters are in tracks 6–8. The pore space was
divided into two separate parts filled with salty water and hydrocarbons. The
movable and irreducible hydrocarbon saturation were derived from the inversion
results by basic equations (Movable HC = SX0 − SW, Irreducible HC = 1 − SX0).
The hydrocarbon reserves are estimated from the movable hydrocarbon saturation,
porosity, and the total volume of the reservoir rock. The latter can be estimated

Fig. 4 The convergence of the interval inversion procedure
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Fig. 6 The well logs of observed data and interval inversion results

Fig. 5 The variation of layer-thicknesses during the interval inversion procedure
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from ground geophysical surveys (e.g., seismic) and multi-borehole data. A model
reliable estimate of oil and gas reserves is supported by the results of the interval
inversion procedure. Szabó and Dobróka (2013) made a comparison between the
local and interval inversion methods. It was shown that the estimation error of
porosity and water saturation can be reduced significantly by the interval inversion
method. This improvement bears influence on the calculation of hydrocarbon
reserves. The unit volume of rock was composed of porosity, shale content, and
sand volume in different proportions along the interval (track 7). The absolute
permeability shown in track 8 for each formation was calculated by the knowledge
of porosity and bound water saturation (chosen as 0.1) in the hydrocarbon reser-
voirs (Timur 1968).

7 Conclusions

Advanced data processing methods are essential to extract reliable petrophysical
information from geophysical data sets. An intensive research of inversion methods
is being made worldwide in all fields of geophysics. In oilfield applications, the
proper interpretation of in situ borehole logging data is especially important,
because these methods lay the foundations to hydrocarbon reserve calculations. In
this chapter, a new inversion methodology was presented, which is now fully
automatized by giving an estimate to petrophysical parameters and layer-boundaries
in a joint inversion procedure. The cluster analysis-assisted interval inversion
method assures a greatly over-determined inverse problem to give accurate and
reliable solution along the entire borehole. The specialty of the method is that the
basis functions of series expansion can be chosen arbitrarily. The optimal set of
basis functions to be in use depends on the variation of lithology and pore fluid
types along a borehole. In this study, a layerwise homogeneous model was chosen
to reduce the number of inversion unknowns as far as possible. This approach keeps
the numerical stability of the inversion procedure in view. However, there is
nothing to prevent from the improvement of the vertical resolution of the interval
inversion method, but it goes with the relative increase of the number of series
expansion coefficients. As the problem is highly over-determined, it can be allowed
to some extent. Practically, a trade-off must be taken between the number of
unknowns (resolution) and stability of the inversion (unique solution) procedure as
they are inversely proportional. An adequate solution is to choose orthogonal basis
functions such as Legendre polynomials in the development of series, in which case
the correlation between the estimated model parameters and the parameter esti-
mation errors is relatively the lowest. It is suggested to apply preliminary cluster
analysis to find lithological similarities in the data set, which separates such
intervals where the polynomial discretization can be performed most effectively.
This technical solution leads to the reduction of data and model distances. The
inverse problem also affected by the quality of forward problem solution. In the
probe response equations, there are several zone parameters that could be chosen
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properly for the given well-site. An objective solution can be given by the interval
inversion procedure as the zone parameters most sensitive to data can be treated as
inversion unknowns. Another strength of the method is the possibility to extend the
inverse modeling to multi-borehole applications by expanding the model parame-
ters into series of bivariate basis functions. All of the above properties confirm the
feasibility of the interval inversion methods and the use of global optimization
techniques preferably very fast simulated re-annealing and float-encoded genetic
algorithm in petroleum geoscience applications.
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Permeability Estimation in Petroleum
Reservoir by Meta-heuristics:
An Overview

Ali Mohebbi and Hossein Kaydani

Abstract Proper permeability distribution in reservoir models is very important in
the determination of oil and gas reservoir quality. In fact, it is not possible to have
accurate solutions in many petroleum engineering problems without having accu-
rate values for this key parameter of hydrocarbon reservoir. Permeability estimation
by individual techniques within the various porous media can vary with the state of
in situ environment, fluid distribution, and the scale of the medium under investi-
gation. Recently, attempts have been made to utilize artificial intelligent methods
for the identification of the relationship which may exist between the well log data
and core permeability. This study overviews the different artificial intelligent
methods in permeability prediction with advantage of each method. Finally, some
suggestions and comments to choose the best method are introduced.

1 Introduction

Permeability is defined as a measure of the ability of a porous material to allow
fluids to pass through it (Ahmed 2001). The concept of permeability is vital in
determining precise reservoir description and simulation, which are the most
important means for reservoir management. Permeability is also essential in overall
reservoir management and development for choosing the optimal drainage points
and production rate, optimizing completion and perforation design, and devising
EOR patterns and injection conditions. Therefore, before any modeling or calcu-
lation, this parameter must be determined (Biswas et al. 2003). The most exact
method in permeability prediction is core analysis in a laboratory by application of
Darcy’s law, which is expensive and time consuming (Timur 1968; Saemi et al.
2007). The well testing analysis is another expensive, time-consuming method in
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permeability prediction, which gives the average permeability of the porous media
around the wellbore (Mohebbi et al. 2012).

To overcome these obstacles, different methods for permeability estimation have
been proposed. The oldest method in permeability prediction was empirical cor-
relations between permeability and other petrophysical properties (Timur 1968).
These correlations have been used with some success in sandstone reservoirs
(Weber and Van Geuns 1990); however, for heterogeneous formations, they cannot
be applied (Molnar et al. 1994).

In any oil or gas field, all wells are logged using electrical tools to measure
geophysical parameters. This availability leads the attempts that have been applied
to predict permeability from well log data (Mohaghegh et al. 1994, 1996; Huang
et al. 1996). The complexity, vagueness, and uncertainty existence, in addition to
nonlinear behavior of most reservoir parameters, require a powerful tool to find
relationship between permeability and petrophysical properties of reservoir rock.
Therefore, intelligent techniques or meta-heuristics, such as artificial neural net-
works (ANNs), fuzzy logic (FL), support vector machine (SVM), and genetic
algorithms (GAs), has played a noticeable part in permeability prediction from well
log data. Previous investigations (Mohaghegh and Ameri 1995; Aminzadeh et al.
1999; Mohaghegh et al. 2001; Saemi et al. 2007; Saemi and Ahmadi 2008;
Karimpouli et al. 2010; Al-Anazi and Gates 2010) indicated that intelligent tech-
niques are superior to statistical methods in predicting permeability from well log
data because of their excellent pattern recognition ability. In this chapter, an
overview on different meta-heuristics in permeability prediction was done.

2 Permeability Estimation

Various techniques are available that provide the reservoir permeability estimation
in porous media. There are two generally reliable ways of acquiring knowledge on
rock permeability. These are (1) direct measurements of rock sample (cores) and
analyzing well test data and (2) estimation models that relate permeability to other
petrophysical rock properties. The first methods (e.g., coring and well testing) are
very useful, but they are not sufficient to show the heterogeneity of reservoir,
because, due to intensive time demanding and high cost, it is possible to drill only
limited wells. Also, another restriction can be due to unavailability of cores, missed
cores in certain intervals, etc.

The well testing method for permeability determination is pressure transient
analysis, which provides a volumetrically averaged permeability for the volume of
the reservoir that has been investigated during the test. Tests should be designed so
that they are long enough to achieve reliable and usable data. On the other hand, the
longer the test time, the larger the volume represented by the calculated perme-
ability. In any oil or gas field, all wells are logged using electrical tools to measure
geophysical parameters. This availability leads the attempts that have been applied
to predict permeability from well log data.
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The oldest method in permeability prediction was based on empirical correla-
tions between permeability and other petrophysical properties. These correlations
have been used with some success in sandstone reservoirs. The complexity,
vagueness, and uncertainty existence, in addition to nonlinear behavior of most
heterogeneous reservoir parameters, require a powerful tool to overcome these
challenges. In recent years, meta-heuristics such as ANNs, FL, and GAs has played
a noticeable part in reservoir engineering applications. Each of these methods is
explained briefly below.

2.1 Core Analysis

Coring is an essential part of the reservoir life cycle process, with cored wells
selected to verify or provide maximum information for the geological, engineering,
or production model of the reservoir (Levorsen 1996). Permeability is one of the
parameters that is generally measured in the laboratory on the cored rocks taken
from the reservoir. In this method, permeability is determined primarily by flowing
nitrogen, air, or any nonreactive fluid through the sample. The core plug was
inserted in special holding device such as illustrated in Fig. 1. The permeability can
be determined from obtained data at several flow rates by applying Darcy’s law.
Figure 2 shows typical plotting results with either liquid or gas.

It should be mentioned that a viscous flow is the best satisfied condition in
permeability measurements. Although gas permeability measurements are signifi-
cantly faster and less expensive, the industry is still debating the validity and utility
of gas permeability data for liquid-producing reservoirs because of effect of gas
slippage (or Klinkenberg effect) on permeability measurement (Amyx et al. 1960;
Norman 1984). The effect of overburden on the permeability measurement is also
important. This effect is more pronounced in unconsolidated, low-permeability, and

Fig. 1 A core plug in special holding device illustration for permeability measurement
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fractured samples. Consolidated-sample ambient-pressure permeability can be
corrected for the effect of overburden by applying a correction factor determined by
measuring a few samples at both overburden and ambient conditions (Tiab and
Donaldson 2004; Amyx et al. 1960).

Among different techniques, the permeability obtained from core analysis in
laboratory is more valid than that obtained by the other methods. But, this technique
cannot be widely used from an economic point of view, because of its high cost and
being time consuming. However, the results from this reliable technique were used
as target data to validate other estimation models (Saemi et al. 2007).

2.2 Well Test Analysis

Another popular way to obtaining reservoir permeability is well test analysis. The
data that become available after a carefully designed well test help petroleum
engineers to calculate a volumetric average of the formation permeability, among

Fig. 2 A typical plotting results in permeability measurement with a liquid and b gas
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other parameters such as skin factor and wellbore storage (Prasad et al. 1996;
Jeirani and Mohebbi 2006). The basic of well test technique is to create a pressure
drop in a bottom hole pressure, which causes reservoir fluid to flow in a certain rate
from the reservoir rock to wellbore, followed by shut-in period. The production
period is generally referred as pressure drawdown, whereas the shut-in period is
called pressure buildup. By utilizing some analytical equations, which are solutions
of diffusivity equations, from the response of the pressure versus time (pressure
curve), some of rock properties such as porosity and permeability can be obtained
(Earlougher 1977; Horne 1995). A typical pressure curve response in buildup test is
showed in Fig. 3.

Although it is a valuable and necessary procedure, well testing is not a viable
procedure for any developed reservoirs. Due to its cost of performing the test, in
addition to the loss of production during the test and its limited radius of the
formation investigated around the wellbore, this worthwhile method cannot be
widely used. More information about well test analysis techniques can be found
elsewhere (Matthewe and Russell 1967; Earlougher 1977; Horne 1995).

2.3 Empirical Correlation

The first equation relating petrophysical rock properties to permeability was pro-
posed by Kozeny (1927). The lack of global applicability of his model has led
researchers to modify it, and other parameters in this equation were considered.
This equation was modified by Carman (1937) and expressed as follows:

k ¼ /3=½5S2oð1� /Þ2� ð1Þ

Fig. 3 A typical pressure
curve response in buildup
well testing
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where So is surface area of grains exposed to fluid per unit volume of solid rock and
/ is porosity of the rock. The surface area parameter is the major drawback of this
formula, because it can be determined only by core analysis and obtained only with
special equipment. Tixier (1949) represented a mathematical correlation, which
indicated the influence of resistivity gradients, water saturation, and capillary
pressure on permeability of rock. However, his model is physically limited in scope
by the relative paucity of logs exhibiting valid oil water contacts and the necessity
for estimating the hydrocarbon density as it exists in the reservoir. Wyllie and Rose
(1950) expanded the empirical relationship proposed by Tixier and investigated the
effects of irreducible water saturation and tortuosity on rock permeability. Timur
(1968) derived a similar expression that related permeability to porosity and water
saturation in a generalized form as:

k ¼ A
/B

Scwi
ð2Þ

where A, B, and C are parameters that should be determined statistically. Also, a
similar empirical correlation was proposed by some other investigators (Pirson
1963; Coates and Dumanoir 1974; Coates and Denoo 1981; Bloch 1991). Ahmed
et al. (1991) presented some graphs used for permeability estimation from the
various correlations (Fig. 4). Empirical equations have been used with some suc-
cesses in some sandstone and fracture reservoirs.

Flow zone indicator (FIZ) is another way to estimate rock permeability (Prasad
1999; Perez et al. 2005; Uguru et al. 2005; Bagheripour and Shabaninejad 2011).
FZI is a factor that includes the geological and petrophysical properties for per-
meability prediction. Low FZI can be a sign of fine-grained, poorly sorted sands,
whereas high FZI can indicate clean, coarse-grained and well-sorted sands. Dif-
ferent depositional environments and diagenetic processes control the geometry of
the reservoir and consequently the flow zone index (Amaefule et al. 1993).

Among the available permeability correlations, the hydraulic unit concept is
widely used in permeability prediction. This technique is based on the porosity–
permeability empirical relationship, modified by Amaefule et al. (1993). The
hydraulic unit permeability formula can be expressed as follows:

log RQI ¼ log/n þ log FZI ð3Þ

RQI ¼ 0:314

ffiffiffiffiffi
k
/e

s
ð4Þ

/n ¼
/e

1� /e
ð5Þ
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where FZI is flow zone indicator (µm), /n is normalized porosity index, RQI is
reservoir quality index (µm), /e is effective porosity, and k is permeability (md).
This equation yields a straight line on a log–log plot of RQI versus /n with a unit
slope. The intercept of this line is flow zone indicator. Samples with different FZI
values will lay on parallel lines. By estimation of FZI, the permeability of reservoir
can be calculated according to the following equation:

k ¼ 1014 FZIð Þ2 /3
e

1� /eð Þ2
" #

ð6Þ

Ghafoori et al. (2008) used FZI method for permeability estimation in one of the
Iranian carbonate reservoirs and concluded that this method fails to predict per-
meability over the high permeable intervals.

Although this technique seems to be an ideal tool in permeability estimation, the
vagueness and uncertainty existence, in addition to complex behavior of most
reservoir parameters, caused this method to not be considered as powerful tool to
overcome these challenges (Molnar et al. 1994; Saemi et al. 2007).

Fig. 4 Graphs used for permeability estimation from the various correlations presented by Ahmed
et al. (1991)
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2.4 Meta-heuristics Approaches

Recently, artificial intelligent methods (meta-heuristics) have become a notable part
of petroleum engineering problems. The major reason for this rapid growth and
application of meta-heuristics is their ability to approximate any function in a stable
and efficient way by an inexpensive approach.

ANNs have been increasingly applied to predict reservoir properties using well
log data. Moreover, previous investigations have indicated that ANNs can predict
formation permeability even in highly heterogeneous reservoirs using geophysical
well log data with good accuracy (Mohaghegh et al. 1994; Saemi et al. 2007). In
spite of the wide range of applications, ANNs are still designed through a time-
consuming iterative trial-and-error approach. This leads to a significant amount of
time and effort being expended to find the optimum or near-optimum structure for a
neural network for the desired task. In order to mitigate these deficiencies, design of
neural networks using GAs has been proposed (Dehghani et al. 2008; Kaydani et al.
2011). Fuzzy modeling, as a powerful artificial intelligent method, can model
highly complex nonlinear problems (Taghavi 2005; Ilkhchi et al. 2006). In the next
section, permeability prediction by different artificial intelligent methods is dis-
cussed briefly.

3 Artificial Intelligent Approaches in Permeability
Prediction

Availability of the well log and coring data for the wells in any oil and gas reservoir
leads to attempts that have been applied to predict permeability from them
(Mohaghegh et al. 1994; Malki et al. 1996; Wong et al. 1998; Kumar et al. 2000).
The prediction of permeability in heterogeneous formations from well log data
poses a difficult and complex problem (Saemi et al. 2007). A comprehensive
approach for correlating permeability with geophysical well log data in heteroge-
neous formations was developed by Molnar et al. (1994). This approach combined
gamma ray, deep induction, and compensated bulk density well log responses and
detailed core analysis to subdivide the formation into several zones. Then, a reliable
statistical correlation between permeability and bulk density was developed for
each zone.

Alternatively, ANNs have been increasingly applied to predict reservoir proper-
ties using well log data (Mohaghegh et al. 1994; Mohaghegh and Ameri 1995;
Wiener 1995; Boadu 1997; Arpat et al. 1998; Jamialahmadi and Javadpour 2000;
Chang et al. 2000). ANNs are computing systems based on the interaction of large
numbers of simple processing units, which are called nodes. A typical multilayer
ANN consists of different layer of nodes as shown in Fig. 5. Mohaghegh et al. (1996)
indicated that neural network is a powerful tool for identifying the relationship
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among permeability and geophysical well log data. Moreover, Aminian et al. (2000,
2001) indicated that ANNs can be applied to predict formation permeability even in
highly heterogeneous reservoirs with good accuracy.

In spite of the wide range of applications, neural networks are still designed
through a time-consuming approach. This leads to a significant amount of time and
effort being expended to find the optimum or near-optimum structure for a neural
network in a desired task (Niculescu 2003; Saxena and Saad 2006; Dehghani et al.
2008). In order to mitigate these deficiencies, automatic designs of neural networks
have been proposed by Boozarjomehry and Svrcek (2001). However, these meth-
ods have been applied only for the design of neural networks used for simple tasks
and not for more complex problems.

The researches by Van Rooij et al. (1996) and Vonk et al. (1997) have proposed
the use of evolutionary computation techniques such as GAs in the field of ANNs to
generate an optimal ANN architecture. Huange et al. (2001) and Chena and Lina
(2006) applied this method in permeability estimation from log data and showed
that it is highly effective to apply integrated GAs to ANNs in permeability pre-
diction. However, these works did not cover the optimization of ANN parameters
using GAs. Saemi et al. (2007) proposed a new method, whose design of topology
and parameters of the neural networks as decision variables was done by using GAs
in order to improve the effectiveness of forecasting when ANN is applied to a
permeability predicting problem by a case study in South Pars gas field in Persian
Gulf. Tables 1 and 2 show their results by two methods: trial-and-error approach
and optimization with GA method, respectively. It can be found from these tables
that GA was a good alternative over the trial-and-error approach to determine the
optimal ANN architecture and internal parameters quickly and efficiently. More-
over, Kaydani et al. (2011) estimated permeability based on reservoir zonation by a
hybrid neural GA in one of the Iranian heterogeneous oil reservoirs. They showed
that permeability prediction based on designing separate networks for each zone is
more accurately than designing single network design for all of zones. Tahmasebi

Fig. 5 A typical multilayer ANN with different layer of nodes
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and Hezarkhani (2012) proposed a method along four different neural network
architectures to predict the permeability, and the obtained results were compared
statistically. According to their results, they showed a modular neural network
(MNN) as a new method, which had a very low computational time with high
learning capacity and affordability for permeability prediction.

Kaydani and Mohebbi (2013) presented a comparison study of using optimi-
zation algorithms and ANNs for predicting permeability. They proposed a novel
approach to estimate permeability by combining Cuckoo Optimization Algorithm
(COA), particles swarm, and Imperialist Competitive Algorithms (ICA) with
Levenberg–Marquardt (LM) neural network algorithm in one of the heterogeneous
oil reservoirs in Iran. Figure 6 shows the proposed flowchart of the optimized LM
neural network modeling with optimization algorithms for permeability prediction
in their work. They concluded from a testing data set that the trained COA–LM
neural model can efficiently accomplish permeability prediction. Also, the com-
parison of COA with particle swarm optimization and ICA showed the superiority
of COA on fast convergence and best optimum solution achievement (see Table 3).
COA is a new evolutionary algorithm, proposed by Rajabioun (2011), and was
inspired from special lifestyle of cuckoo birds. COA mimics the breeding behavior
of cuckoos, where each individual searches the most suitable nest to lay an egg in
order to maximize the egg’s survival rate, which is an efficient search pattern.
Application of the COA in different optimization problems has proven its capability
to deal with difficult optimization problems, especially in multi-dimensional
problems. More information about this optimization algorithm is available in lit-
erature (Rajabioun 2011).

Table 1 The performance of
Saemi et al. (2007) testing
data set by trial-and-error
approach

Parameter Performance

MSE 0.3783

NMSE 0.2437

MAE 0.2272

Min absolute error 0.0011

Max absolute error 4.0766

r 0.8579

Table 2 The performance of
Saemi et al. (2007) testing
data set by ANNs
optimization with GA

Parameter Performance

MSE 0.1197

NMSE 0.0453

MAE 0.0681

Min absolute error 0.0001

Max absolute error 1.0864

r 0.989
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Fuzzy set theory, a method to distribute linguistic fuzzy information by math-
ematics, distributes a set by using a membership function and extends the concepts
of classical set theory (Zadeh 1965; Klir and Yuan 1995; Zeng and Singh 1996).
Fuzzy modeling as a powerful meta-heuristics can model highly complex nonlinear
systems, such as multi-input and multi-output problems. It is an established fact that
geosciences disciplines are not clear-cut and, most of the time, are associated with
uncertainties. So, FL can be applied successfully in permeability prediction of
porous media (Cuddy and Putnam 1998; Hambalek and Reinaldo 2003; Taghavi
2005; Lim 2005; Ali et al. 2006; Abdullraheem et al. 2007; Nashawi and Malallah
2010; Olatunji et al. 2011). Ilkhchi et al. (2006) used data from three wells of the
Iran offshore gas field for construction of FL models of the reservoir, and a fourth
well was used as a test well to evaluate the reliability of the models. Their results
showed that FL approach was successful for the prediction of permeability in rocks
of the gas field.

Combination of the explicit knowledge representation of FL and the learning
power of neural nets yields adaptive neural fuzzy inference system (ANFIS), which
can be more useful in prediction of model. Nowadays, neural fuzzy systems have
become more versatile approach to the problem in petroleum engineering

Fig. 6 Flowchart of the
hybrid optimization—LM
neural network proposed by
Kaydani and Mohebbi (2013)

Table 3 Performance of
neural network optimum
model by different
optimization methods

Parameter COA-LM ICA-LM PSO-LM

AAD 0.099 0.104 0.119

NMSE 0. 012 0.017 0.020

R 0.978 0.961 0.943

R-square 0.957 0.924 0.889
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(Nowroozi et al. 2009). One example for using this technique in permeability
prediction was the work done by Gedeon et al. (1997). They incorporated fuzzy IF-
THEN rules into neural networks to interpolate the reservoir properties. Kaydani
et al. (2012) developed a neural fuzzy system for prediction of permeability from
wireline data based on fuzzy clustering in one of the Iranian carbonate reservoirs.
They showed that by using a fuzzy c-means cluster technique in neuro-fuzzy model,
the prediction of permeability in porous media can be improved.

Recent works on artificial intelligence techniques have led to introduce a robust
machine learning methodology, called SVM. SVMs are supervised learning models
with associated learning algorithms that analyze data and recognize patterns. SVMs,
based on the structural risk minimization (SRM) principle (Stitson et al. 1999),
seem to be a promising method for data mining and knowledge discovery. It was
introduced in the early decade of 2000 as a nonlinear solution for classification and
regression tasks (Burbidge et al. 2001; Jeng et al. 2003; Trontl et al. 2007). This
technique aimed at predicting the permeability of the hydrocarbon reservoir
(Al-Anazi and Gates 2010, 2012). As an example, Gholami et al. (2012) utilize the
SVM for predicting the permeability of three gas wells in the Southern Pars field in
Iran. Their results showed that the correlation coefficient between core and pre-
dicted permeability is 0.96 by using the SVM in testing data set, which illustrated in
Fig. 7. Also, comparing the results of SVM with those of a general regression
neural network (GRNN) revealed that the SVM approach is faster and more
accurate than the GRNN in prediction of hydrocarbon reservoirs permeability.

Fig. 7 SVM result for
permeability estimation in
three gas wells (Gholami et al.
2012)
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4 Techniques Interrelationships and Comparisons

The ways for permeability determination can be categorized in two major groups:
conventional and estimation methods. The conventional methods are core analysis
and well test techniques. These methods are very expensive and time consuming.
However, the essential information by conventional methods can be used in esti-
mation methods for permeability determination. The oldest method for permeability
determination is empirical correlations, which related permeability with other
petrophysical properties of reservoir rock such as porosity and water saturation.
Although this technique seems to be an ideal tool in permeability estimation in
sandstone reservoirs, it fails to predict permeability over the high permeable
intervals and heterogeneous formations.

Availability of the well logging data for the most wells in any oil reservoir
motivates the researcher to predict permeability from them by using the multi-linear
regression and artificial intelligent approaches. In these methods for estimation of
permeability, logs and cores data were used as input and target data, respectively.
Intelligent systems, such as neural networks and FL, have much better solutions
than multi-linear regression technique in permeability prediction. Previous inves-
tigations indicated that artificial intelligence provides powerful tools for identifying
the relationship among permeability and geophysical well log data even in highly
heterogeneous reservoirs with good accuracy. In using intelligent techniques, the
validations of coring data are essential and coring operation must be done more
accurate in wells drilled in the reservoir.

In spite of the wide range of applications, a significant amount of time and effort is
being expended to find the optimum or near-optimum structure for artificial system
such as ANNs or ANFIS for the desired task. Tomitigate these deficiencies, design of
them using optimization algorithms such as GA, PSO, and COA has been proposed.
Application of the COA in different optimization problems has proven its capability
to deal with difficult optimization problems, especially in multi-dimensional prob-
lems rather than other optimization algorithms (Rajabioun 2011). Moreover, zoning
the reservoir according to geology characteristics and sorting the data in the same
manner have been made to improve the proficiency of artificial intelligent results in
permeability prediction especially in high heterogeneous reservoirs.

5 Conclusion

Permeability is one of the most important parameters in reservoir characterization,
playing a major role in reservoir simulation, enhanced oil recovery, or well com-
pletion design. Therefore, before any field exploitation and development strategies
design, this vital parameter must be determined. Core analysis provides the best fine
scale permeability measurements. Nevertheless, the coring operations are very
costly and time consuming and impractical to perform in all wells especially in
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horizontal wells. Also, permeability is commonly determined from transient well
test analyses. However, well tests yield an average permeability value for the entire
drainage area of the well.

Empirical correlations were the oldest estimation method for permeability pre-
diction, which seem to be an ideal tool for homogeneous formations that have fairly
constant porosity and grain size. But the complex behavior of most reservoir
parameters caused this method to not be considered as a powerful tool in perme-
ability prediction especially in carbonate formations.

Fortunately, well log responses are widely available in any oil and gas field.
When these data are properly analyzed, wireline logs have the advantage of pro-
viding continuous permeability traces as opposed to scanty, discrete core data.
Artificial intelligent approaches, such as ANNs and FL, are common methods that
use wireline data in permeability prediction, even in high heterogeneous reservoirs,
with good accuracy. The ability of soft computing in approximating virtually any
function in a stable and efficient way caused a rapid growth in recent decade in
permeability prediction. ANNs have been applied more than other soft computing
techniques to predict reservoir performance. But optimum design structure of neural
networks can be obtained with optimization algorithm especially COA, which has
fast convergence in global optima achievement than other optimization algorithms.

Also, permeability prediction based on designing separate networks for each
zone of reservoir according to geology characteristics is more accurate than
designing single network design for all of zones of reservoir.
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