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Preface 

 

Over the years, when reviewing books we found that many had been mainstreamed by 

the publishers in an effort to appeal to everyone, leaving them with very little character.  

There were only a handful of books that had the conceptual and application driven focus 

we liked, and most of those were lacking in other aspects we cared about, like providing 

students sufficient examples and practice of basic skills. The largest frustration, however, 

was the never ending escalation of cost and being forced into new editions every three 

years.  We began researching open textbooks, however the ability for those books to be 

adapted, remixed, or printed were often limited by the types of licenses, or didn’t 

approach the material the way we wanted. 

 

This book is available online for free, in both Word and PDF format.  You are free to 

change the wording, add materials and sections or take them away.  We welcome 

feedback, comments and suggestions for future development at (insert an email address 

here). Additionally, if you add a section, chapter or problems, we would love to hear 

from you and possibly add your materials so everyone can benefit.   

 

In writing this book, our focus was on the story of functions.  We begin with function 

notation, a basic toolkit of functions, and the basic operation with functions: composition 

and transformation.  Building from these basic functions, as each new family of functions 

is introduced we explore the important features of the function: its graph, domain and 

range, intercepts, and asymptotes.  The exploration then moves to evaluating and solving 

equations involving the function, finding inverses, and culminates with modeling using 

the function.   

 

The "rule of four" is integrated throughout - looking at the functions verbally, 

graphically, numerically, as well as algebraically.  We feel that using the “rule of four” 

gives students the tools they need to approach new problems from various angles.  Often 

the “story problems of life” do not always come packaged in a neat equation.  Being able 

to think critically, see the parts and build a table or graph a trend, helps us change the 

words into meaningful and measurable functions that model the world around us. 

 

There is nothing we hate more than a chapter on exponential equations that begins 

"Exponential functions are functions that have the form f(x)=a
x
."  As each family of 

functions is introduced, we motivate the topic by looking at how the function arises from 

life scenarios or from modeling.  Also, we feel it is important that precalculus be the 

bridge in level of thinking between algebra and calculus.  In algebra, it is common to see 

numerous examples with very similar homework exercises, encouraging the student 

to mimic the examples.  Precalculus provides a link that takes students from the basic 

plug & chug of formulaic calculations towards building an understanding that equations 

and formulas have deeper meaning and purpose.  While you will find examples and 

similar exercises for the basic skills in this book, you will also find examples of multistep 

problem solving along with exercises in multistep problem solving.  Often times these 

exercises will not exactly mimic the exercises, forcing the students to employ their 

critical thinking skills and apply the skills they've learned to new situations.  By 



iv 

 

developing students’ critical thinking and problem solving skills this course prepares 

students for the rigors of Calculus. 

 

While we followed a fairly standard ordering of material in the first half of the book, we 

took some liberties in the trig portion of the book.  It is our opinion that there is no need 

to separate unit circle trig from triangle trig, and instead integrated them in the first 

chapter.  Identities are introduced in the first chapter, and revisited throughout. Likewise, 

solving is introduced in the second chapter and revisited more extensively in the third 

chapter.  As with the first part of the book, an emphasis is placed on motivating the 

concepts and on modeling and interpretation. 
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How To Be Successful In This Course 

This is not a high school math course, although for some of you the content may seem 

familiar. There are key differences to what you will learn here, how quickly you will be 

required to learn it and how much work will be required of you. 

 

You will no longer be shown a technique and be asked to mimic it repetitively as the only 

way to prove learning.  Not only will you be required to master the technique, but you 

will also be required to extend that knowledge to new situations and build bridges 

between the material at hand and the next topic, making the course highly cumulative. 

 

As a rule of thumb, for each hour you spend in class, you should expect this course will 

require an average of 2 hours of out of class focused study. This means that some of you 

with a stronger background in mathematics may take less, but if you have a weaker 

background or any math anxiety it will take you more.   

 

Notice how this is the equivalent of having a part time job, and if you are taking a 

fulltime load of courses as many college students do, this equates to more than a full time 

job.   If you must work, raise a family and take a full load of courses all at the same time, 

we recommend that you get a head start & get organized as soon as possible.  We also 

recommend that you spread out your learning into daily chunks and avoid trying to cram 

or learn material quickly before an exam.  

 

To be prepared, read through the material before it is covered in and note or highlight the 

material that is new or confusing.  The instructor’s lecture and activities should not be the 

first exposure to the material.  As you read, test your understanding with the Try it Now 

problems in the book.  If you can’t figure one out, try again after class, and ask for help if 

you still can’t get it.   

 

As soon as possible after the class session recap the days lecture or activities into a 

meaningful format to provide a third exposure to the material.  You could summarize 

your notes into a list of key points, or reread your notes and try to work examples done in 

class without referring back to your notes.  Next, begin any assigned homework.  The 

next day, if the instructor provides the opportunity to clarify topics or ask questions, do 

not be afraid to ask.  If you are afraid to ask, then you are not getting your money’s 

worth!  If the instructor does not provide this opportunity, be prepared to go to a tutoring 

center or build a peer study group. Put in quality effort and time and you can get quality 

results. 

 

Lastly, if you feel like you do not understand a topic.  Don’t wait, ASK FOR HELP! 

 
ASK:  Ask a teacher or tutor, Search for ancillaries, Keep a detailed list of questions 

FOR: Find additional resources, Organize the material, Research other learning options 

HELP: Have a support network, Examine your weaknesses, List specific examples & Practice  

 

Best of luck learning! We hope you like the course & love the price. 

David  & Melonie 
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This book combines content from both Lippman & Rasmussen and Stitz & Zeager. It is 

intended for the educational purposes as intended under the Creative Commons 

Attribution-Share Alike 3.0 United States License 
 

Welcome to the college algebra text for Scottsdale Community 

College! We are combining two open texts to meet our course 

needs. We have the Precalculus text by David Lippman and 

Melonie Rasumussen which will comprise most of the course. 

Then there is a supplementary section beginning on page 312 from 

the College Algebra Book by Carl Stitz and Jeff Zeager. There is a 

table of contents for each section as well as homework problems, 

solutions and indexes.  

 
This custom textbook combines material from two open source books. 

Precalculus: An Investigation of Functions by David Lippman and 
Melonie Rasmussen 
http://www.opentextbookstore.com/precalc/ 
And  
College Algebra by Stitz and Zeager 
http://www.stitz-zeager.com/Precalculus/Stitz_Zeager_Open_Source_Precalculus.html 

Both of these texts are free to use and you may visit their websites for various 

supplements. 

 

 

 

http://www.opentextbookstore.com/precalc/
http://www.stitz-zeager.com/Precalculus/Stitz_Zeager_Open_Source_Precalculus.html
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Section 1.1 Functions and Function Notation 
 
What is a Function? 
The natural world is full of relationships between quantities that change.  When we see 
these relationships, it is natural for us to ask “if I know one quantity, can I then determine 
the other?”  This establishes the idea of an input quantity, or independent variable, and a 
corresponding output quantity, or dependent variable.  From this we get the notion of a 
functional relationship: in which the output can be determined from the input.    
 
For some quantities, like height and age, there are certainly relationships between these 
quantities.  Given a specific person and any age, it is easy enough to determine their 
height, but if we tried to reverse that relationship and determine height from a given age, 
that would be problematic, since most people maintain the same height for many years.  
 
 
Function 

Function:  A rule for a relationship between an input, or independent, quantity and an 
output, or dependent, quantity in which each input value uniquely determines one 
output value.  We say “the output is a function of the input.” 

 
 
Example 1 

In the height and age example above, is height a function of age?  Is age a function of 
height? 
 
In the height and age example above, it would be correct to say that height is a function 
of age, since each age uniquely determines a height.  For example, on my 18th birthday,  
I had exactly one height of 69 inches.   
 
However, age is not a function of height, since one height input might correspond with 
more than one output age. For example, for an input height of 70 inches, there is more 
than one output of age since I was 70 inches at the age of 20 and 21.  
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Example 2 
At a coffee shop, the menu consists of items and their prices.  Is price a function of the 
item?  Is the item a function of the price? 
 
We could say that price is a function of the item, since each input of an item has one 
output of a price corresponding to it.  We could not say that item is a function of price, 
since two items might have the same price. 

 
 
Example 3 

In many classes the overall percentage you earn in the course corresponds to a decimal 
grade point.  Is decimal grade a function of percentage?  Is percentage a function of 
decimal grade?   
 
For any percentage earned, there would be a decimal grade associated, so we could say 
that the decimal grade is a function of percentage. That is, if you input the percentage, 
your output would be a decimal grade.  Percentage may or may not be a function of 
decimal grade, depending upon the teacher’s grading scheme.  With some grading 
systems, there are a range of percentages that correspond to the same decimal grade. 

 
 
One-to-One Function 

Sometimes in a relationship each input corresponds to exactly one output, and every 
output corresponds to exactly one input.  We call this kind of relationship a one-to-one 
function. 

 
 
From Example 3, if each unique percentage corresponds to one unique decimal grade 
point and each unique decimal grade point corresponds to one unique percentage then it 
is a one-to-one function. 
 
 
Try it Now 

Let’s consider bank account information. 
1. Is your balance a function of your bank account number?  
(if you input a bank account number does it make sense that the output is your balance?) 
 
2.  Is your bank account number a function of your balance? 
(if you input a balance  does it make sense that the output is your bank account number?) 

 
 
Function Notation 
To simplify writing out expressions and equations involving functions, a simplified 
notation is often used.  We also use descriptive variables to help us remember the 
meaning of the quantities in the problem. 
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Rather than write “height is a function of age”, we could use the descriptive variable h to 
represent height and we could use the descriptive variable a to represent age. 
 
“height is a function of age”  if we name the function f we write 
“h is f of a”       or more simply 
h = f(a)      we could instead name the function h and write 
h(a)    which is read “h of a” 
 
Remember we can use any variable to name the function; the notation h(a) shows us that 
h depends on a.  The value “a” must be put into the function “h” to get a result.  Be 
careful - the parentheses indicate that age is input into the function (Note: do not confuse 
these parentheses with multiplication!).   
 
 
Function Notation 

The notation output = f(input) defines a function named f.  This would be read “output 
is f of input” 

 
 
Example 4 

Introduce function notation to represent a function that takes as input the name of a 
month, and gives as output the number of days in that month. 
 
The number of days in a month is a function of the name of the month, so if we name 
the function f, we could write “days = f(month)” or  d = f(m). If we simply name the 
function d, we could write  d(m) 
 
For example, d(March) = 31, since March has 31 days. The notation d(m) reminds us 
that the number of days, d (the output) is dependent on the name of the month, m (the 
input) 

 
 
Example 5 

A function N = f(y) gives the number of police officers, N, in a town in year y.  What 
does f(2005) = 300 tell us? 
 
When we read f(2005) = 300, we see the input quantity is 2005, which is a value for the 
input quantity of the function, the year (y). The output value is 300, the number of 
police officers (N), a value for the output quantity. Remember N=f(y).  So this tells us 
that in the year 2005 there were 300 police officers in the town. 

 
 
Tables as Functions 
Functions can be represented in many ways:  Words, as we did in the last few examples, 
tables of values, graphs, or formulas.  Represented as a table, we are presented with a list 
of input and output values.   

13
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In some cases, these values represent everything we know about the relationship, while in 
other cases the table is simply providing us a few select values from a more complete 
relationship. 
 
Table 1:  This table represents the input, number of the month (January = 1, February = 2, 
and so on) while the output is the number of days in that month. This represents 
everything we know about the months & days for a given year (that is not a leap year) 
 

(input) Month 
number, m 

1 2 3 4 5 6 7 8 9 10 11 12 

(output) Days 
in month, D 

31 28 31 30 31 30 31 31 30 31 30 31 

 
Table 2:  The table below defines a function Q = g(n).  Remember this notation tells us g 
is the name of the function that takes the input n and gives the output Q. 
 

n 1 2 3 4 5 
Q 8 6 7 6 8 

 
Table 3:  This table represents the age of children in years and their corresponding 
heights.  This represents just some of the data available for height and ages of children. 
 

(input) a, age 
in years 

5 5 6 7 8 9 10 

(output) h, 
height inches 

40 42 44 47 50 52 54 

 
 
Example 6 

Which of these tables define a function (if any), are any of them one-to-one? 
 

 
The first and second tables define functions.  In both, each input corresponds to exactly 
one output.  The third table does not define a function since the input value of 5 
corresponds with two different output values. 
 
Only the first table is one-to-one; it is both a function, and each output corresponds to 
exactly one input.  Although table 2 is a function, because each input corresponds to 
exactly one output, each output does not correspond to exactly one input so this 
function is not one-to-one.  Table 3 is not even a function and so we don’t even need to 
consider if it is a one-to-one function. 

 

Input Output 
1 0 
5 2 
5 4 

Input Output 
-3 5 
0 1 
4 5 

Input Output 
2 1 
5 3 
8 6 

14
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Try it Now 
3. If each percentage earned translated to one grade point average would this be a 
function?  

 
 
Solving & Evaluating Functions: 
When we work with functions, there are two typical things we do: evaluate and solve. 
 Evaluating a function is what we do when we know an input, and use the function to 
determine the corresponding output.  Evaluating will always produce one result, since 
each input of a function corresponds to exactly one output.   
 
Solving a function is what we do when we know an output, and use the function to 
determine the inputs that would produce those outputs.  Solving a function could produce 
more than one solution, since different inputs can produce the same output. 
 
 
Example 7 

Using the table shown, where Q=g(n) 
 
a) Evaluate g(3) 
 
Evaluating g(3) (read: “g of 3”) 
means that we need to determine the output value, Q, of the function g given the input 
value of n=3.  Looking at the table, we see the output corresponding to n=3 is Q=7, 
allowing us to conclude g(3) = 7. 
 
b) Solve g(n) = 6 
 
Solving g(n) = 6 means we need to determine what input values, n, produce an output 
value of 6.  Looking at the table we see there are two solutions: n = 2 and n = 4. 
 
When we input 2 into the function g, our output is Q = 6 
 
When we input 4 into the function g, our output is also Q = 6 

 
 
Try it Now 

4. Using the function in Example 7, evaluate g(4) 
 
 
Graphs as Functions 
Oftentimes a graph of a relationship can be used to define a function.  By convention, 
graphs are typically created with the input quantity along the horizontal axis and the 
output quantity along the vertical. 
 

n 1 2 3 4 5 
Q 8 6 7 6 8 
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The most common graph has y on the vertical axis and x on the horizontal axis, and we 
say y is a function of x, or y = f(x) when the function is named f. 
 
 

 
 
 
Example 8 

Which of these graphs defines a function y=f(x)?  Which of these graphs defines a one-
to-one function? 

   
 
Looking at the three graphs above, the first two define a function y=f(x), since for each 
input value along the horizontal axis there is exactly one output value corresponding, 
determined by the y-value of the graph.  The 3rd graph on does not define a function 
y=f(x) since some input values, such as x=2, correspond with more than one output 
value. 
 
Graph 1 is not a one-to-one function.  For example, the output value 3 has two 
corresponding input values, -2 and 2.3 
 
Graph 2 is a one-to-one function, each input corresponds to exactly one output, and 
every output corresponds to exactly one input. 
 
Graph 3 is not even a function so there is no reason to even check to see if it is a one-to-
one function. 

 
 
Vertical Line Test 

The vertical line test is a handy way to think about whether a graph defines the vertical 
output as a function of the horizontal input.  Imagine drawing vertical lines through the 
graph.  If any vertical line would cross the graph more than once, then the graph does 
not define the vertical output as a function of the horizontal input. 

 
 

x

y 
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Horizontal Line Test 

Once you have determined that a graph defines a function, an easy way to determine if 
it is a one-to-one function is to use the horizontal line test.  Draw horizontal lines 
through the graph. If any horizontal line crosses the graph more than once, then the 
graph does not define a one-to-one function. 

 
 
Evaluating a function using a graph requires taking the given input, and using the graph 
to look up the corresponding output.  Solving a function equation using a graph requires 
taking the given output, and looking on the graph to determine the corresponding input. 
 
 
Example 9 

Given the graph below, 
a) Evaluate f(2) 
b) Solve f(x) = 4 

 
a) To evaluate f(2), we find the input of x=2 on the horizontal axis.  Moving up to the 
graph gives the point (2, 1), giving an output of y=1.  So f(2) = 1 
 
b) To solve f(x) = 4, we find the value 4 on the vertical axis because if f(x) = 4 then 4 is 
the output.  Moving horizontally across the graph gives two points with the output of 4: 
(-1,4) and (3,4).  These give the two solutions to f(x) = 4:  x = -1 or x = 3 
This means f(-1)=4 and f(3)=4, or when the input is -1 or 3, the output is 4. 

 
 
Notice that while the graph in the previous example is a function, getting two input 
values for the output value of 4, shows us that this function is not one-to-one. 
 
 
Try it Now 

5.  Using the graph from example 9, solve f(x)=1 
 
Formulas as Functions 
When possible, it is very convenient to define relationships using formulas.  If it is 
possible to express the output as a formula involving the input quantity, then we can 
define a function. 
 

17
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Example 10 

Express the relationship 2n + 6p = 12 as a function p = f(n) if possible. 
 
To express the relationship in this form, we need to be able to write the relationship 
where p is a function of n, which means writing it as p = [something involving n].   
 
2n + 6p = 12    subtract 2n from both sides 
6p = 12 - 2n     divide both sides by 6 and simplify 
 

12 2 12 2 1
2

6 6 6 3

n n
p n


      

 
Having rewritten the formula as p=, we can now express p as a function: 

1
( ) 2

3
p f n n     

 
 
It is important to note that not every relationship can be expressed as a function with a 
formula. 
 
Note the important feature of an equation written as a function is that the output value can 
be determined directly from the input by doing evaluations - no further solving is 
required.  This allows the relationship to act as a magic box that takes an input, processes 
it, and returns an output.  Modern technology and computers rely on these functional 
relationships, since the evaluation of the function can be programmed into machines, 
whereas solving things is much more challenging. 
 
 
Example 11 

Express the relationship 2 2 1x y   as a function y = f(x) if possible. 
 
If we try to solve for y in this equation: 

2 21y x   
21y x    

 
We end up with two outputs corresponding to the same input, so this relationship cannot 
be represented as a single function y = f(x) 

 
 
As with tables and graphs, it is common to evaluate and solve functions involving 
formulas.  Evaluating will require replacing the input variable in the formula with the 
value provided and calculating.  Solving will require replacing the output variable in the 
formula with the value provided, and solving for the input that would produce that output. 
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Example 12 

Given the function 3( ) 2k t t   
a) Evaluate k(2) 
b) Solve k(t) = 1 
 
a) To evaluate k(2), we plug in the input value 2 into the formula wherever we see the 
input variable t, then simplify 

3(2) 2 2k    
(2) 8 2k    

So k(2) = 10 
 
b) To solve k(t) = 1, we set the formula for k(t) equal to 1, and solve for the input value 
that will produce that output 
k(t) = 1           substitute the original formula 3( ) 2k t t    

3 2 1t     subtract 2 from each side 
3 1t     take the cube root of each side 

1t    
 
When solving an equation using formulas, you can check your answer by using your 
solution in the original equation to see if your calculated answer is correct. 
 
We want to know if ( ) 1k t   is true when 1t   . 

3( 1) ( 1) 2k      
          = 1 2   
 =  1 which was the desired result. 

 
 
Example 13 

Given the function 2( ) 2h p p p   
a) Evaluate h(4) 
b) Solve h(p) = 3 
 
To evaluate h(4) we substitute the value 4 in for the input variable p in the given 
function. 
a) 2(4) (4) 2(4)h    
          = 16 + 8 
   = 24 
 
b) h(p) = 3  Substitute the original function 2( ) 2h p p p   

2 2 3p p    This is quadratic, so we can rearrange the equation to get it = 0 
2 2 3 0p p    subtract 3 from each side  
2 2 3 0p p    this is factorable, so we factor it 

19



10  Chapter 1 

 

( 3)( 1) 0p p     
By the zero factor theorem since ( 3)( 1) 0p p   , either ( 3) 0p    or ( 1) 0p    (or 
both of them equal 0) and so we solve both equations for p, finding p = -3 from the first 
equation and  p = 1 from the second equation. 
 
This gives us the solution: h(p) = 3 when p = 1 or p = -3               
 
We found two solutions in this case, which tells us this function is not one-to-one. 

 
 
Try it Now 

6. Given the function ( ) 4g m m   
a. Evaluate g(5) 
b. Solve g(m) = 2 

 
 
Basic Toolkit Functions 
 
In this text, we will be exploring functions – the shapes of their graphs, their unique 
features, their equations, and how to solve problems with them.  When learning to read, 
we start with the alphabet.  When learning to do arithmetic, we start with numbers.  
When working with functions, it is similarly helpful to have a base set of elements to 
build from.  We call these our “toolkit of functions” – a set of basic named functions for 
which we know the graph, equation, and special features. 
 
For these definitions we will use x as the input variable and f(x) as the output variable. 
 
Toolkit Functions 

Linear   
Constant:  ( )f x c , where c is a  constant (number) 
Identity:  ( )f x x  

 
Absolute Value:    xxf )(  

 
Power 

Quadratic:  2)( xxf    

Cubic:   3)( xxf   

 Reciprocal:  
1

( )f x
x

  

Reciprocal squared: 
2

1
( )f x

x
     

Square root:  2( )f x x x   

Cube root:  3( )f x x     
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You will see these toolkit functions, combinations of toolkit functions, their graphs and 
their transformations frequently throughout this book.  In order to successfully follow 
along later in the book, it will be very helpful if you can recognize these toolkit functions 
and their features quickly by name, equation, graph and basic table values.  
 
Not every important equation can be written where y = f(x).  An example of this is the 
equation of a circle.  Recall the distance formula for the distance between two points: 

   2
12

2
12 yyxxdist   

A circle with radius r with center at (h, k) can be described as all points (x, y) a distance 

of r from the center, so using the distance formula,    22 kyhxr  , giving 

 
 
Equation of a circle 

A circle with radius r with center (h, k) has equation    222 kyhxr   
 
 
Graphs of the Toolkit Functions 
 
Constant Function: ( ) 2f x      Identity: ( )f x x   Absolute Value: xxf )(  

  

   
 
 

Quadratic: 2)( xxf    Cubic: 3)( xxf    Square root: ( )f x x  
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Cube root: 3( )f x x  Reciprocal: 
1

( )f x
x

   Reciprocal squared:  

        
2

1
( )f x

x
   

   
 
 
 
Important Topics of this Section 

Definition of a function 
Input (independent variable) 
Output (dependent variable) 
Definition of a one-to-one function 
Function notation 
Descriptive variables 
Functions in words, tables, graphs & formulas 
Vertical line test 
Horizontal line test 
Evaluating a function at a specific input value 
Solving a function given a specific output value 
Toolkit Functions 

 
 
Try it Now Answers 

1. Yes 
2. No 
3. Yes 
4. Q=g(4)=6 
5. x = 0 or x = 2 
6. a. g(5)=1  b. m = 8 

 

22



Section 1.1 Functions and Function Notation 

 

13

Section 1.1 Exercises 
 
1. The amount of garbage, G, produced by a city with population p is given by 

  ( )G f p . G is measured in tons per week, and p is measured in thousands of people.   

a. The town of Tola has a population of 40,000 and produces 13 tons of garbage 
each week. Express this information in terms of the function f. 

b. Explain the meaning of the statement  5 2f   

 
2. The number of cubic yards of dirt, D, needed to cover a garden with area a square 

feet is given by ( )D g a .   

a. A garden with area 5000 ft2 requires 50 cubic yards of dirt.  Express this 
information in terms of the function g. 

b. Explain the meaning of the statement  100 1g   

 
3. Let ( )f t  be the number of ducks in a lake t years after 1990.  Explain the meaning of 

each statement: 

a.  5 30f    b.  10 40f   

 
4. Let ( )h t  be the height above ground, in feet, of a rocket t seconds after launching.  

Explain the meaning of each statement: 

a.  1 200h    b.  2 350h   

 
5. Select all of the following graphs which represent y as a function of x. 

a    b     c  

d    e    f   
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6. Select all of the following graphs which represent y as a function of x. 

a   b   c   

 d  e   f   
  
7. Select all of the following tables which represent y as a function of x. 

a. x 5 10 15 
y 3 8 14 

 

b. x 5 10 15
y 3 8 8 

 

c. x 5 10 10
y 3 8 14

 
8. Select all of the following tables which represent y as a function of x. 

a. x 2 6 13 
y 3 10 10 

 

b. x 2 6 6 
y 3 10 14

 

c. x 2 6 13
y 3 10 14

 
9. Select all of the following tables which represent y as a function of x. 

a. x y 
0 -2 
3 1 
4 6 
8 9 
3 1 

 

b. x y 
-1 -4 
2 3 
5 4 
8 7 
12 11

 

c. x y 
0 -5 
3 1 
3 4 
9 8 
16 13

d. x y 
-1 -4 
1 2 
4 2 
9 7 
12 13 

      
10. Select all of the following tables which represent y as a function of x. 

a. x y 
-4 -2 
3 2 
6 4 
9 7 
12 16 

 

b. x y 
-5 -3 
2 1 
2 4 
7 9 
11 10

 

c. x y 
-1 -3
1 2 
5 4 
9 8 
1 2 

d. x y 
-1 -5 
3 1 
5 1 
8 7 
14 12 
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11. Select all of the following tables which represent y as a function of x and are one-to-
one. 

a. x 3 8 12 
y 4 7 7 

 

b. x 3 8 12
y 4 7 13

c. x 3 8 8 
y 4 7 13 

 
12. Select all of the following tables which represent y as a function of x and are one-to-

one. 
a. x 2 8 8 

y 5 6 13 
 

b. x 2 8 14
y 5 6 6 

c. x 2 8 14 
y 5 6 13 

 
13. Select all of the following graphs which are one-to-one functions. 

a.    b.    c.   

d.   e.    f.   
  
14. Select all of the following graphs which are one-to-one functions. 

a   b   c   

 d  e   f   
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Given the each function ( )f x  graphed, evaluate (1)f  and (3)f  

15.    16.  
 
17. Given the function ( )g x  graphed here, 

a.    Evaluate (2)g  

b. Solve   2g x   

 

18. Given the function ( )f x  graphed here. 

a. Evaluate  4f  

b. Solve ( )  4f x   

 
 

19. Based on the table below, 
a. Evaluate (3)f     b. Solve ( ) 1 f x   
x 0 1 2 3 4 5 6 7 8 9 

( )f x  74 28 1 53 56 3 36 45 14 47

 
20. Based on the table below, 

a. Evaluate (8)f     b. Solve ( )  7f x   
x 0 1 2 3 4 5 6 7 8 9 

( )f x  62 8 7 38 86 73 70 39 75 34

 
For each of the following functions, evaluate:   2f  , ( 1)f  , (0)f , (1)f , and (2)f  

21.   4 2f x x      22.   8 3f x x   

23.   28  7   3f x x x       24.   26  7   4f x x x    

25.   3 2f x x x       26.   4 25f x x x   

27.   3 3f x x       28.   34 2f x x     

29.    2 ( 3)f x x x      30.     2
3 1f x x x    

31.   3

1

x
f x

x





     32.   2

2

x
f x

x





 

33.   2xf x       34.   3xf x   
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35. Suppose   2 8 4f x x x   . Compute the following: 

a. ( 1) (1)f f         b. ( 1) (1)f f   
 

36. Suppose   2 3f x x x   . Compute the following: 

a. ( 2) (4)f f     b. ( 2) (4)f f   
 

37.  Let   3 5f t t   

a. Evaluate (0)f   b. Solve   0f t   

 
38. Let   6 2g p p   

a. Evaluate (0)g   b. Solve   0g p   

 
39. Match each function name with its equation. 

a.  y x  

b.  3y x  

c.  3y x  

d. 
1

y
x

  

e. 2y x  

f. y x  

g. y x  

h. 
2

1
y

x
  

40.  Match each graph with its equation. 

a. y x  

b. 3y x  

c. 3y x  

d. 
1

y
x

  

e. 2y x  

f. y x  

g. y x  

h. 
2

1
y

x
  

 

i. ii. iii. iv. 

 
 
v. 

 
vi. 

 
vii. 

 
viii. 

 

i. Cube root 
ii. Reciprocal 

iii. Linear 
iv. Square Root 
v. Absolute Value 

vi. Quadratic 
vii. Reciprocal Squared 

viii. Cubic 
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41. Match each table with its equation. 
a. 2y x  
b. y x  

c. y x  
d. 1/y x  
e. | |y x  

f. 3y x  

 

  
  
 
 
 
42. Match each equation with its table 

a. Quadratic 
b. Absolute Value 
c. Square Root 
d. Linear 
e. Cubic 
f. Reciprocal 

  
  
  
  
 
 
 
 
43. Write the equation of the circle centered at  (3 , 9 )   with radius 6.  

 
44. Write the equation of the circle centered at  (9 , 8 )   with radius 11.   
 
45. Sketch a reasonable graph for each of the following functions.  [UW] 

a. Height of a person depending on age. 
b. Height of the top of your head as you jump on a pogo stick for 5 seconds. 
c. The amount of postage you must put on a first class letter, depending on the 

weight of the letter. 
 
 
 

i. In Out 
-2 -0.5 
-1 -1 
0 _ 
1 1 
2 0.5 
3 0.33

ii. In Out
-2 -2 
-1 -1 
0 0 
1 1 
2 2 
3 3 

iii. In Out 
-2 -8 
-1 -1 
0 0 
1 1 
2 8 
3 27 

 

    
iv. In Out

-2 4 
-1 1 
0 0 
1 1 
2 4 
3 9 

v. In Out
-2 _ 
-1 _ 
0 0 
1 1 
4 2 
9 3 

vi. In Out 
-2 2 
-1 1 
0 0 
1 1 
2 2 
3 3 

 

i. In Out 
-2 -0.5 
-1 -1 
0 _ 
1 1 
2 0.5 
3 0.33

ii. In Out
-2 -2 
-1 -1 
0 0 
1 1 
2 2 
3 3 

iii. In Out
-2 -8 
-1 -1 
0 0 
1 1 
2 8 
3 27 

 

    
iv. In Out

-2 4 
-1 1 
0 0 
1 1 
2 4 
3 9 

v. In Out
-2 _ 
-1 _ 
0 0 
1 1 
4 2 
9 3 

vi. In Out
-2 2 
-1 1 
0 0 
1 1 
2 2 
3 3 
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46. Sketch a reasonable graph for each of the following functions.  [UW] 
a. Distance of your big toe from the ground as you ride your bike for 10 seconds. 
b. You height above the water level in a swimming pool after you dive off the high 

board.  
c. The percentage of dates and names you’ll remember for a history test, depending 

on the time you study 
 

47. Using the graph shown, 
a. Evaluate ( )f c  

b. Solve  f x p  

c. Suppose  f b z .  Find ( )f z  

d. What are the coordinates of points L and K? 
 
 
 

48. Dave leaves his office in Padelford Hall on his way to teach in Gould Hall. Below are 
several different scenarios. In each case, sketch a plausible (reasonable) graph of the 
function s = d(t) which keeps track of Dave’s distance s from Padelford Hall at time t. 
Take distance units to be “feet” and time units to be “minutes.” Assume Dave’s path 
to Gould Hall is long a straight line which is 2400 feet long.  [UW] 

 
 

a. Dave leaves Padelford Hall and walks at a constant spend until he reaches Gould 
Hall 10 minutes later. 

 
b. Dave leaves Padelford Hall and walks at a constant speed. It takes him 6 minutes 

to reach the half-way point. Then he gets confused and stops for 1 minute. He 
then continues on to Gould Hall at the same constant speed he had when he 
originally left Padelford Hall. 
 

c. Dave leaves Padelford Hall and walks at a constant speed.  It takes him 6 minutes 
to reach the half-way point. Then he gets confused and stops for 1 minute to 
figure out where he is. Dave then continues on to Gould Hall at twice the constant 
speed he had when he originally left Padelford Hall. 
 
 

x 

f(x)

a b c

p 

r 
t 

K

L 
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d. Dave leaves Padelford Hall and walks at a constant speed.  It takes him 6 minutes 
to reach the half-way point. Then he gets confused and stops for 1 minute to 
figure out where he is. Dave is totally lost, so he simply heads back to his office, 
walking the same constant speed he had when he originally left Padelford Hall. 
 

e. Dave leaves Padelford heading for Gould Hall at the same instant Angela leaves 
Gould Hall heading for Padelford Hall. Both walk at a constant speed, but Angela 
walks twice as fast as Dave. Indicate a plot of “distance from Padelford” vs. 
“time” for the both Angela and Dave. 
 

f. Suppose you want to sketch the graph of a new function s = g(t) that keeps track 
of Dave’s distance s from Gould Hall at time t. How would your graphs change in 
(a)-(e)? 
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Section 1.2 Domain and Range  
 
One of our main goals in mathematics is to model the real world with mathematical 
functions.  In doing so, it is important to keep in mind the limitations of those models we 
create.   
 
This table shows a relationship between tree circumference and height.   
 

Circumference, c 1.7 2.5 5.5 8.2 13.7 
Height, h 24.5 31 45.2 54.6 92.1 

 
While there is a strong relationship between the two, it would certainly be ridiculous to 
talk about a tree with a circumference of -3 feet, or a height of 3000 feet.  When we 
identify limitations on the inputs and outputs of a function, we are determining the 
domain and range of the function 
 
 
Domain and Range 

Domain:  The set of possible input values to a function 
Range:  The set of possible output values of a function 

 
 
Example 1 

Using the tree table above, determine a reasonable domain and range. 
 
We could combine the data provided with our own experiences and reason to 
approximate the domain and range of the function h = f(c).  For the domain, possible 
values for the input circumference c, it doesn’t make sense to have negative values, so c 
> 0.  We could make an educated guess at a maximum reasonable value, or look up that 
the maximum circumference measured is 163 feet1.  With this information we would 
say a reasonable domain is 0 163c  feet.   
 
Similarly for the range, it doesn’t make sense to have negative heights, and the 
maximum height of a tree could be looked up to be 379 feet, so a reasonable range is 
0 379h  feet. 

 
 
Example 2 

When sending a letter through the United States Postal Service, the price depends upon 
the weight of the letter2, as shown in the table below.  Determine the domain and range. 

                                                 
1 http://en.wikipedia.org/wiki/Tree, retrieved July 19, 2010 
2 http://www.usps.com/prices/first-class-mail-prices.htm, retrieved July 19, 2010 
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Suppose we notate Weight by w and Price by p, and set up a function named P, where 
Price, p is a function of Weight, w.  p = P(w). 
 
Since acceptable weights are 3.5 ounces or less, and negative weights don’t make sense, 
the domain would be 0 3.5w  .  Technically 0 could be included in the domain, but 
logically it would mean we are mailing nothing, so it doesn’t hurt to leave it out. 
 
Since possible prices are from a limited set of values, we can only define the range of 
this function by listing the possible values.  The range is p = $0.44, $0.61, $0.78, or 
$0.95. 

 
 
Try it Now 

1. The population of a small town in the year 1960 was 100 people.  Since then the 
population has grown to 1400 people reported during the 2010 census. Choose 
descriptive variables for your input and output and use interval notation to write the 
domain and range. 

 
 
Notation 
In the previous examples, we used inequalities to describe the domain and range of the 
functions.  This is one way to describe intervals of input and output values, but is not the 
only way.  Let us take a moment to discuss notation for domain and range. 
 
Using inequalities, such as 0 163c  ; 0 3.5w  and 0 379h   imply that we are 
interested in all values between the low and high values, including the high values in 
these examples. 
 
However, occasionally we are interested in a specific list of numbers like the range for 
the price to send letters,  p = $0.44, $0.61, $0.78, or $0.95.  These numbers represent a set 
of specific values: {0.44, 0.61, 0.78, 0.95} 
 
Representing values as a set, or giving instructions on how a set is built, leads us to 
another type of notation to describe the domain and range. 
 
Suppose we want to describe the values for a variable x that are 10 or greater, but less 
than 30.  In inequalities, we would write 10 30x  .   
 

Letters 
Weight not Over Price 
1 ounce $0.44 
2 ounces $0.61 
3 ounces $0.78 
3.5 ounces $0.95 
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When describing domains and ranges, we sometimes extend this into set-builder 
notation, which would look like this:  |10 30x x  .  The curly brackets {} are read as 

“the set of”, and the vertical bar | is read as “such that”, so altogether we would read 
 |10 30x x   as “the set of x-values such that 10 is less than or equal to x and x is less 

than 30.” 
 
When describing ranges in set-builder notation, we could similarly write something like 
 ( ) | 0 ( ) 100f x f x  , or if the output had its own variable, we could use it.  So for our 

tree height example above, we could write for the range  | 0 379h h  .  In set-builder 

notation, if a domain or range is not limited, we could write  |  is a real numbert t , or 

 | Rt t , read as “the set of t-values such that t is an element of the set of real numbers. 

 
A more compact alternative to set-builder notation is interval notation, in which 
intervals of values are referred to by the starting and ending values.  Curved parentheses 
are used for “strictly less than”, and square brackets are used for “less than or equal to”.  
The table below will help you see how inequalities correspond to set-builder notation and 
interval notation: 
 

Inequality Set Builder Notation Interval notation 
5 10h    | 5 10h h   (5, 10] 

5 10h    | 5 10h h   [5, 10) 

5 10h    | 5 10h h   (5, 10) 

10h    | 10h h   ( ,10)  

10h    | 10h h   [10, )  

all real numbers  | Rh h  ( , )   

 
 
To combine two intervals together, using inequalities or set-builder notation we can use 
the word “or”.  In interval notation, we use the union symbol,  , to combine two 
unconnected intervals together.   
 
 
Example 3 

Describe the intervals of values shown on the line graph below using set builder and 
interval notations. 

  
 

33



24  Chapter 1 

 

To describe the values, x, that lie in the intervals shown above we would say, “x is a real 
number greater than or equal to 1 and less than or equal to 3, or a real number greater 
than 5” 
 
As an inequality it is 1 3 or 5x x    

In set builder notation  |1 3 or 5x x x      

In interval notation, [1,3] (5, )   
 
 
Remember when writing or reading interval notation: 
Using a square bracket [ means the start value is included in the set 
Using a parenthesis ( means the start value is not included in the set  
 
 
Try it Now 

2.  Given the following interval write its meaning in words, set builder notation and 
interval notation. 

 
 
 
Domain and Range from Graphs 
We can also talk about domain and range based on graphs.  Since domain refers to the set 
of possible input values, the domain of a graph consists of all the input values shown on 
the graph.  Remember that input values are almost always shown along the horizontal 
axis of the graph.  Likewise, since range is the set of possible output values, the range of 
a graph we can see from the possible values along the vertical axis of the graph.   
 
Be careful – if the graph continues beyond the window on which we can see the graph, 
the domain and range might be larger than the values we can see. 
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Example 4 
Determine the domain and range of the graph below. 
 

 
 
In the graph above3, the input quantity along the horizontal axis appears to be “year”, 
which we could notate with the variable y.  The output is “thousands of barrels of oil per 
day”, which we might notate with the variable b, for barrels.  The graph would likely 
continue to the left and right beyond what is shown, but based on the portion of the 
graph that is shown to us, we can determine the domain is 1975 2008y  , and the 
range is approximately180 2010b  .   
 
In interval notation, the domain would be [1975, 2008] and the range would be about 
[180, 2010].  For the range, we have to approximate the smallest and largest outputs 
since they don’t fall exactly on the grid lines. 

 
 
Remember that as in the previous example, x and y are not always the input & output 
variables.  Using descriptive variables is an important tool to remembering the context of 
the problem. 
 
 
 
 
 
 
 

                                                 
3 http://commons.wikimedia.org/wiki/File:Alaska_Crude_Oil_Production.PNG, CC-BY-SA, July 19, 2010 
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Try it Now 
3.  Given the graph below write the domain and range in interval notation 
 

 
 
 
Domains and Ranges of the Toolkit functions 
We will now return to our set of toolkit functions to note the domain and range of them. 
If you have completed the project assignment in Section 1.2 you can compare your 
reasonable input values and corresponding output values to the domain and range values 
listed below. 
 
Constant Function, ( )f x c  
The domain here is not restricted; x can be anything.  When this is the case we say the 
domain is all real numbers.  The outputs are limited to the constant value of the function. 
Domain: ( , )   
Range:  [c]    
Since there is only one output value, we list it by itself in square brackets. 
 
Identity Function, ( )f x x  
Domain: ( , )   
Range: ( , )   
 
Quadratic Function, 2( )f x x  
Domain: ( , )   
Range: [0, )  
Multiplying a negative or positive number by itself can only yield positive outputs  
  
Cubic Function, 3( )f x x  
Domain: ( , )   
Range: ( , )   
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Reciprocal, 
1

( )f x
x

  

Domain: ( ,0) (0, )    
Range: ( ,0) (0, )    
We cannot divide by 0 so we must exclude 0 from the domain. 
 

Reciprocal squared, 
2

1
( )f x

x
  

Domain: ( ,0) (0, )    
Range: (0, )  
We cannot divide by 0 so we must exclude 0 from the domain. 
 

Cube Root, 3( )f x x   
Domain: ( , )   
Range: ( , )   
 

Square Root, 2( )f x x , commonly just written as, ( )f x x  
Domain: [0, )  
Range: [0, )  
When dealing with the set of real numbers we cannot take the square root of a negative 
number so the domain is limited to 0 or greater. 
 
Absolute Value Function, ( )f x x  

Domain: ( , )   
Range: [0, )     
Since Absolute value is defined as a distance from 0, the output can only be greater than 
or equal to 0. 
 
 
Piecewise Functions 
In the tool kit functions we introduced the absolute value function ( )f x x .  

With a domain of all real numbers and a range of values greater than or equal to 0, the 
absolute value has been defined as the magnitude or modulus of a number, a real number 
value regardless of sign, the size of the number, or the distance from 0 on the number 
line.  All of these definitions require the output to be greater than or equal to 0. 
 
If we input 0, or a positive value the output is unchanged 

( )f x x     if   0x   
 
If we input a negative value the sign must change from negative to positive. 

( )f x x    if   0x      since multiplying a negative value by -1 makes it positive. 
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Since this requires two different processes or pieces, the absolute value function is often 
called the most basic piecewise defined function. 
 
 
Piecewise Function 

A piecewise function is a function in which the formula used depends upon the domain 
the input lies in.  We notate this idea like: 
 

formula 1 if domain to use function 1

( ) formula 2 if domain to use function 2

formula 3 if domain to use function 3

f x


 



 

 
 
Example 5 

A museum charges $5 per person for a guided tour with a group of 1 to 9 people, or a 
fixed $50 fee for 10 or more people in the group.  Set up a function relating the number 
of people, n, to the cost, C. 
 
To set up this function, two different formulas would be needed.  C = 5n would work 
for n values under 10, and C = 50 would work for values of n ten or greater.   Notating 
this: 

5 0 10
( )

50 10

n if n
C n

if n

 
  

 

 
 
Example 6 

A cell phone company uses the function below to determine the cost, C, in dollars for g 
gigabytes of data transfer. 

25 0 2
( )

25 10( 2) 2

if g
C g

g if g

 
    

 

Find the cost of using 1.5 gigabytes of data, and the cost of using 4 gigabytes of data. 
To find the cost of using 1.5 gigabytes of data, C(1.5), we first look to see which 
function’s domain our input falls in.  Since 1.5 is less than 2, we use the first function, 
giving C(1.5) = $25. 
 
The find the cost of using 4 gigabytes of data, C(4), we see that our input of 4 is greater 
than 2, so we’ll use the second function.  C(4) = 25 + 10(4-2) = $45. 
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Example 7 

Sketch a graph of the function 

2 1

( ) 3 1 2

2

x if x

f x if x

x if x

 
  
 

 

 
Since each of the component functions are from our library of Toolkit functions, we 
know their shapes.  We can imagine graphing each function, then limiting the graph to 
the indicated domain.  At the endpoints of the domain, we put open circles to indicate 
where the endpoint is not included, due to a strictly-less-than inequality, and a closed 
circle where the endpoint is included, due to a less-than-or-equal-to inequality. 

     
 
Now that we have each piece individually, we combine them onto the same graph: 
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Try it Now 
4. At Pierce College during the 2009-2010 school year tuition rates for in-state residents 
were $89.50 per credit for the first 10 credits, $33 per credit for credits 11-18, and for 
over 18 credits the rate is $73 per credit4.  Write a piecewise defined function for the 
total tuition, T, at Pierce College 2009-2010 as a function of the number of credits 
taken, c.  Be sure to consider reasonable domain and range. 

 
 
Important Topics of this Section 

Definition of domain 
Definition of range 
Inequalities 
Interval notation 
Set builder notation 
Domain and Range from graphs 
Domain and Range of toolkit functions 
Piecewise defined functions 

 
 
Try it Now Answers 

1. Domain; y = years [1960,2010] ; Range, p = population,  [100,1400] 
 
2. a. Values that are less than or equal to -2, or values that are greater than or equal to -

1 and less than 3 
      b.  | 2 1 3x x or x       

      c. ( , 2] [ 1,3)     
 
3. Domain; y=years [1952,2002] ; Range, p=population in millions, [40,88] 
 

4. 














18)18(731159

1810)10(33895

105.89

)(

cifc

cifc

cifc

cT   Tuition, T, as a function of credits, c. 

  Reasonable domain should be whole numbers 0 to (answers may vary) 
  Reasonable range should be $0 – (answers may vary) 

 

                                                 
4 https://www.pierce.ctc.edu/dist/tuition/ref/files/0910_tuition_rate.pdf, retrieved August 6, 2010 
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Section 1.2 Exercises 
 

Write the domain and range of the function using interval notation.  
 

1.   2.   
 
Write the domain and range of each graph as an inequality. 

3.  4.  

Suppose that you are holding your toy submarine under the water. You release it and it 
begins to ascend. The graph models the depth of the submarine as a function of time.  
What is the domain and range of the function in the graph? 

5.    6.  
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Find the domain of each function 
 

7.   3 2f x x      8.   5 3f x x   

 

9.   3 6 2f x x       10.   5 10 2f x x       

 

11.   9

  6
f x

x



      12.   6

 8
f x

x



  

 

13.   3 1

4 2

x
f x

x





     14.   5 3

4 1

x
f x

x





 

 

15.   4

4

x
f x

x





    16.   5

6

x
f x

x





  

 

17.   2

 3

 9  22

x
f x

x x




 
    18.   2

8

8  9

x
f x

x x




 
 

 
 
 
Given each function, evaluate: ( 1)f  , (0)f , (2)f , (4)f  

19.  
7 3 0

7 6 0

x if x
f x

x if x

 
   

    20.  
4 9 0

4 18 0

x if x
f x

x if x

 
   

  

 

21.  
2 2 2

4 5 2

x if x
f x

x if x

      
   22.  

34 1

1 1

x if x
f x

x if x

   
 

  

23.  
2

5 0

3 0 3

3

x if x

f x if x

x if x


  
 

   24.  

3 1 0

4 0 3

3 1 3

x if x

f x if x

x if x
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Write a formula for the piecewise function graphed below. 

25.  26.  

27.    28.  

29.  30.  

Sketch a graph of each piecewise function 

31.   2

5 2

x if x
f x

if x

 
 


    32.  

4 0

0

if x
f x

x if x

 


  

33.  
2 0

2 0

x if x
f x

x if x

 
 

 
   34.   3

1 1

1

x if x
f x

x if x

 
  

  

35.  
3 2

1 2 1

3 1

if x

f x x if x

if x

 
     
 

   36.  
3 2

1 2 2

0 2

if x

f x x if x

if x
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Section 1.3 Rates of Change and Behavior of Graphs 
 
Since functions represent how the output quantity varies with the input quantity, it is 
natural to ask how the values of the function are changing.   
 
For example, the function C(t) below gives the average cost, in dollars, of a gallon of 
gasoline t years after 2000. 
 

t 2 3 4 5 6 7 8 9 
C(t) 1.47 1.69 1.94 2.30 2.51 2.64 3.01 2.14 

 
If we were interested in how the gas prices had changed between 2002 and 2009, we 
could compute that the cost per gallon had increased from $1.47 to $2.14, an increase of  
$0.67.  While this is interesting, it might be more useful to look at how much the price 
changed each year.  You are probably noticing that the price didn’t change the same 
amount each year, so we would be finding the average rate of change over a specified 
amount of time. 
 
The gas price increased by $0.67 from 2002 to 2009, over 7 years, for an average of 

096.0
7

67.0$


years
dollars per year.  On average, the price of gas increased by about 9.6 

cents each year.  
 
 
Rate of Change 

A rate of change describes how the output quantity changes in relation to the input 
quantity.  The units on a rate of change are “output units per input units” 

 
 
Some other examples of rates of change would be quantities like: 
 A population of rats increases by 40 rats per week 
 A barista earns $9 per hour (dollars per hour) 
 A farmer plants 60,000 onions per acre 
 A car can drive 27 miles per gallon 
 A population of grey whales decreases by 8 whales per year 
 The amount of money in your college account decreases by $4,000 per quarter 
 
 
Average Rate of Change 

The average rate of change between two input values is the total change of the 
function values (output values) divided by the change in the input values. 

Average rate of change = 
Input of Change

Output of Change
=

12

12

xx

yy

x

y








 

 

44



Section 1.3 Rates of Change and Behavior of Graphs 

 

35

Example 1 
Using the cost of gas function from earlier, find the average rate of change between 
2007 and 2009 
 
From the table, in 2007 the cost of gas was $2.64.  In 2009 the cost was $2.14. 
 
The input (years) has changed by 2.  The output has changed by $2.14 - $2.64 = -0.50.  

The average rate of change is then 
years2

50.0$
 = -0.25 dollars per year 

 
 
Try it Now 

1. Using the same cost of gas function, find the average rate of change between 2003 
and 2008 

 
 
Notice that in the last example the change of output was negative since the output value 
of the function had decreased.  Correspondingly, the average rate of change is negative. 
 
 
Example 2 

Given the function g(t) shown here, find the average rate of 
change on the interval [0, 3].  
 
At t = 0, the graph shows 1)0( g  
At t = 3, the graph shows 4)3( g  
 
The output has changed by 3 while the input has changed by 3, giving an average rate of 
change of: 

1
3

3

03

14





 

 
 
Example 3 

On a road trip, after picking up your friend who lives 10 miles away, you decide to 
record your distance from home over time.  Find your average speed over the first 6 
hours. 
 
 
 
 
Here, your average speed is the average rate of change.   
You traveled 282 miles in 6 hours, for an average speed of 
292 10 282

6 0 6





= 47 miles per hour 

t (hours) 0 1 2 3 4 5 6 7 
D(t) (miles) 10 55 90 153 214 240 292 300 
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We can more formally state the average rate of change calculation using function 
notation 
 
 
Average Rate of Change using Function Notation 

Given a function f(x), the average rate of change on the interval [a, b] is 

Average rate of change = 
ab

afbf





)()(

Input of Change

Output of Change
 

 
 
Example 4 

Compute the average rate of change of 
x

xxf
1

)( 2   on the interval [2, 4] 

 
We can start by computing the function values at each endpoint of the interval 

2

7

2

1
4

2

1
2)2( 2 f  

4

63

4

1
16

4

1
4)4( 2 f  

 
Now computing the average rate of change 

Average rate of change = 
8

49

2
4

49

24
2

7

4

63

24

)2()4(








 ff

 

 
 
Try it Now 

2. Find the average rate of change of xxxf 2)(   on the interval [1, 9] 
 
 
Example 5 

The magnetic force F, measured in Newtons, between two magnets is related to the 

distance between the magnets d, in centimeters, but the formula 
2

2
)(

d
dF  .  Find the 

average rate of change of force if the distance between the magnets is increased from 2 
cm to 6 cm. 
 

We are computing the average rate of change of 
2

2
)(

d
dF   on the interval [2, 6] 

Average rate of change = 
26

)2()6(


 FF

 Evaluating the function 
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26

)2()6(


 FF

= 

26
2

2

6

2
22




     Simplifying 

4
4

2

36

2


      Combining the numerator terms 

4
36

16

      Simplifying further  

9

1
 Newtons per centimeter 

 
This tells us the magnetic force decreases, on average, by 1/9 Newtons per centimeter.  
Equivalently, it tells us the magnetic force decreases, on average by 1 Newton for each 
9 centimeters the distance increases. 

 
 
 
Example 6 

Find the average rate of change of 13)( 2  tttg on the interval ],0[ a .  Your answer 
will be an expression involving a. 
 
Using the average rate of change formula 

0

)0()(




a

gag
     Evaluating the function 

0

)1)0(30()13( 22




a

aa
  Simplifying 

a

aa 1132 
    Simplifying further, and factoring 

a

aa )3( 
     Cancelling the common factor a 

3a  
 
This result tells us the average rate of change between t = 0 and any other point t = a.  
For example, on the interval [0, 5], the average rate of change would be 5+3 = 8. 

 
 
Try it Now 

3. Find the average rate of change of 2)( 3  xxf  on the interval ],[ haa   
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Graphical Behavior of Functions 
 
As part of exploring how functions change, it is interesting to explore the graphical 
behavior of functions. 
 
 
Increasing/Decreasing 

A function is increasing on an interval if the function values increase as the inputs 
increase.  More formally, a function is increasing if f(b) > f(a) for any two input values 
a and b in the interval with b>a.  The average rate of change of an increasing function 
is positive. 
 
A function is decreasing on an interval if the function values decrease as the inputs 
increase.  More formally, a function is decreasing if f(b) < f(a) for any two input values 
a and b in the interval with b>a.  The average rate of change of a decreasing function is 
negative. 

 
 
Example 7 

Given the function p(t) graphed here, on what 
intervals does the function appear to be 
increasing? 
 
The function appears to be increasing from t = 1  
to t = 3, and from t = 4 on.   
 
In interval notation, we would say the function 
appears to be increasing on the interval (1,3) and 
the interval ),4(   

 
 
Notice in the last example that we used open intervals (intervals that don’t include the 
endpoints) since the function is not technically increasing at t = 1, 3, or 4.  At those 
points, the function is neither increasing nor decreasing.   
 
 
Local Extrema 

A point where a function changes from increasing to decreasing is called a local 
maximum.   
 
A point where a function changes from decreasing to increasing is called a local 
minimum. 
 
Together, local maxima and minima are called the local extrema, or local extreme 
values, of the function. 
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Example 8 
Using the cost of gasoline function from the beginning of the section, find an interval on 
which the function appears to be decreasing.  Estimate any local extrema using the 
table. 
 
 
 
 
It appears that the cost of gas is increasing from t = 2 to t = 8. It appears the cost of gas 
decreased from t = 8 to t = 9, so the function appears to be decreasing on the interval  
(8, 9). 
 
Since the function appears to change from increasing to decreasing at t = 8, there is 
local maximum at t = 8. 

 
 
Example 9 

Use a graph to estimate the local extrema of the function 
3

2
)(

x

x
xf  .   Use these to 

determine the intervals on which the function is increasing. 
 
Using technology to graph the function, it 
appears there is a local minimum 
somewhere between x = 2 and x =3, and a 
symmetric local maximum somewhere 
between x = -3 and x = -2. 
 
Most graphing calculators and graphing 
utilities can estimate the location of 
maxima and minima.  Below are screen 
images from two different technologies, 
showing the estimate for the local maximum and minimum. 
 

    
 
Based on these estimates, the function is increasing on the intervals )449.2,(  and 

),449.2(  .  Notice that while we expect the extrema to be symmetric, the two different 
technologies are only the same up to 4 decimals due to the approximation approach 
used by each. 

t 2 3 4 5 6 7 8 9 
C(t) 1.47 1.69 1.94 2.30 2.51 2.64 3.01 2.14 
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Try it Now 
4. Use a graph of the function 20156)( 23  xxxxf  to estimate the local extrema 
of the function.  Use these to determine the intervals on which the function is 
increasing. 

 
 
Concavity 
 
The total sales, in thousands of dollars, for two companies over 4 weeks are shown.   
 
Company A     Company B 

    
 
 
As you can see, the sales for each company are increasing, but they are increasing in very 
different ways.  To describe the difference in behavior, we can look how the average rate 
of change varies over different intervals.  Using tables of values, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
From the tables, we can see that the rate of change for company A is decreasing, while 
the rate of change for company B is increasing.   
 

Company A 
Week Sales Rate of 

Change 
0 0  
  5 
1 5  
  2.1 
2 7.1  
  1.6 
3 8.7  
  1.3 
4 10  

Company B 
Week Sales Rate of 

Change 
0 0  
  0.5 
1 0.5  
  1.5 
2 2  
  2.5 
3 4.5  
  3.5 
4 8  
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When the rate of change is getting smaller, as with Company A, we say the function is 
concave down.  When the rate of change is getting larger, as with Company B, we say 
the function is concave up. 
 
 
Concavity 

A function is concave up if the rate of change is increasing.   
A function is concave down if the rate of change is decreasing. 
A point where a function changes from concave up to concave down or vice versa is 
called an inflection point. 

 
 
Example 10 

An object is thrown from the top of a building.  The object’s height in feet above 
ground after t seconds is given by the function 216144)( tth   for 30  t .  Describe 
the concavity of the graph. 
 
Sketching a graph of the function, we can see that the 
function is decreasing.  We can calculate some rates of 
change to explore the behavior 
 
 
 
 
 
 
 
 
 
 
 
Notice that the rates of change are becoming more negative, so the rates of change are 
decreasing.  This means the function is concave down. 

Larger 
increase 

Smaller 
increase

Smaller 
increase Larger 

increase 

t h(t) Rate of 
Change 

0 144  
  -16 
1 128  
  -48 
2 80  
  -80 
3 0  
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Example 11 
The value, V, of a car after t years is given in the table below.  Is the value increasing or 
decreasing?  Is the function concave up or concave down? 
 
 
 
 
Since the values are getting smaller, we can determine that the value is decreasing.  We 
can compute rates of change to determine concavity. 
 
 
 
 
 
Since these values are becoming less negative, the rates of change are increasing, so  
this function is concave up. 

 
 
Try it Now 

5. Is the function described in the table below concave up or concave down? 
 
 
 

 
 
Graphically, concave down functions bend downwards like a frown, and 
concave up function bend upwards like a smile. 

 
 

Increasing Decreasing 

Concave 
Down 

Concave 
Up 

t 0 2 4 6 8 
V(t) 28000 24342 21162 18397 15994 

t 0 2 4 6 8 
V(t) 28000 24342 21162 18397 15994 
Rate of change -1829 -1590 -1382.5 -1201.5  

x 0 5 10 15 20 
g(x) 10000 9000 7000 4000 0 
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Example 12 
Estimate from the graph shown the 
intervals on which the function is 
concave down and concave up.   
 
On the far left, the graph is decreasing 
but concave up, since it is bending 
upwards.  It begins increasing at x = -2, 
but it continues to bend upwards until 
about x = -1.   
 
From x = -1 the graph starts to bend 
downward, and continues to until about 
x = 2.  The graph then begins curving upwards for the remainder of the graph shown. 
 
From this, we can estimate that the graph is concave up on the intervals )1,(   and 

),2(  , and is concave down on the interval )2,1( .  The graph has inflection points at x 
= -1 and x = 2. 

 
 
Try it Now 

6. Using the graph from Try it Now 4, 20156)( 23  xxxxf , estimate the 
intervals on which the function is concave up and concave down. 

 
 
Behaviors of the Toolkit Functions 
We will now return to our toolkit functions and discuss their graphical behavior. 
 
Function Increasing/Decreasing Concavity 
Constant Function 

( )f x c  
Neither increasing nor 
decreasing 
 

Neither concave up nor down 

Identity Function 
( )f x x  

Increasing Neither concave up nor down 
 

Quadratic Function 
2( )f x x  

Increasing on ),0(   
Decreasing on )0,(  
Minimum at x = 0 

Concave up ( , )   

Cubic Function  
3( )f x x  

 

Increasing Concave down on )0,(  
Concave up on ),0(   
Inflection point at (0,0) 

Reciprocal odd  
1

( )f x
x

  

 

Decreasing ),0()0,(   Concave down on )0,(  
Concave up on ),0(   
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Function Increasing/Decreasing Concavity 
Reciprocal even  

2

1
( )f x

x
  

 

Increasing on )0,(  
Decreasing on ),0(   
 

Concave up on ),0()0,( 

Cube Root  
3( )f x x   

 

Increasing Concave down on ),0(   
Concave up on )0,(  
Inflection point at (0,0) 

Square Root  

( )f x x  
 

Increasing on ),0(   Concave down on ),0(   

Absolute Value 
( )f x x  

Increasing on ),0(   
Decreasing on )0,(  
 

Neither concave up or down 
 

 
 
Important Topics of This Section 

Rate of Change 
Average Rate of Change 
Calculating Average Rate of Change using Function Notation 
Increasing/Decreasing 
Local Maxima and Minima (Extrema) 
Inflection points 
Concavity 

 
 
Try it Now Answers 

1. 
yearsyears 5

32.1$

5

69.1$01.3$



 = 0.264 dollars per year. 

 

2. Average rate of change = 
       

2

1

8

4

19

13

19

121929

19

)1()9(












 ff

 

 

3. 
   











h

ahahhaa

h

aha

aha

afhaf 223322)(

)(

)()( 3322333

 

    
  22

22322

33
3333

haha
h

hahah

h

hahha






 

 
4.  Based on the graph, the local maximum appears 

to occur at (-1, 28), and the local minimum 
occurs at (5,-80)  The function is increasing 
on ),5()1,(   and decreasing on )5,1(  
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5.  Calculating the rates of change, we see the rates of change become more negative, so 

the rates of change are decreasing.  This function is concave down. 
 
 
 
 
 
6. Looking at the graph, it appears the function is concave down on )2,(  and 

concave up on ),2(   
 
 
 
 

x 0 5 10 15 20 
g(x) 10000 9000 7000 4000 0 
Rate of change -1000 -2000 -3000 -4000  
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Section 1.3 Exercises 
 
1.  The table below gives the annual sales (in millions of dollars) of a product.  What was 

the average rate of change of annual sales… 
a) Between 2001 and 2002  b) Between 2001 and 2004 

year 1998 1999 2000 2001 2002 2003 2004 2005 2006
sales 201 219 233 243 249 251 249 243 233 

 

2.  The table below gives the population of a town, in thousands.  What was the average 
rate of change of population… 
a) Between 2002 and 2004  b) Between 2002 and 2006 

year 2000 2001 2002 2003 2004 2005 2006 2007 2008 
population 87 84 83 80 77 76 75 78 81 

 
 
3.  Based on the graph shown, estimate the 

average rate of change from x = 1 to x = 4.  
 
4. Based on the graph shown, estimate the 

average rate of change from x = 2 to x = 5. 
 
 
 
 
Find the average rate of change of each function on the interval specified. 
5. 2)( xxf   on [1, 5]    6. 3)( xxq   on [-4, 2] 

7. 13)( 3  xxg  on [-3, 3]   8. 225)( xxh   on [-2, 4] 

9. 
3

2 4
6)(

t
ttk   on [-1, 3]   10. 

3

14
)(

2

2





t

xt
tp  on [-3, 1]  

 
Find the average rate of change of each function on the interval specified.  Your answers 
will be expressions. 
11. 74)( 2  xxf  on [1, b]   12. 92)( 2  xxg  on [4, b]  

13. 43)(  xxh  on [2, 2+h]   14. 24)(  xxk  on [3, 3+h] 

15. 
4

1
)(




t
ta  on [9, 9+h]   16. 

3

1
)(




x
xb  on [1, 1+h] 

17. 33)( xxj   on [1, 1+h]   18. 34)( ttr   on [2, 2+h] 

19. 12)( 2  xxf  on [x, x+h]  20. 23)( 2  xxg  on [x, x+h] 
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For each function graphed, estimate the intervals on which the function is increasing and 
decreasing. 
 

21.  22.  
 

23.   24.  
 
For each table below, select whether the table represents a function that is increasing or 
decreasing, and whether the function is concave up or concave down. 
25. x f(x) 

1 2 
2 4 
3 8 
4 16 
5 32 

 

26. x g(x)
1 90 
2 70 
3 80 
4 75 
5 72 

 

27. x h(x)
1 300 
2 290 
3 270 
4 240 
5 200 

28. x k(x) 
1 0 
2 15 
3 25 
4 32 
5 35 

      
29. x f(x) 

1 -10 
2 -25 
3 -37 
4 -47 
5 -54 

 

30. x g(x) 
1 -200
2 -190
3 -160
4 -100
5 0 

 

31. x h(x) 
1 -100
2 -50 
3 -25 
4 -10 
5 0 

32. x k(x) 
1 -50 
2 -100 
3 -200 
4 -400 
5 -900 
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For each function graphed, estimate the intervals on which the function is concave up and 
concave down, and the location of any inflection points. 
 

33.    34.  
 

35.   36.  
 
Use a graph to estimate the local extrema and inflection points of each function, and to 
estimate the intervals on which the function is increasing, decreasing, concave up, and 
concave down. 
 
37. 54)( 34  xxxf    38. 110105)( 2345  xxxxxh  

39. 3)(  tttg     40. tttk  3/23)(  

41. 410122)( 234  xxxxxm  42. 26188)( 234  xxxxxn  
 
 
 

58



Section 1.4 Composition of Functions 

 

49

Section 1.4 Composition of Functions 
 
Suppose we wanted to calculate how much it costs to heat a house on a particular day of 
the year.  The cost to heat a house will depend on the average daily temperature, and the 
average daily temperature depends on the particular day of the year.  Notice how we have 
just defined two relationships: The temperature depends on the day, and the Cost depends 
on the temperature.  Using descriptive variables, we can notate these two functions. 
 
The first function, C(T), gives the cost C of heating a house when the average daily 
temperature is T degrees Celsius, and the second, T(d), gives the average daily 
temperature of a particular city on day d of the year.  If we wanted to determine the cost 
of heating the house on the 5th day of the year, we could do this by linking our two 
functions together, an idea called composition of functions.  Using the function T(d), we 
could evaluate T(5) to determine the average daily temperature on the 5th day of the year.  
We could then use that temperature as the input to the C(T) function to find the cost to 
heat the house on the 5th day of the year:  C(T(5)). 
 
 
Composition of Functions 

When the output of one function is used as the input of another, we call the entire 
operation a composition of functions.  We write f(g(x)), and read this as “f of g of x” or 
“f composed with g at x”.   
 
An alternate notation for composition uses the composition operator:   

))(( xgf   is read “f of g of x” or “f composed with g of x”,  just like  f(g(x)) 
 
 
Example 1 

Suppose c(s) gives the number of calories burned doing s sit-ups, and s(t) gives the 
number of sit-ups a person can do in t minutes.  Interpret c(s(3)). 
 
When we are asked to interpret, we are being asked to explain the meaning of the 
expression in words.  The inside function in the composition is s(3).  Since the input to 
the s function is time, the 3 is representing 3 minutes, and s(3) is the number of sit-ups 
that can be done in 3 minutes.  Taking this output and using it as the input to the c(s) 
function will gives us the calories that can be burned by the number of sit-ups that can 
be done in 3 minutes. 

 
 
Note that it is not important that the same variable be used for the output of the inside 
function and the input to the outside function.  However, it is essential that the units on 
the output of the inside function match the units on the input to the outside function, if the 
units are specified. 
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Example 2 
Suppose f(x) gives miles that can be driven in x hours, and g(y) gives the gallons of gas 
used in driving y miles.  Which of these expressions is meaningful: f(g(y)) or g(f(x))? 
 
The expression g(y) takes miles as the input and outputs a number of gallons.  The 
function f(x) is expecting a number of hours as the input; trying to give it a number of 
gallons as input does not make sense.  Remember the units have to match, and number 
of gallons does not match number of hours and so the expression f(g(y)) is meaningless. 
 
The expression f(x) takes hours as input and outputs a number of miles driven.  The 
function g(y) is expecting a number of miles as the input, so giving the output of the f(x) 
function (miles driven) as an input value for g(y), where gallons of gas depends on 
miles driven, does make sense.  The expression g(f(x)) makes sense, and will give the 
number of gallons of gas used, g, driving a certain number of miles, f(x), in x hours. 

 
 
Try it Now 

1. In a department store you see a sign that says 50% off of clearance merchandise, so 
final cost C depends on the clearance price, p, according to the function C(p). Clearance 
price, p depends on the original discount, d, given to the clearance item, p(d).   
Interpret C(p(d)). 

 
 
Composition of Functions using Tables and Graphs 
When working with functions given as tables and graphs, we can look up values for the 
functions using a provided table or graph, as discussed in section 1.1.  We start evaluation 
from the provided input, and first evaluate the inside function.  We can then use the 
output of the inside function as the input to the outside function.  To remember this, 
always work from the inside out. 
 
Example 3 

Using the tables below, evaluate ( (3))f g and ( (4))g f  

 
To evaluate ( (3))f g , we start from the inside with the value 3. We then evaluate the 
inside function (3)g using the table that defines the function g: (3) 2g  .  We can then 
use that result as the input to the f function, so (3)g  is replaced by the equivalent value 2 
and we get (2)f .  Then using the table that defines the function f, we find that (2) 8f  . 

( (3)) (2) 8f g f   
 

 
x g(x) 
1 3 
2 5 
3 2 
4 7 
 

 
x f(x) 
1 6 
2 8 
3 3 
4 1 
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To evaluate ( (4))g f , we first evaluate the inside (4)f using the first table: (4) 1f  .  
Then using the table for g we can evaluate: 

( (4)) (1) 3g f g   
 
 
Try it Now 

2. Using the tables from the example above, evaluate ( (1))f g  and ( (3))g f  
 
 
Example 4 

Using the graphs below, evaluate ( (1))f g  
                             g(x)                                                             f(x) 

         
To evaluate ( (1))f g , we again start with the inside evaluation.  We evaluate (1)g  using 
the graph of the g(x) function, finding the input of 1 on the horizontal axis and finding 
the output value of the graph at that input.  Here, (1) 3g  .  Using this value as the input 
to the f function, ( (1)) (3)f g f .  We can then evaluate this by looking to the graph of 
the f(x) function, and finding the input of 3 on the horizontal axis, and reading the 
output value of the graph at this input.  Here, (3) 6f  , so ( (1)) 6f g  . 

 
 
Try it Now 

3. Using the graphs from the previous example, evaluate ( (2))g f . 
 
 
Composition using Formulas 
When evaluating a composition of functions where we have either created or been given 
formulas, the concept of working from the inside out remains the same.  First we evaluate 
the inside function using the input value provided, then use the resulting output as the 
input to the outside function. 
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Example 5 
Given tttf  2)(  and 23)(  xxh , evaluate ( (1))f h . 
 
Since the inside evaluation is (1)h we start by evaluating the h(x) function at 1: 

52)1(3)1( h  
 
Then ( (1)) (5)f h f , so we evaluate the f(t) function at an input of 5: 

2055)5())1(( 2  fhf  
 
 
Try it Now 

4. Using the functions from the example above, evaluate ( ( 2))h f   
 
 
While we can compose the functions as above for each individual input value, sometimes 
it would be really helpful to find a single formula which will calculate the result of a 
composition f(g(x)).  To do this, we will extend our idea of function evaluation.  Recall 
that when we evaluate a function like tttf  2)( , we put whatever value is inside the 
parentheses after the function name into the formula wherever we see the input variable.   
 
 
Example 6 

Given tttf  2)( , evaluate (3)f  and ( 2)f   
 

33)3( 2 f  

)2()2()2( 2 f  
 
We could simplify the results above if we wanted to  

2(3) 3 3 9 3 6f       
2( 2) ( 2) ( 2) 4 2 6f          

 
 
We are not limited, however, to putting a numerical value as the input to the function. We 
can put anything into the function: a value, a different variable, or even an entire 
equation, provided we put the input expression everywhere we see the input variable.   
 
 
Example 7 

Using the function from the previous example, evaluate f(a) 
 
This means that the input value for t is some unknown quantity a.  As before, we 
evaluate by replacing the input variable t with the input quantity, in this case a. 

aaaf  2)(  
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The same idea can then be applied to expressions more complicated than a single letter.   
 
 
Example 8 

Using the same f(t) function from above, evaluate )2( xf  
 
Everywhere in the formula for f where there was a t, we would replace it with the input 
( 2)x  .  Since in the original formula the input t was squared in the first term, the entire 
input 2x   needs to be squared when we substitute, so we need to use grouping 
parentheses.  To avoid problems, it is advisable to always insert input with parentheses. 
 

)2()2()2( 2  xxxf  
 
We could simplify this expression further to 23)2( 2  xxxf  if we wanted to 

( 2) ( 2)( 2) ( 2)f x x x x        Use the “FOIL” technique (first, outside, inside, last) 
2( 2) 2 2 4 ( 2)f x x x x x         distribute the negative sign  
2( 2) 2 2 4 2f x x x x x            combine like terms 
2( 2) 3 2f x x x      

 
 
Example 9 

Using the same function, evaluate )( 3tf  
 
Note that in this example, the same variable is used in the input expression and as the 
input variable of the function.  This doesn’t matter – we still replace the original input t 
in the formula with the new input expression, 3t . 

363233 )()()( tttttf   
 
 
Try it Now 

5. Given xxxg  3)( , evaluate )2( tg  
 
 
This now allows us to find an expression for a composition of functions.  If we want to 
find a formula for f(g(x)), we can start by writing out the formula for g(x).   We can then 
evaluate the function f(x) at that expression, as in the examples above.  
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Example 10 

Let 2)( xxf   and x
x

xg 2
1

)(  , find f(g(x)) and g(f(x)) 

 
 
To find f(g(x)), we start by evaluating the inside, writing out the formula for g(x) 

x
x

xg 2
1

)(   

We then use the expression 
1

2x
x

  
 

 as input for the function f. 







  x

x
fxgf 2

1
))((  

We then evaluate the function f(x) using the formula for g(x) as the input. 

Since 2)( xxf   then 
2

2
1

2
1







 






  x

x
x

x
f  

This gives us the formula for the composition:  
2

2
1

))(( 





  x

x
xgf  

 
Likewise, to find g(f(x)), we evaluate the inside, writing out the formula for f(x) 

 2))(( xgxfg   
Now we evaluate the function g(x) using x2 as the input. 

2
2

2
1

))(( x
x

xfg   

 
 
Try it Now 

6. Let xxxf 3)( 3   and xxg )( , find f(g(x)) and g(f(x)) 
 
 
Example 11 

A city manager determines that the tax revenue, R, in millions of dollars collected on a 

population of p thousand people is given by the formula pppR  03.0)( , and that 

the city’s population, in thousands, is predicted to follow the formula 
23.0260)( tttp  , where t is measured in years after 2010.  Find a formula for the 

tax revenue as a function of the year. 
 
Since we want tax revenue as a function of the year, we want year to be our initial input, 
and revenue to be our final output.  To find revenue, we will first have to predict the 
city population, and then use that result as the input to the tax function.  So we need to 
find R(p(t)).  Evaluating this, 
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    222 3.02603.026003.03.0260))(( ttttttRtpR   
 
This composition gives us a single formula which can be used to predict the tax revenue 
given the year, without needing to find the intermediary population value.   
 
For example, to predict the tax revenue in 2017, when t = 7 (because t is measured in 
years after 2010) 
 

  079.12)7(3.0)7(260)7(3.0)7(26003.0))7(( 22 pR million dollars 

 
 
In some cases, it is desirable to decompose a function – to write it as a composition of 
two simpler functions. 
 
 
Example 12 

Write 253)( xxf   as the composition of two functions. 
 
We are looking for two functions, g and h, so ))(()( xhgxf  .  To do this, we look for a 
function inside a function in the formula for f(x).  As one possibility, we might notice 
that 25 x  is the inside of the square root.  We could then decompose the function as: 

25)( xxh   

xxg  3)(  
 
We can check our answer by recomposing the functions: 

  22 535))(( xxgxhg   
 
Note that this is not the only solution to the problem.  Another non-trivial 

decomposition would be 2)( xxh   and xxg  53)(  
 
 
Important Topics of this Section 

Definition of Composition of functions 
Compositions using:  
  Words  
  Tables  
  Graphs  
  Equations  
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Try it Now Answers 
1. The final cost, C, depends on the clearance price, p, which is based on the original 

discount, d.  (or the original discount d, determines the clearance price and the final 
cost is half of the clearance price) 

2. ( (1)) (3) 3f g f    and      ( (3)) (3) 2g f g    
3. ( (2)) (5) 3g f g   
4. ( ( 2)) (6) 20h f h     did you remember to insert your input values using parenthesis? 

5. ( 2) 3( 2) ( 2)g t t t        

6.      3

( ( )) 3f g x f x x x    

        3 3( ( )) 3 3g f x g x x x x     
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Section 1.4 Exercises 
 

Given each pair of equations, calculate   0f g  and   0g f  

1.   4 8f x x  ,   27g x x    2.   5 7f x x  ,   24 2g x x   

3.   4f x x  ,   312g x x    4.   1

2
f x

x



,   4 3g x x   

 
Use the table of values to evaluate each expression 
5. ( (8))f g      

6.   5f g   

7. ( (5))g f    

8.   3g f   

9. ( (4))f f     

10.   1f f   

11. ( (2))g g   

12.   6g g   

 
Use the graphs to evaluate the expressions below.  
13. ( (3))f g   

14.   1f g   

15. ( (1))g f     

16.   0g f   

17. ( (5))f f     

18.   4f f    

19. ( (2))g g   

20.   0g g   

 

 
 

For each pair of functions, find   f g x  and   g f x .  Simplify your answers. 

21.   1

6
f x

x



,   7

6 g x
x

    22.   1

4
f x

x



,   2

4g x
x

   

23.   2 1f x x  ,   2g x x    24.   2f x x  ,   2 3g x x    

x  ( )f x  ( )g x  
0 7 9 
1 6 5 
2 5 6 
3 8 2 
4 4 1 
5 0 8 
6 2 7 
7 1 3 
8 9 4 
9 3 0 
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25.  f x x ,   5 1g x x    26.   3f x x  ,   3

1x
g x

x


  

27. If    4 6f x x  ,  ( )  6 g x x  and ( )  h x x , find  ( ( ( )))f g h x   

 

28. If    2 1f x x  ,   1
g x

x
  and   3h x x   , find  ( ( ( )))f g h x   

 
 

29. Given functions   1
p x

x
  and   2 4m x x  , state the domains of the following 

functions using interval notation. 

a. Domain of 
 
 

p x

m x
   

b. Domain of ( ( ))p m x   
c. Domain of  ( ( )) m p x  

 

30. Given functions   1
q x

x
  and   2 9h x x  , state the domains of the following 

functions using interval notation. 

a. Domain of 
 
 

q x

h x
   

b. Domain of ( ( ))q h x   
c. Domain of  ( ( )) h q x  

 
31. The function ( )D p  gives the number of items that will be demanded when the price 

is p. The production cost, ( )C x  is the cost of producing x items. To determine the 
cost of production when the price is $6, you would do which of the following: 
a. Evaluate ( (6))D C    b. Evaluate ( (6))C D    
c. Solve ( ( ))  6D C x      d. Solve ( ( ))  6C D p   
 

32. The function ( )A d  gives the pain level on a scale of 0-10 experienced by a patient 
with d milligrams of a pain reduction drug in their system.  The milligrams of drug in 
the patient’s system after t minutes is modeled by ( )m t .  To determine when the 
patient will be at a pain level of 4, you would need to: 

a. Evaluate   4A m    b. Evaluate   4m A   

c. Solve     4A m t      d. Solve     4m A d   
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33. The radius r, in inches, of a balloon is related to the volume, V, by 3
3

( )
4

V
r V


 .  Air 

is pumped into the balloon, so the volume after t seconds is given by   10 20V t t   

a. Find the composite function    r V t  

b. Find the time when the radius reaches 10 inches. 
 
34. The number of bacteria in a refrigerated food product is given by 

  223 56 1  N T T T   , 3 33T    where T is the temperature of the food. When the 

food is removed from the refrigerator, the temperature is given by ( ) 5 1.5T t t  , 
where t is the time in hours. 

a. Find the composite function    N T t  

b. Find the time when the bacteria count reaches 6752  
 
Find functions ( )f x  and ( )g x  so the given function can be expressed as 

    h x f g x  

35.    2
2h x x      36.    3

5h x x   

37.   3

5
h x

x



    38.  

 2

4

2
h x

x



 

39.   3 2h x x       40.   34h x x    

41. Let ( )f x  be a linear function, having form  f x ax b   for constants a and b.  

[UW] 

a. Show that   f f x  is a linear function  

b. Find a function g(x)  such that   g g x 6x 8     

 

42. Let   1
3

2
f x x    [UW] 

a. Sketch the graphs of         , , f x f f x f f f x  on the interval −2 ≤ x ≤ 10. 

b. Your graphs should all intersect at the point (6, 6). The value x = 6 is called a 
fixed point of the function f(x)since (6) 6f  ; that is, 6 is fixed - it doesn’t move 

when f is applied to it. Give an explanation for why 6 is a fixed point for any 
function ( ( (... ( )...)))f f f f x . 

c. Linear functions (with the exception of ( )f x x ) can have at most one fixed 

point. Quadratic functions can have at most two. Find the fixed points of the 

function   2 2g x x  . 

d. Give a quadratic function whose fixed points are x = −2 and x = 3. 
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43. A car leaves Seattle heading east. The speed of the car in mph after m minutes is 

given by the function  
2

2

70

10

m
C m

m



.   [UW] 

a. Find a function ( )m f s  that converts seconds s into minutes m. Write out the 

formula for the new function ( ( ))C f s ; what does this function calculate? 

b. Find a function (m g h ) that converts hours h into minutes m. Write out the 

formula for the new function ( ( ))C g h ; what does this function calculate? 

c. Find a function ( )z v s  that converts mph s into ft/sec z. Write out the formula 

for the new function ( ( )v C m ; what does this function calculate? 
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Section 1.5 Transformation of Functions 
 
Often when given a problem, we try to model the scenario using mathematics in the form 
of words, tables, graphs and equations in order to explain or solve it. When building 
models, it is often helpful to build off of existing formulas or models.  Knowing the basic 
graphs of your tool-kit functions can help you solve problems by being able to model the 
behavior after something you already know.  Unfortunately, the models and existing 
formulas we know are not always exactly the same as the ones presented in the problems 
we face.   
 
Fortunately, there are systematic ways to shift, stretch, compress, flip and combine 
functions to help them become better models for the problems we are trying to solve.  We 
can transform what we already know, into what we need, hence the name, 
“Transformation of functions.” When we have a story problem, formula, graph, or table, 
we can then transform that function in a variety of ways to form new equations. 
 
Shifts 
 
Example 1 

To regulate temperature in our green building, air flow vents near the roof open and 
close throughout the day to allow warm air to escape.  The graph below shows the open 
vents V (in square feet) throughout the day, t in hours after midnight.  During the 
summer, the facilities staff decides to try to better regulate temperature by increasing 
the amount of open vents by 20 square feet throughout the day.  Sketch a graph of this 
new function. 
 

 
 
We can sketch a graph of this new function by adding 20 to each of the output values of 
the original function.  This will have the effect of shifting the graph up. 
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Notice that in the second graph, for the 
same input value, the output values have 
all increased by twenty, so if we call the 
new function S(t), we could write 

( ) ( ) 20S t V t  .   
 
Note that this notation tells us that for 
any value of t, S(t) can be found by 
evaluating the V function at the same 
input, then adding twenty to the result.  
This defines S as a transformation of the 
function V, in this case a vertical shift 
up 20 units.   
 
Notice that with a vertical shift the input values stay the same and only the output 
values change. 

 
 
Vertical Shift 

Given a function f(x), and if we define a new function g(x) as  
( ) ( )g x f x k  , where k is a constant 

then g(x) is a vertical shift of the function f(x), where all the output values have been 
increased by k.   
If k is positive, then the graph will shift up 
If k is negative, then the graph will shift down 

 
 
Example 2 

A function f(x) is given as a table below.  Create a table for the function ( ) ( ) 3g x f x   
 
 
 
 
The formula ( ) ( ) 3g x f x   tells us that we can find the output values of the g function 
by subtracting 3 from the output values of the f function.  For example, 

(2) 1f     is found from the given table 
( ) ( ) 3g x f x     is our given transformation 
(2) (2) 3 1 3 2g f        

 
Subtracting 3 from each f(x) value, we can complete a table of values for g(x) 
 
 
 

 

x 2 4 6 8 
f(x) 1 3 7 11 

x 2 4 6 8 
g(x) -2 0 4 8 
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As with the earlier vertical shift, notice the input values stay the same and only the output 
values change. 
 
 
Try it Now 

1. The function 2( ) 4.9 30h t t t    gives the height h of a ball (in meters) thrown 
upwards from the ground after t seconds.  Suppose the ball was instead thrown from the 
top of a 10 meter building.  Relate this new height function b(t) to h(t), then find a 
formula for b(t). 

 
 
The vertical shift is a change to the output, or outside, of the function.  We will now look 
at how changes to input, on the inside of the function, change the graph and meaning. 
 
 
Example 3 

Returning to our building air flow example from the beginning of the section, suppose 
that in Fall, the facilities staff decides that the original venting plan starts too late, and 
they want to move the entire venting program to start two hours earlier.  Sketch a graph 
of the new function. 
 
V(t) = the original venting plan                                F(t) = starting 2 hrs sooner 

           
 
In the new graph, which we can call F(t), at each time, the air flow is the same as the 
original function V(t) was two hours later.  For example, in the original function V, the 
air flow starts to change at 8am, for the function F(t) the air flow starts to change at 
6am.  The comparable function values are (8) (6)V F  
 
Another example shows that the air flow first reached 220 at 10am in the original plan 
V(t) and  in the new function F(t), it first reaches 220 at 8am, so (10) (8)V F . 
 
In both cases we see that since F(t) starts 2 hours sooner, the same output values are 
reached when, ( ) ( 2)F t V t   
 
Note that ( 2)V t   had the affect of shifting the graph to the left. 
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Horizontal changes or “inside changes” affect the domain of a function (the input) instead 
of the range and often seem counter intuitive.  The new function F(t) took away two 
hours from V(t) so to make them equal again, we have to compensate; we have to add 2 
hrs to the input of V to get equivalent output values in F:  ( ) ( 2)F t V t   
 
 
Horizontal Shift 

Given a function f(x), and if we define a new function g(x) as  
( ) ( )g x f x k  , where k is a constant 

then g(x) is a horizontal shift of the function f(x) 
If k is positive, then the graph will shift left 
If k is negative, then the graph will shift right 

 
 
Example 4 

A function f(x) is given as a table below.  Create a table for the function ( ) ( 3)g x f x   
 
 
 
 
The formula ( ) ( 3)g x f x   tells us that the output values of g are the same as the 
output value of f with an input value three smaller.  For example, we know that (2) 1f  .  
To get the same output from the g function, we will need an input value that is 3 larger: 
We input a value that is three larger for g(x) because the function takes three away 
before evaluating the function f. 
 

(5) (5 3) (2) 1g f f     
 
 
 
 
The result is that the function g(x) has been shifted to the right by 3. Notice the output 
values for g(x) remain the same as the output values for f(x) in the chart, but the input 
values, x, have shifted to the right by 3;  2 shifted to 5, 4 shifted to 7, 6 shifted to 9 and 
8 shifted to 11.   

 
 
 
 
 
 
 
 
 
 

x 2 4 6 8 
f(x) 1 3 7 11 

x 5 7 9 11 
g(x) 1 3 7 11 

74



Section 1.5 Transformation of Functions 

 

65

Example 5 
The graph to the right is a transformation of the 
toolkit function 2( )f x x .  Relate this new 
function g(x) to f(x), and then find a formula for 
g(x). 
 
Notice that the graph looks almost identical in 
shape to the 2( )f x x  function, but the x values 
are shifted to the right two units.  The vertex used 
to be at (0, 0) but now the vertex is at (2, 0) .  The 
graph is the basic quadratic function shifted two to 
the right, so 

( ) ( 2)g x f x    
 
Notice how we must input the value x = 2, to get the output value y = 0;  the x values 
must be two units larger, because of the shift to the right by 2 units. 
 
We can then use the definition of the f(x) function to write a formula for g(x) by 
evaluating ( 2)f x  : 

Since 2( )f x x  and  ( ) ( 2)g x f x   
2( ) ( 2) ( 2)g x f x x     

 
If you find yourself having trouble determining whether the shift is +2 or -2, it might 
help to consider a single point on the graph.  For a quadratic, looking at the bottommost 
point is convenient.  In the original function, (0) 0f  .  In our shifted function, 

(2) 0g  .  To obtain the output value of 0 from the f function, we need to decide 
whether a +2 or -2 will work to satisfy (2) (2 ? 2) (0) 0g f f   .  For this to work, we 
will need to subtract 2 from our input values. 

 
When thinking about horizontal and vertical shifts, it is good to keep in mind that vertical 
shifts are affecting the output values of the function, while horizontal shifts are affecting 
the input values of the function. 
 
 
Example 6 

The function G(m) gives the number of gallons of gas required to drive m miles.  
Interpret ( ) 10G m   and ( 10)G m   
 

( ) 10G m   is adding 10 to the output, gallons.  So this is 10 gallons of gas more than is 
required to drive m miles. So this is the gas required to drive m miles, plus another 10 
gallons of gas. 
 

( 10)G m   is adding 10 to the input, miles.  So this is the number of gallons of gas 
required to drive 10 more than m miles. 
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Try it Now 

2. Given the function xxf )(   graph the original function )(xf and the 
transformation )2()(  xfxg  
a. Is this a horizontal or a vertical change? 
b. Which way is the graph shifted and by how many units? 
c. Graph f(x) and g(x) on the same axes 

 
 
Now that we have two transformations, we can combine them together. 
 
Remember: 
Vertical Shifts are outside changes that affect the output (vertical) axis values shifting the 
transformed function up and down.  
 
Horizontal Shifts are inside changes that affect the input (horizontal) axis values shifting 
the transformed function left and right. 
 
 
Example 7 

Given ( )f x x , sketch a graph of ( ) ( 1) 3h x f x    

 
The function f  is our toolkit absolute value function.  We know that this graph has a V 
shape, with the point at the origin.  The graph of h has transformed f  in two ways:  

( 1)f x   is a change on the inside of the function, giving a horizontal shift left by 1, 
then the subtraction by 3 in ( 1) 3f x    is a change to the outside of the function, 
giving a vertical shift down by 3.  Transforming the graph gives  

 
 
We could also find a formula for this transformation by evaluating the expression for 
h(x): 

( ) ( 1) 3

( ) 1 3

h x f x

h x x
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Example 8 
Write a formula for the graph to the right, a 
transformation of the toolkit square root function. 
 
The graph of the toolkit function starts at the 
origin, so this graph has been shifted 1 to the right, 
and up 2.  In function notation, we could write that 
as ( ) ( 1) 2h x f x   .  Using the formula for the 
square root function we can write 

( ) 1 2h x x    
 
Note that this transformation has changed the 
domain and range of the function.  This new graph 
has domain [1, )  and range [2, ) . 

 
 
Reflections 
Another transformation that can be applied to a function is a reflection over the horizontal 
or vertical axis.   
 
 
Example 9 

Reflect the graph of ( )s t t  both vertically and horizontally. 
 
Reflecting the graph vertically, each output value will be reflected over the horizontal t 
axis: 

            
 
Since each output value is the opposite of the original output value, we can write 

( ) ( )V t s t   

( )V t t   
Notice this is an outside change or vertical change that affects the output s(t) values so 
the negative sign belongs outside of the function. 
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Reflecting horizontally, each input value will be reflected over the vertical axis: 

 
Since each input value is the opposite of the original input value, we can write 

( ) ( )H t s t   

( )H t t   
Notice this is an inside change or horizontal change that affects the input values so the 
negative sign is on the inside of the function. 
 
Note that these transformations can affect the domain and range of the functions.  While 
the original square root function has domain [0, )  and range [0, ) , the vertical 
reflection gives the V(t) function the range ( ,0] , and the horizontal reflection gives 
the H(t) function the domain ( ,0] . 

 
 
Reflections 

Given a function f(x), and if we define a new function g(x) as  
( ) ( )g x f x  ,  

then g(x) is a vertical reflection of the function f(x), sometimes called a reflection 
about the x-axis 
 
If we define a new function g(x) as  

( ) ( )g x f x  ,  
then g(x) is a horizontal reflection of the function f(x), sometimes called a reflection 
about the y-axis 

 
 
Example 10 

A function f(x) is given as a table below.  Create a table for the function ( ) ( )g x f x   
and ( ) ( )h x f x   
 
 
 
 

x 2 4 6 8 
f(x) 1 3 7 11 
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For g(x), this is a vertical reflection, so the x values stay the same and each output value 
will be the opposite of the original output value: 
 
 
 
 
For h(x), this is a horizontal reflection, and each input value will be the opposite of the 
original input value and the h(x) values stay the same as the f(x) values: 
 
 
 

 
 
Example 11 

A common model for learning has an equation similar to 
( ) 2 1tk t    , where k is the percentage of mastery that 

can be achieved after t practice sessions.  This is a 
transformation of the function ( ) 2tf t   shown here.  
Sketch a graph of k(t). 
 
This equation combines three transformations into one equation.   
A horizontal reflection:   ( ) 2 tf t       combined with 

A vertical reflection:  ( ) 2 tf t       combined with 

A vertical shift up 1:  ( ) 1 2 1tf t        
 
We can sketch a graph by applying these transformations one at a time to the original 
function: 
The original graph  Horizontally reflected  Then vertically reflected 

    
 
Then after shifting up 1, we get the final graph: 

x 2 4 6 8 
g(x) -1 -3 -7 -11 

x -2 -4 -6 -8 
h(x) 1 3 7 11 
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  ( ) ( ) 1 2 1tk t f t         
 
Note:  As a model for learning, this function would be limited to a domain of 0t  , 
with corresponding range [0,1]  

 
 
Try it Now 

3.  Given the toolkit function 2( )f x x  graph g(x) = -f(x)  and h(x) = f(-x) 
Do you notice anything?  Discuss your findings with a friend. 

 
 
Some functions exhibit symmetry in which reflections result in the original graph.  For 
example, reflecting the toolkit functions 2( )f x x  or ( )f x x  will result in the original 

graph.  We call these types of graphs symmetric about the y-axis. 
 

Likewise, if the graphs of 3( )f x x  or 
1

( )f x
x

  were reflected over both axes, the 

result would be the original graph: 
 

3( )f x x    ( )f x     ( )f x   

      
 
We call these graphs symmetric about the origin. 
 
 
 

80



Section 1.5 Transformation of Functions 

 

71

Even and Odd Functions 
A function is called an even function if 

( ) ( )f x f x   
The graph of an even function is symmetric about the vertical axis 
 
A function is called an odd function if 

( ) ( )f x f x    
The graph of an odd function is symmetric about the origin 

 
 
Note:  A function can be neither even nor odd if it does not exhibit either symmetry.  For 
example, the ( ) 2xf x   function is neither even nor odd. 
 
 
Example 12 

Is the function 3( ) 2f x x x   even, odd, or neither? 
 
Without looking at a graph, we can determine this by finding formulas for the 
reflections, and seeing if they return us to the original function: 
 

3 3( ) ( ) 2( ) 2f x x x x x         
This does not return us to the original function, so this function is not even.  We can 
now try also applying a horizontal reflection: 
 

 3 3( ) 2 2f x x x x x         

 
Since ( ) ( )f x f x   , this is an odd function 

 
 
Stretches and Compressions 
With shifts, we saw the effect of adding or subtracting to the inputs or outputs of a 
function.  We now explore the effects of multiplying the inputs or outputs. 
 
Remember, we can transform the inside (input values) of a function or we can transform 
the outside (output values) of a function. Each change has a specific effect that can be 
seen graphically. 
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Example 13 
A function P(t) models the growth of a population of fruit flies.  The growth is shown 
below.   

 
 
A scientist is comparing this to another population, Q, that grows the same way, but 
starts twice as large.  Sketch a graph of this population. 
 
Since the population is always twice as large, the new population’s output values are 
always twice the original function output values.  Graphically, this would look like 

 
 
Symbolically,  

)(2)( tPtQ   
 
This means that for any input t, the value of the Q function is twice the value of the P 
function.   Notice the effect on the graph is a vertical stretching of the graph, where 
every point doubles its distance from the horizontal axis. The input values, t, stay the 
same while the output values are twice as large as before. 

 
 
Vertical Stretch/Compression 

Given a function f(x), and if we define a new function g(x) as  
)()( xkfxg  , where k is a constant 

then g(x) is a vertical stretch or compression of the function f(x) 
 
If k > 1, then the graph will be stretched 
If 0< k < 1, then the graph will be compressed 
If k < 0, then there will be combination of a vertical stretch or compression with a 
vertical reflection 
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Example 14 

A function f(x) is given as a table below.  Create a table for the function )(
2

1
)( xfxg   

 
 
 
 

The formula )(
2

1
)( xfxg   tells us that the output values of g are half of the output 

value of f with the same input.  For example, we know that 3)4( f .  Then 

2

3
)3(

2

1
)4(

2

1
)4(  fg  

 
 
 
 
The result is that the function g(x) has been compressed vertically by ½.  Each output 
value has been cut in half, so the graph would now be half the original height. 

 
 
Example  15 

The graph to the right is a transformation of the 
toolkit function 3)( xxf  .  Relate this new function 
g(x) to f(x), then find a formula for g(x). 
 
When trying to determine a vertical stretch or shift, it 
is helpful to look for a point on the graph that is 
relatively clear.  In this graph, it appears that 

2)2( g .  With the basic cubic function at the same 

input, 82)2( 3 f .  Based on that, it appears that 
the outputs of g are ¼ the outputs of the function f, 

since )2(
4

1
)2( fg  .  From this we can fairly safely 

conclude that: 

)(
4

1
)( xfxg   

 
We can write a formula for g by using the definition of the function f 

3

4

1
)(

4

1
)( xxfxg   

 
 
Now we consider changes to the inside of a function 
 

x 2 4 6 8 
f(x) 1 3 7 11 

x 2 4 6 8 
g(x) 1/2 3/2 7/2 11/2 
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Example 16 
Returning to the fruit fly population we looked at earlier, suppose the scientist is now 
comparing it to a population that progresses through its lifespan twice as fast as the 
original population.  In other words, this new population, R, will progress in 1 hour the 
same amount the original population did in 2 hours, and in 2 hours, will progress as 
much as the original population did in 4 hours.  Sketch a graph of this population. 
 
Symbolically, we could write 

)2()1( PR   
)4()2( PR  , and in general, 
)2()( tPtR   

 
Graphing this, 
 
Original population, P(t)   Transformed, R(t) 

        
 
Note the effect on the graph is a horizontal compression, where all input values are half 
their original distance from the vertical axis.  

 
 
Horizontal Stretch/Compression 

Given a function f(x), and if we define a new function g(x) as  
)()( kxfxg  , where k is a constant 

then g(x) is a horizontal stretch or compression of the function f(x) 
 

If k > 1, then the graph will be compressed by k
1  

If 0< k < 1, then the graph will be stretched by k
1  

If k < 0, then there will be combination of a horizontal stretch or compression with a 
horizontal reflection. 
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Example 17 

A function f(x) is given as a table below.  Create a table for the function 





 xfxg

2

1
)(  

 
 
 
 

The formula 





 xfxg

2

1
)(  tells us that the output values for g are the same as the 

output values for the function f at an input half the size.  Notice that we don’t have 

enough information to determine )2(g since )1(2
2

1
)2( ffg 






  , and we do not 

have a value for )1(f  in our table.  Our input values to g will need to be twice as large 
to get inputs for f that we can evaluate.  For example, we can determine )4(g since 

1)2(4
2

1
)4( 






  ffg .    

 
 
 
 
Since each input value has been doubled, the result is that the function g(x) has been 
stretched horizontally by 2.   

 
 
Example 18 

Two graphs are shown below.  Relate the function g(x) to f(x) 
 
f(x)      g(x) 

      
 
The graph of g(x) looks like the graph of f(x) horizontally compressed. Since f(x) ends at 
(6,4) and g(x) ends at (2,4) we can see that the x values have been compressed by 1/3, 
because 6(1/3) = 2. We might also notice that  6)2( fg  , and  3)1( fg  .  Either 

way, we can describe this relationship as  xfxg 3)(  .  This is a horizontal 
compression by 1/3. 

 

x 2 4 6 8 
f(x) 1 3 7 11 

x 4 8 12 16 
g(x) 1 3 7 11 
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Remember the coefficient needed for a horizontal stretch or compression is the reciprocal 
of the stretch or compression.  So to stretch the graph horizontally by 4, we need a 

coefficient of 1/4 in our function: 
1

4
f x
 
 
 

.  This means the input values must be four 

times larger to produce the same result, requiring the input to be larger, causing the 
horizontal stretching. 
 
 
Try it Now 

4. Write a formula for the toolkit square root function horizontally stretched by three. 
 
 
It is good to note that for most toolkit functions, a horizontal stretch or vertical stretch 
can be represented in other ways.  For example, a horizontal stretch of a power function 
can also be represented as a vertical stretch.  When writing a formula for a transformed 
toolkit, we only need to find one transformation that would produce the graph. 
 
 
Combining Transformations 
 
When combining transformations, it is very important to consider order of 
transformations.  For example, vertically shifting by 3 and then vertically stretching by 2 
does not create the same graph as vertically stretching by 2 and then vertically shifting by 
3.   
 
When we see an expression like 3)(2 xf , which transformation should we start with? 
 
The answer here follows nicely from order of operations, for outside transformations.  
Given the output value of f(x), we first multiply by 2, causing the vertical stretch, then 
add 3, causing the vertical shift.  (Multiplication before Addition) 
 
 
Combining Vertical Transformations 

When combining vertical transformations written in the form kxaf )(  
First vertically stretch by a, then vertically shift by k 

 
 
Horizontal transformations are a little trickier to think about.  When we write 

)32()(  xfxg for example, we have to think about how the inputs to the g function 
relate to the inputs to the f function.  Suppose we know 12)7( f .  What input to g 
would produce that output?  In other words, what value of x will allow 

)12()32()( fxfxg  ?  We would need 1232 x .  To solve for x, we would first 
subtract 3, resulting in horizontal shift, then divide by 2, causing a horizontal 
compression.   
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Combining Horizontal Transformations 
When combining horizontal transformations written in the form )( pbxf   
First horizontally shift by p, then horizontally stretch by 1/b 

 
This format ends up being very difficult to work with, since it is usually much easier to 
horizontally stretch a graph before shifting.  We can work around this by factoring inside 
the function. 

)( pbxf  = 













 

b

p
xbf  

Factoring in this way allows us to horizontally stretch first then shift horizontally. 
 
 
Combining Horizontal Transformations 

When combining horizontal transformations written in the form ))(( hxbf   
First horizontally stretch by 1/b, then horizontally shift by h. 

 
Independence of Horizontal and Vertical Transformations 

Horizontal and vertical transformations are independent.  It does not matter 
whether horizontal or vertical transformations are done first. 

 
 
Example 19 

Given the table of values for the function f(x) below, create a table of values for the 
function 1)3(2)(  xfxg  
 
 
 
 
There are 3 steps to this transformation and we will work from the inside out.  Starting 
with the horizontal transformations, )3( xf  is a horizontal compression by 1/3 which 
means we multiply each x value by 1/3. 
 
 
 
 
Looking now to the vertical transformations, we start with the vertical stretch, which 
will multiply the output values by 2.  We build this onto the previous transformation. 
 
 
 
 
Finally, we can apply the vertical shift, which will add 1 to all the output values. 
 
 
 

x 6 12 18 24 
f(x) 10 14 15 17 

x 2 4 6 8 
)3( xf  10 14 15 17 

x 2 4 6 8 
)3(2 xf  20 28 30 34 

x 2 4 6 8 
1)3(2)(  xfxg  21 29 31 35
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Example 20 

Using the graph of f(x) below, sketch a graph of  31
2

1
)( 






  xfxk  

 
 
To make things simpler, we’ll start by factoring out the inside of the function 

3)2(
2

1
31

2

1







 






  xfxf  

 
By factoring the inside, we can first horizontally stretch by 2, as indicated by the ½ on 
the inside of the function.  Remember twice the size of 0 is still 0, so the point (0,2) 
remains at (0,2) while the point (2,0) will stretch to (4,0). 
 
Next, we horizontally shift left by 2 units, as indicated by the x+2. 
 
Last, we vertically shift down by 3 to complete our sketch, as indicated by the -3 on the 
outside of the function. 
 
Horizontal stretch by 2 Horizontal shift left by 2  Vertical shift down 3 

        
 
 
 
 
 

88



Section 1.5 Transformation of Functions 

 

79

Example 21 
Write an equation for the transformed graph of 
the quadratic function graphed to the right. 
 
Since this is a quadratic function, first consider 
what the basic quadratic tool kit function looks 
like and how this has changed.  Observing the 
graph, we notice several transformations: 
The original tool kit function has been flipped 
over the x axis, some kind of stretch or 
compression has occurred, and we can see a shift 
to the right 3 units and a shift up 1 unit. 
 
In total there are four operations: 
Vertical reflection, requiring a negative sign outside the function 
Vertical Stretch or Horizontal Compression* 
Horizontal Shift Right 3 units, which tells us to put x-3 on the inside of the function 
Vertical Shift up 1 unit, telling us to add 1 on the outside of the function 
 
* It is unclear from the graph whether it is showing a vertical stretch or a horizontal 
compression.  For the quadratic, it turns out we could represent it either way, so we’ll 
use a vertical stretch.  You may be able to determine the vertical stretch by observation. 
 
By observation, the basic tool kit function has a vertex at (0, 0) and symmetrical points 
at (1, 1) and (-1, 1).  These points are one unit up and one unit over from the vertex.  
The new points on the transformed graph are one unit away horizontally but 2 units 
away vertically.  They have been stretched vertically by two. 
 
Not everyone can see this by simply looking at the graph.  If you can, great, but if not, 
we can solve for it.  First, we will write the equation for this graph, with an unknown 
vertical stretch. 
 

2)( xxf      The original function 
2)( xxf     Vertically reflected 

2)( axxaf     Vertically stretched  
2)3()3(  xaxaf   Shifted right 3 

1)3(1)3( 2  xaxaf  Shifted up 1 
 
We now know our graph is going to have an equation of the form 1)3()( 2  xaxg .  
To find the vertical stretch, we can identify any point on the graph (other than the 
highest point), such as the point (2,-1), which tells us 1)2( g .  Using our general 
formula, and substituting 2 for x, and -1 for g(x),  
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a

a

a

a







2

2

11

1)32(1 2

 

 
To produce the graph, we must have vertically stretched by two.  Our final equation for 
this graph then is 1)3(2)( 2  xxg  

 
 
Try it Now 

5. Consider the linear function 12)(  xxg .  Describe its transformation in words 
using the identity tool kit function f(x) = x as a reference point. 

 
 
Example 22 

On what interval(s) is the function 
 

3
1

2
)(

2






x

xg  increasing and decreasing? 

 

This is a transformation of the toolkit reciprocal squared function, 
2

1
)(

x
xf  : 

2

2
)(2

x
xf


    A vertical flip and vertical stretch by 2 

 21

2
)1(2





x

xf   A shift right by 1 

 
3

1

2
3)1(2

2






x

xf  A shift up by 3 

 
The basic reciprocal squared function is increasing on 

)0,( and decreasing on ),0(  .  Because of the vertical 
flip, the g(x) function will be decreasing on the left and 
increasing on the right.  The horizontal shift right by 1 will 
also shift these intervals to the right one.  From this, we can 
determine g(x) will be increasing on ),1(   and decreasing on 

)1,( .  We also could graph the transformation to help us 
determine these intervals.  

 
 
Try it Now 

6.  On what interval(s) is the function 2)3()( 3  tth  concave up and down? 
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Important Topics of this Section 
Transformations 
Vertical Shift (up & down) 
Horizontal Shifts (left & right) 
Reflections over the vertical & horizontal axis 
Even & Odd functions 
Vertical Stretches & Compressions 
Horizontal Stretches & Compressions 
Combinations of Transformation 

 
 
Try it Now Answers 

1. 2( ) ( ) 10 4.9 30 10b t h t t t        
2. a. Horizontal shift 
    b. The function is shifted to the LEFT by 2 units. 
    c.  Shown to the right 
 
3. Graph of 2( )f x x , and g(x) = -f(x)  and h(x) = f(-x)  
 Notice: f(-x) looks the same as f(x) 

4. 





 xfxg

3

1
)(  so using the square root function we get 

1
( )

3
g x x  

5.  The identity tool kit function f(x) = x  has been transformed in 3 steps 
      a.  Vertically stretched by 2.  
      b.  Vertically reflected over the x axis. 
      c.  Vertically shifted up by 1 unit.  
 
6. h(t) is concave down on )3,( and concave up on ),3(   
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Section 1.5 Exercises 
 
Describe how each function is a transformation of the original function ( )f x  

1.  49f x      2. ( 43)f x   

3. ( 3)f x      4. ( 4)f x   

5.   5f x      6.   8f x   

7.   2f x      8.   7f x      

9.  2 3f x      10.  4 1f x     

 

11. Write a formula for ( )f x x  shifted up 1 unit and left 2 units 

12. Write a formula for ( )f x x  shifted down 3 units and right 1 unit 

13. Write a formula for 
1

( )f x
x

  shifted down 4 units and right 3 units 

14. Write a formula for 
2

1
 ( )f x

x
  shifted up 2 units and left 4 units 

 
15. Tables of values for  ( )f x , ( )g x , and ( )h x  are given below.   Write ( )g x  and ( )h x  

as transformations of ( )f x . 

x -2 -1 0 1 2 
f(x) -2 -1 -3 1 2 

 

x -1 0 1 2 3
g(x) -2 -1 -3 1 2

x -2 -1 0 1 2
h(x) -1 0 -2 2 3

 
16. Tables of values for  ( )f x , ( )g x , and ( )h x  are given below.   Write ( )g x  and ( )h x  

as transformations of ( )f x . 

x -2 -1 0 1 2 
f(x) -1 -3 4 2 1 

 

x -3 -2 -1 0 1
g(x) -1 -3 4 2 1

x -2 -1 0 1 2
h(x) -2 -4 3 1 0

 
The graph of   2xf x   is shown.  Sketch a graph of each transformation of ( )f x  

17.   2 1xg x    

18.   2 3xh x    

19.   12xw x   

20.   32xq x   
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Sketch a graph of each function as a transformation of a toolkit function 

21.   2( 1) 3f t t    

22.   1 4h x x    

23.    3
2 1k x x    

24.   3 2m t t    

 Write an equation for the function graphed below 
 

25.    26.   

27.     28.  
 
 
Find a formula for each of the transformations of the square root whose graphs are given 
below.  

29.    30.  
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The graph of   2xf x   is shown.  Sketch a graph of each 

transformation of ( )f x   

31.   2 1xg x     

32.   2 xh x   

 
   
33. Starting with the graph of    6xf x   write the equation of the graph that results from  

a. reflecting ( )f x  about the x-axis and the y-axis 
b. reflecting ( )f x  about the x-axis, shifting left 2 units, and down 3 units 

  
34. Starting with the graph of    4xf x   write the equation of the graph that results from  

a. reflecting ( )f x  about the x-axis 
b. reflecting ( )f x  about the y-axis, shifting right 4 units, and up 2 units 
 

Write an equation for the function graphed below 
 

35.   36.  
 

37.   38.  
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39. For each equation below, determine if the function is Odd, Even, or Neither 
a.   43 f x x   

b. ( )g x x   

c.   1
3 h x x

x
    

  
40. For each equation below, determine if the function is Odd, Even, or Neither 

a.    2
2f x x    

b.   42 g x x   

c.   32 h x x x    

  
Describe how each function is a transformation of the original function ( )f x  
41. ( )f x     42. ( )f x   
43. 4 ( )f x      44. 6 ( )f x  
45. (5 )f x     46. (2 )f x  

47. 
1

3
f x
 
 
 

    48. 
1

5
f x
 
 
 

 

49.  3 f x     50. (3 )f x   

 
51. Write a formula for ( )f x x  reflected over the y axis and horizontally compressed 

by a factor of 
1

4
 

 

52. Write a formula for ( )f x x  reflected over the x axis and horizontally stretched by 
a factor of 2 
 

53. Write a formula for 
2

1
( )f x

x
  vertically compressed by a factor of 

1

3
, then shifted to 

the left 2 units and down 3 units. 
 

54. Write a formula for 
1

( )f x
x

  vertically stretched by a factor of 8, then shifted to the 

right 4 units and up 2 units. 
 

55. Write a formula for 2( )f x x  horizontally compressed by a factor of 
1

2
, then shifted 

to the right 5 units and up 1 unit. 
 

56. Write a formula for 2( )f x x  horizontally stretched by a factor of 3, then shifted to 
the left 4 units and down 3 units. 
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Describe how each formula is a transformation of a toolkit function.  Then sketch a graph 
of the transformation. 

57.    2
4 1 5f x x      58.  2

( ) 5 3 2g x x    

 

59.   2 4 3h x x       60.   3 1k x x    

 

61.   31

2
m x x      62.   1

2
3

n x x   

 

63.  
2

1
3

3
p x x

   
 

    64.  
3

1
1

4
q x x

   
 

  

 

65.   4a x x       66.   3 6b x x    

 
 

Determine the interval(s) on which the function is increasing and decreasing 
 

67.    2
4 1 5f x x      68.  2

( ) 5 3 2g x x    

 

69.   4a x x       70.   3 1k x x    

 
Determine the interval(s) on which the function is concave up and concave down 

 

71.   1)3(2 3  xxm    72.   3 6b x x    

 

73.  
2

1
3

3
p x x

   
 

    74.   3 1k x x    
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The function ( )f x  is graphed here.  Write an equation for each 
graph below as a transformation of ( )f x . 
 
 
 
 
 

75.  76.  77.  
 

78.  79.  80.  
 

81.  82.  83.  
 

84.  85.  86.  
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Write an equation for the transformed toolkit function graphed below. 
 

87.  88.  89.   
 

90.  91.  92.   
 

93.  94.  95.  
 

96.  97.  98.  
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99. Suppose you have a function  ( )y f x  such that the domain of ( )f x  is 1 ≤ x ≤ 6 and 
the range of ( )f x  is −3 ≤ y ≤ 5.  [UW] 

a. What is the domain of (2( 3)) f x  ? 

b. What is the range of ))3(2( xf  ? 

c. What is the domain of 2 ( ) 3f x   ? 

d. What is the range of 2 ( ) 3f x   ? 

e. Can you find constants B and C so that the domain of ( ( ))f B x C  is 8 ≤ x ≤ 9? 

f. Can you find constants A and D so that the range of ( )  Af x D  is 0 ≤ y ≤ 1? 
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Section 1.6 Inverse Functions 
 
A fashion designer is travelling to Milan for a fashion show.  He asks his assistant, Betty, 
what 75 degrees Fahrenheit is in Celsius, and after a quick search on Google, she finds 

the formula )32(
9

5
 FC .  Using this formula, she calculates 24)3275(

9

5
 degrees 

Celsius.  The next day, the designer sends his assistant the week’s weather forecast for 
Milan, and asks her to convert the temperatures to Fahrenheit. 

     
 
At first, Betty might consider using the formula she has already found to do the 
conversions.  After all, she knows her algebra well, and can easily solve the equation for 
F after substituting a value for C.  For example, to convert 26 degrees Celsius, she could: 

7932
5

9
26

32
5

9
26

)32(
9

5
26







F

F

F

 

 
After considering this option for a moment, she realizes that solving the equation for each 
of the temperatures would get awfully tedious, and realizes that since evaluation is easier 
than solving, it would be much more convenient to have a different formula, one which 
takes the Celsius temperature and outputs the Fahrenheit temperature.  This is the idea of 
an inverse function, where input becomes output and the output becomes the input. 
 
 
Inverse Function 

If baf )( , then a function g(x) is an inverse of f  if abg )(  

The inverse of f(x) is typically notated )(1 xf  , which is read “f inverse of x”, so 

equivalently, if baf )(  then abf  )(1 . 
 
Important:  The raised -1 used in the notation for inverse functions is simply a notation, 
and does not designate an exponent or power of -1. 
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Example 1 
If for a particular function, 4)2( f , what do we know about the inverse? 
 
The inverse function reverses which quantity is input and which quantity is output, so if 

4)2( f , then 2)4(1 f .  
 
Alternatively, if you want to re-name the inverse function g(x), then g(4) = 2 

 
 
Try it Now 

1. Given the inverse function 2)6(1 h , what do we know about the original function? 
 
 
Notice that original function and the inverse function undo each other.  If baf )( , then 

1( )f b a  , returning us to the original input.  More simply put, if you compose these 
functions together you get the original input as your answer. 

 1 ( )f f a a    and   1( )f f b b   

 
 
 
 
 
 
 
Since the outputs of the function f are the inputs to 1f , typically the range of f is also the 

domain of 1f .  Likewise, since the inputs to f are the outputs of 1f , the domain of f is 

typically the range of 1f . 
 
Basically, like how the input and output values switch, the domain & ranges switch as 
well.  But be careful, because sometimes a function doesn’t even have an inverse 
function, or only has an inverse on a limited domain. 
 
 
Example 2 

The function xxf 2)(   has domain ),(   and range ),0(  , what would we expect 

the domain and range of 1f  to be? 
 
We would expect 1f  to swap the domain and range of f, so 1f  would have 
domain ),0(   and range ( , )  . 

 
 
 
 

Domain of f Range of f 

a b

)(1 xf 

)(xf  
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Example 3 
A function f(t) is given as a table below, showing distance in miles that a car has 
traveled in t minutes.  Find and interpret )70(1f  
 
 
 
 
The inverse function takes an output of f and returns an input for f.  So in the 
expression )70(1f , the 70 is an output value of the original function, representing 70 
miles.  The inverse will return the corresponding input of the original function f, 90 
minutes, so 90)70(1 f .  Interpreting this, it means that to drive 70 miles, it took 90 
minutes. 
 
Alternatively, recall the definition of the inverse was that if baf )(  then abf  )(1 .  

By this definition, if you are given af  )70(1  then you are looking for a value a so 
that 70)( af .  In this case, we are looking for a t so that 70)( tf , which is when t = 
90. 

 
 
Try it Now 

2.  Using the table below 
 
 
 
Find the following 
 a. )60(f  

 b. )60(1f  
 
 
Example 4 

A function g(x) is given as a graph below.  Find )3(g  and )3(1g  

 
 
To evaluate )3(g , we find 3 on the horizontal input axis and find the corresponding 
output value on the vertical output axis. The point (3, 1) tells us that 1)3( g  

t (minutes) 30 50 70 90 
f(t) (miles) 20 40 60 70 

t (minutes) 30 50 60 70 90 
f(t) (miles) 20 40 50 60 70 
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To evaluate )3(1g , recall that by definition )3(1g means g(x) = 3.  By looking for the 
output value 3 on the vertical axis we find the point (5, 3) on the graph, which means 
g(5) = 3, so by definition 5)3(1 g . 

 
 
Try it Now 

3. Using the graph in example 4 above  
     a. find )1(1g  

     b. estimate )4(1g  
 
 
Example 5 

Returning to our designer’s assistant, find a formula for the inverse function that gives 
Fahrenheit temperature given a Celsius temperature. 
 
A quick Google search would find the inverse function, but alternatively, Betty might 
look back at how she solved for the Fahrenheit temperature for a specific Celsius value, 
and repeat the process in general 

32
5

9

32
5

9

)32(
9

5







CF

FC

FC

 

 
By solving in general, we have uncovered the inverse function.  If  

)32(
9

5
)(  FFhC  

Then 

32
5

9
)(1   CChF  

In this case, we introduced a function h to represent the conversion since the input and 
output variables are descriptive, and writing 1C could get confusing. 

 
 
It is important to note that not all functions will have an inverse function.  Since the 
inverse )(1 xf   takes an output of f and returns an input of f, in order for 1f  to itself be 

a function, then each output of f (input to 1f ) must correspond to exactly one input of f 

(output of 1f ) in order for 1f  to be a function.  You might recall that this is the 
definition of a one-to-one function. 
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Properties of Inverses 
In order for a function to have an inverse, it must be a one-to-one function 

 
 
In some cases, it is desirable to have an inverse for a function even though the function is 
not one-to-one.  In those cases, we can often limit the domain of the original function to 
an interval on which the function is one-to-one, then find an inverse only on that interval. 
 
If you have not already done so, go back to the toolkit functions that were not one-to-one 
and limit or restrict the domain of the original function so that it is one-to-one.  If you are 
not sure how to do this, proceed to example 6. 
 
 
Example 6 

The quadratic function 2)( xxh   is not one-to-one.  Find a domain on which this 
function is one-to-one, and find the inverse on that domain. 
 
We can limit the domain to ),0[  to restrict the 
graph to a portion that is one-to-one, and find its 
inverse on this limited domain. 
 
You may have already guessed that since we undo a 
square with a square root, the inverse of 2)( xxh   

on this domain is xxh  )(1 .   
 
You can also solve for the inverse function algebraically.  If 2)( xxh  , we can 

introduce the variable y to represent the output values, allowing us to write 2xy  .  To 
find the inverse we solve for the input variable 
 

To solve for x we take the square root of each side.  2xy   and get xy   but 

we are only interested in the positive half so yx   or yyh  )(1 .  In cases like this 

where the variables are not descriptive, it is common to see the inverse function 

rewritten with the variable x:  xxh  )(1 .  Rewriting the inverse using the variable x 
is often required for graphing inverse functions using calculators or computers. 
 
Note that the domain and range of the square root function do correspond with the range 
and domain of the quadratic function on the limited domain. 
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Important Topics of this Section 
Definition of an inverse function 
Composition of inverse functions yield the original input value 
Not every function has an inverse function 
To have an inverse a function must be one-to-one 
Restricting the domain of functions that are not one-to-one. 

 
 
Try it Now Answers 

1. 6)2( g  
2.a. 50)60( f  

   b. 70)60(1 f  

3. a. 3)1(1 g  

    b. 5.5)4(1 g   (this is an approximation – answers may vary slightly) 
 

105



96  Chapter 1 

 

Section 1.6 Exercises 
 
Assume that the function f is a one-to-one function.  
1. If  (6) 7f   , find  1(7)f      2. If  (3) 2f   , find  1(2)f   

3. If  1 4 8f     , find ( 8)f    4. If  1 2 1f     , find ( 1)f   

5. If  5 2f  , find    1
5f


   6. If  1 4f  , find    1

1f


 

 
7. Using the graph of ( )f x  shown 

a. Find  0f  

b. Solve ( ) 0f x    

c. Find  1 0f   

d. Solve  1 0f x    

  
 
 
8. Using the graph shown  

a. Find (1)g  

b. Solve ( ) 1g x    

c. Find 1(1)g   

d. Solve  1 1g x    

 
 
 
9. Use the table below to fill in the missing values. 

x 0 1 2 3 4 5 6 7 8 9 
f(x) 8 0 7 4 2 6 5 3 9 1 
 

a. Find  1f  

b. Solve ( ) 3f x   

c. Find  1 0f   

d. Solve  1 7f x    
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10. Use the table below to fill in the missing values. 
t 0 1 2 3 4 5 6 7 8 
h(t) 6 0 1 7 2 3 5 4 9 

 
a. Find  6h  

b. Solve ( ) 0h t   

c. Find  1 5h  

d. Solve  1 1h t    

 

For each table below, create a table for  1 .f x  

11. x 3 6 9 13 14 
f(x) 1 4 7 12 16 

 

12. x 3 5 7 13 15 
f(x) 2 6 9 11 16 

 
For each function below, find 1( )f x   

13.   3f x x      14.   5f x x   

15.    2 – f x x     16.   3f x x   

17.   11 7f x x      18.   9 10f x x   

 
For each function, find a domain on which f is one-to-one and non-decreasing, then find the 
inverse of f restricted to that domain. 

19.    2
  7f x x      20.    2

6f x x   

21.   2 5f x x       22.   2 1f x x   

 

23. If   3 5f x x   and 3( ) 5g x x  , find 

a.  ( ( ))f g x   

b.  ( ( ))g f x   

c. What does this tell us about the relationship between ( )f x  and ( )g x ? 

 

24. If ( )
2

x
f x

x



 and 

2
( )

1

x
g x

x



, find 

a.  ( ( ))f g x   

b.  ( ( ))g f x   

c. What does this tell us about the relationship between ( )f x  and ( )g x ? 
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This chapter is part of Precalculus: An Investigation of Functions © Lippman & Rasmussen 2011.   
This material is licensed under a Creative Commons CC-BY-SA license. 
 

Chapter 2: Linear Functions 
Chapter one is a window that gives us a peek into the entire course.  Our goal is to 
understand the basic structure of functions and function notation, the toolkit functions, 
domain and range, how to recognize and understand composition and transformations of 
functions and how to understand and utilize inverse functions.  With these basic 
components in hand we will further research the specific details and intricacies of each 
type of function in our toolkit and use them to model the world around us. 
 
 
Mathematical Modeling 

As we approach day to day life we often need to quantify the things around us, giving 
structure and numeric value to various situations. This ability to add structure enables us 
to make choices based on patterns we see that are weighted and systematic.  With this 
structure in place we can model and even predict behavior to make decisions.  Adding a 
numerical structure to a real world situation is called Mathematical Modeling. 

 
 
When modeling real world scenarios, there are some common growth patterns that are 
regularly observed.  We will devote this chapter and the rest of the book to the study of 
the functions used to model these growth patterns. 
 

Section 2.1 Linear Functions ........................................................................................ 99 
Section 2.2 Graphs of Linear Functions ..................................................................... 111 
Section 2.3 Modeling with Linear Functions .............................................................. 126 
Section 2.4 Fitting Linear Models to Data .................................................................. 138 
Section 2.5 Absolute Value Functions ........................................................................ 146 

 

Section 2.1 Linear Functions 
 
As you hop into a taxicab in Las Vegas, the meter will immediately read $3.30, this is the 
“drop” charge made when the taximeter is activated.  After that initial fee, the taximeter 
will add $2.40 for each mile the taxi drives1.  In this scenario, the total taxi fare depends 
upon the number of miles ridden in the taxi, and we can ask whether it is possible to 
model this type of scenario with a function. Using descriptive variables, we choose m for 
miles and C for Cost in dollars as a function of miles: C(m).  
 
We know for certain that 30.3)0( C , since the $3.30 drop charge is assessed regardless 
of how many miles are driven.  Since $2.40 is added for each mile driven, then  

70.540.230.3)1( C  
If we then drove a second mile, another $2.40 would be added to the cost: 

10.8)2(40.230.340.240.230.3)2( C  

                                                 
1 http://taxi.state.nv.us/FaresFees.htm, retrieved July 28, 2010.  There is also a waiting fee assessed when 
the taxi is waiting at red lights, but we’ll ignore that in this discussion. 
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If we drove a third mile, another $2.40 would be added 
to the cost: 

50.10)3(40.230.340.240.240.230.3)3( C
 
 
From this we might observe the pattern, and conclude 
that if m miles are driven, mmC 40.230.3)(   
because we start with a $3.30 drop fee and then for 
each mile increase we add $2.40. 
 
It is good to verify that the units make sense in this equation.  The $3.30 drop charge is 
measured in dollars; the $2.40 charge is measured in dollars per mile.  So 

 milesm
mile

dollars
dollarsmC 






 40.230.3)(  

When dollars per mile are multiplied by a number of miles, the result is a number of 
dollars, matching the units on the 3.30, and matching the desired units for the C function.   
 
Notice this equation mmC 40.230.3)(   consisted of two quantities.  The first is the 
fixed $3.30 charge which does not change based on the value of the input.  The second is 
the $2.40 dollars per mile value, which is a rate of change.  In the equation this rate of 
change is multiplied by the input value. 
 
Looking at this same problem in table format we can also see the cost changes by $2.40 
for every 1 mile increase. 
 

m 0 1 2 3 

C(m)  3.30 5.70 8.10 10.50 

 
It is important here to note that in this equation, the rate of change is constant; over any 
interval, the rate of change is the same. 
 
Graphing this equation, mmC 40.230.3)(   we see the shape is a line, which is how 
these functions get their name: linear functions  
  
When the number of miles is zero the cost is $3.30, giving the point (0, 3.30) on the 
graph.  This is the vertical or C(m) intercept.  The graph is increasing in a straight line 
from left to right because for each mile the cost goes up by $2.40; this rate remains 
consistent. 
 
In this example you have seen the taxicab cost modeled in words, an equation, a table and 
in graphical form.  Whenever possible, ensure that you can link these four representations 
together to continually build your skills.  It is important to note that you will not always 
be able to find all 4 representations for a problem and so being able to work with all 4 
forms is very important. 
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Linear Function 

A linear function.  is a function whose graph produces a line.  Linear functions can 
always be written in the form 

mxbxf )(  or  bmxxf )( ;  they’re equivalent 
Where  
b is the initial or starting value of the function (when input, x = 0), and 
m is the constant rate of change of the function  
 
Many people like to write linear functions in the form mxbxf )(  because it 
corresponds to the way we tend to speak:  “The output starts at b and increases at a rate 
of m.” 
 
For this reason alone we will use the mxbxf )(  form for many of the examples, but 
remember they are equivalent and can be written correctly both ways. 

 
 
Slope and Increasing/Decreasing 

m is the constant rate of change of the function (also called slope).  The slope 
determines if the function is an increasing function or a decreasing function. 

mxbxf )(  is an increasing function if 0m   
mxbxf )(  is a decreasing function if 0m   

If 0m  , the rate of change  zero, and the function ( ) 0f x b x b    is just a straight 
horizontal line passing through the point (0, b), neither increasing nor decreasing. 

 
 
Example 1 

Marcus currently owns 200 songs in his iTunes collection.  Every month, he adds 15 
new songs.  Write a formula for the number of songs, N, in his iTunes collection as a 
function of the number of months, m.  How many songs will he own in a year? 
 
The initial value for this function is 200, since he currently owns 200 songs so 

200)0( N .  The number of songs increases by 15 songs per month, so the rate of 
change is 15 songs per month.  With this information, we can write the formula: 

mmN 15200)(  . 
 
N(m) is an increasing linear function. 
 
With this formula we can predict how many songs he will have in 1 year (12 months): 

380180200)12(15200)12( N . Marcus will have 380 songs in 12 months. 
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Try it Now 
1. If you earn $30,000 per year and you spend $29,000 per year write an equation for 
the amount of money you save after y years, if you start with nothing.  
“The most important thing, spend less than you earn!2” 

 
 
Calculating Rate of Change 

Given two values for the input, 21  and xx , and two corresponding values for the output, 

21  and yy ,  or a set of points, )  ,( 11 yx  and )  ,( 22 yx , if we wish to find a linear function 
that contains both points we can calculate the rate of change, m: 

12

12

inputin  change

outputin  change

xx

yy

x

y
m








  

 
Rate of change of a linear function is also called the slope of the line. 
 
Note in function notation, )( 11 xfy   and )( 22 xfy  , so we could equivalently write 

   2 1

2 1

f x f x
m

x x





 

 
 
Example 2 

The population of a city increased from 23,400 to 27,800 between 2002 and 2006.  Find 
the rate of change of the population during this time span. 
 
The rate of change will relate the change in population to the change in time.  The 
population increased by 44002340027800  people over the 4 year time interval.  To 
find the rate of change, the number of people per year the population changed by: 

year

people

years

people
1100

4

4400
  = 1100 people per year 

 
Notice that we knew the population was increasing, so we would expect our value for m 
to be positive.  This is a quick way to check to see if your value is reasonable. 

 
 
Example 3 

The pressure, P, in pounds per square inch (PSI) on a diver depends upon their depth 
below the water surface, d, in feet, following the equation ddP 434.0696.14)(  .  
Interpret the components of this function. 
 

                                                 
2 http://www.thesimpledollar.com/onepage 
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The rate of change, or slope, 0.434 would have units 
ft

PSI

depth

pressure

input

output
 .  This 

tells us the pressure on the diver increases by 0.434 PSI for each foot their depth 
increases. 
 
The initial value, 14.696, will have the same units as the output, so this tells us that at a 
depth of 0 feet, the pressure on the diver will be 14.696 PSI. 

 
 
Example 4 

If )(xf is a linear function, 2)3( f , and 1)8( f , find the rate of change. 
 

2)3( f  tells us that the input 3 corresponds with the output -2, and 1)8( f  tells us 
that the input 8 corresponds with the output 1.  To find the rate of change, we divide the 
change in output by the change in input: 
 

5

3

38

)2(1

inputin  change

outputin  change





m .  If desired we could also write this as m = 0.6 

 
Note that it is not important which pair of values comes first in the subtractions so long 
as the first output value used corresponds with the first input value used. 

 
 
Try it Now 

2. Given the two points (2, 3) and (0, 4), find the rate of change.  Is this function 
increasing or decreasing? 

 
 
We can now find the rate of change given two input-output pairs, and can write an 
equation for a linear function once we have the rate of change and initial value.  If we 
have two input-output pairs and they do not include the initial value of the function, then 
we will have to solve for it. 
 
 
Example 5 

Write an equation for the linear function 
graphed to the right. 
 
Looking at the graph, we might notice that it 
passes through the points (0, 7) and (4, 4).  
From the first value, we know the initial value 
of the function is b = 7, so in this case we will 
only need to calculate the rate of change: 
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4

3

04

74 





m  

 
This allows us to write the equation: 

xxf
4

3
7)(       

 
 
Example 6 

If )(xf is a linear function, 2)3( f , and 1)8( f , find an equation for the function. 
 

In example 3, we computed the rate of change to be 
5

3
m .  In this case, we do not 

know the initial value )0(f , so we will have to solve for it.  Using the rate of change, 

we know the equation will have the form xbxf
5

3
)(  .   Since we know the value of 

the function when x = 3, we can evaluate the function at 3. 
 

)3(
5

3
)3(  bf  Since we know that 2)3( f , we can substitute on the left side 

)3(
5

3
2  b  This leaves us with an equation we can solve for the initial value 

5

19

5

9
2


b  

 
Combining this with the value for the rate of change, we can now write a formula for 
this function: 

xxf
5

3

5

19
)( 


  

 
 
Example 7 

Working as an insurance salesperson, Ilya earns a base salaray and a commission on 
each new polity, so Ilya’s weekly income, I, depends on the number of new policies, n, 
he sells during the week.  Last week he sold 3 new policies, and earned $760 for the 
week.  The week before, he sold 5 new policies, and earned $920.  Find an equation for 
I(n), and interpret the meaning of the components of the equation. 
 
The given information gives us two input-output pairs:  (3,760) and (5,920).  We start 
by finding the rate of change.   

80
2

160

35

760920





m  
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Keeping track of units can help us interpret this quantity.  Income increased by $160 
when the number of policies increased by 2, so the rate of change is $80 per policy; Ilya 
earns a commission of $80 for each policy sold during the week. 
 
We can then solve for the initial value 

nbnI 80)(    then when n = 3, (3) 760I  , giving 
)3(80760  b   this allows us to solve for b 

520)3(80760 b  
 
This value is the starting value for the function.  This is Ilya’s income when n = 0, 
which means no new policies are sold.  We can interpret this as Ilya’s base salary for 
the week, which does not depend upon the number of policies sold.   
 
Writing the final equation: 

nnI 80520)(   
Our final interpretation is: Ilya’s base salary is $520 per week and he earns an 
additional $80 commission for each policy sold each week. 

 
 
Flashback 

Looking at Example 7: 
Determine the independent and dependent variables? 
What is a reasonable domain and range? 
Is this function one-to-one? 

 
 
Try it Now 

3. The balance in your college payment account C, is a function on the amount, a, you 
withdraw each quarter.  Interpret the function C(a) = 20000 - 4000a in words.  How 
many quarters of college can you pay for until this account is empty? 

 
 
Example 8 

Given the table below write a linear equation that represents the table values 
 

 
We can see from the table that the initial value of rats is 1000 so in the linear format  

( )P w b mw  , b = 1000.   
 
Rather than solving for m, we can notice from the table that the population goes up by 
80 for every 2 weeks that pass.  This rate is consistent from week 0, to week 2, 4, and 6.  

w, number of 
weeks 

0 2 4 6 

P(w), number 
of rats 

1000 1080 1160 1240 
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The rate of change is 80 rats per 2 weeks. This can be simplified to 40 rats per week and 
we can write 

( )P w b mw   as wwP 401000)(   
 
If you didn’t notice this from the table you could still solve for the slope using any two 
points from the table.  For example, using (2, 1080) and (6, 1240), 

1240 1080 160
40

6 2 4
m


  


rats per week 

 
 
Important Topics of this Section 

Definition of Modeling 
Definition of a linear function 
Structure of a linear function 
Increasing & Decreasing functions 
Finding the vertical intercept (0, b) 
Finding the slope/ rate of change, m 
Interpreting linear functions 

 
 
Try it Now Answers 

1. yyyyS 1000000,29000,30)(    $1000 is saved each year.    

2. 
2

1

2

1

20

34








m   ;  Decreasing because m < 0 

3. Your College account starts with $20,000 in it and you withdraw $4,000 each quarter 
(or your account contains $20,000 and decreases by $4000 each quarter.)  You can pay 
for 5 quarters before the money in this account is gone. 

 
 
Flashback Answers 

n (number of policies sold) is the independent variable 
I(n) (weekly income as a function of policies sold) is the dependent variable. 
 
A reasonable domain is (0, 15)* 
A reasonable range is ($540, $1740)* 
*answers may vary given reasoning is stated; 15 is an arbitrary upper limit based on 
selling 3 policies per day in a 5 day work week and $1740 corresponds with the domain. 
 
Yes this function is one-to-one   
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Section 2.1 Exercises 
 
1. A town's population has been growing linearly. In 2003, the population was 45,000, 

and the population has been growing by 1700 people each year.  Write an 

equation   , P t for the population t years after 2003. 

 
2. A town's population has been growing linearly. In 2005, the population was 69,000, 

and the population has been growing by 2500 people each year.  Write an 

equation   , P t for the population t years after 2005. 

 
3. Sonya is currently 10 miles from home, and is walking further away at 2 miles per 

hour.  Write an equation for her distance from home t hours from now. 
 

4. A boat is 100 miles away from the marina, sailing directly towards it at 10 miles per 
hour.  Write an equation for the distance of the boat from the marina after t hours. 
 

5. Timmy goes to the fair with $40.  Each ride costs $2.  How much money will he have 
left after riding n rides? 
 

6. At noon, a barista notices she has $20 in her tip jar.  If she makes an average of $0.50 
from each customer, how much will she have in her tip jar if she serves n more 
customers during her shift? 

Determine if each function is increasing or decreasing 
7.   4 3f x x      8.   5 6g x x   

9.   5 2a x x      10.   8 3b x x    

11.   2 4h x x       12.   4 1k x x    

13.   1
3

2
j x x      14.   1

5
4

p x x   

15.   1
2

3
n x x        16.   3

3
8

m x x    

 
Find the slope of the line that passes through the two given points 
17. (2, 4) and (4, 10)    18. (1, 5) and (4, 11) 
19. (-1,4) and (5, 2)    20. (-2, 8) and (4, 6) 
21. (6,11) and (-4,3)    22. (9,10) and (-6,-12) 
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Find the slope of the lines graphed 

23.    24.  
 

25. Sonya is walking home from a friend’s house.  After 2 minutes she is 1.4 miles from 
home.  Twelve minutes after leaving, she is 0.9 miles from home.  What is her rate? 
 

26. A gym membership with two personal training sessions costs $125, while gym 
membership with 5 personal training sessions costs $260.  What is the rate for 
personal training sessions? 
 

27. A city's population in the year 1960 was 287,500. In 1989 the population was 
275,900.  Compute the slope of the population growth (or decline) and make a 
statement about the population rate of change in people per year.  
 

28. A city's population in the year 1958 was 2,113,000. In 1991 the population was 
2,099,800. Compute the slope of the population growth (or decline) and make a 
statement about the population rate of change in people per year. 
 

29. A phone company charges for service according to the formula: ( ) 24 0.1C n n  , 

where n is the number of minutes talked, and ( )C n  is the monthly charge, in dollars. 

Find and interpret the rate of change and initial value.  
 

30. A phone company charges for service according to the formula: ( ) 26 0.04C n n  , 

where n is the number of minutes talked, and ( )C n  is the monthly charge, in dollars. 

Find and interpret the rate of change and initial value. 
 

31. Terry is skiing down a steep hill. Terry's elevation, ( )E t , in feet after t seconds is 

given by ( ) 3000 70E t t  .  Write a complete sentence describing Terry’s starting 

point and how it is changing over time. 
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32. Maria is climbing a mountain. Maria's elevation, ( )E t , in feet after t minutes is given 

by  1 200 40E t t .  Write a complete sentence describing Maria’s starting point and 

how it is changing over time. 
  

Given each set of information, find a linear equation satisfying the conditions, if possible 
33. ( 5)  4f   , and (5)  2f     34. ( 1)  4f   , and (5) 1 f   

35. Passes through (2, 4) and (4, 10)  36. Passes through (1, 5) and (4, 11) 

37. Passes through (-1,4) and (5, 2)  38. Passes through (-2, 8) and (4, 6) 

39. x intercept at (-2, 0) and y intercept at (0, -3) 

40. x intercept at (-5, 0) and y intercept at (0, 4) 

 
Find an equation for the function graphed 

41.    42.  
 

43.    44.  
 
 
45. A clothing business finds there is a linear relationship between the number of shirts, 

n, it can sell and the price, p, it can charge per shirt. In particular, historical data 
shows that 1000  shirts can be sold at a price of $30 , while 3000  shirts can be sold at 
a price of $22 . Find a linear equation in the form p mn b   that gives the price p 

they can charge for n shirts.  
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46. A farmer finds there is a linear relationship between the number of bean stalks, n, she 
plants and the yield, y, each plant produces.  When she plants 30 stalks, each plant 
yields 30 oz of beans.  When she plants 34 stalks, each plant produces 28 oz of beans.  
Find a linear relationships in the form y mn b   that gives the yield when n stalks 

are planted. 
  

47. Which of the following tables which could represent a linear function?  For each that 
could be linear, find a linear equation models the data. 

x g(x) 
0 5 
5 -10 
10 -25 
15 -40 

 

x h(x)
0 5 
5 30 
10 105 
15 230 

 

x f(x) 
0 -5 
5 20 
10 45 
15 70 

x k(x) 
5 13 
10 28 
20 58 
25 73 

 
48. Which of the following tables which could represent a linear function?  For each that 

could be linear, find a linear equation models the data.    

x g(x) 
0 6 
2 -19 
4 -44 
6 -69 

 

x h(x)
2 13 
4 23 
8 43 
10 53 

 

x f(x) 
2 -4 
4 16 
6 36 
8 56 

x k(x) 
0 6 
2 31 
6 106 
8 231 

 
 
49. While speaking on the phone to a friend in Oslo, Norway, you learned that the current 

temperature there was -23 Celsius (-23oC). After the phone conversation, you wanted 
to convert this temperature to Fahrenheit degrees  oF, but you could not find a 
reference with the correct formulas. You then remembered that the relationship 
between oF and oC is linear.  [UW] 
a. Using this and the knowledge that 32oF = 0 oC and 212 oF = 100 oC, find an 

equation that computes Celsius temperature in terms of Fahrenheit; i.e. an 
equation of the form C = “an expression involving only the variable F.” 

b. Likewise, find an equation that computes Fahrenheit temperature in terms of 
Celsius temperature; i.e. an equation of the form F = “an expression involving 
only the variable C.” 

c. How cold was it in Oslo in oF? 
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Section 2.2 Graphs of Linear Functions 
 
When we are working with a new function, it is useful to know as much as we can about 
the function: its graph, where the function is zero, and any other special behaviors of the 
function.  We will begin this exploration of linear functions with a look at graphs. 
 
When graphing a linear function, there are three basic ways to graph it: 

1) By plotting points (at least 2) and drawing a line through the points 
2) Using the initial value and rate of change (slope) 
3) Using transformations of the identity function xxf )(  

 
 
Example 1 

Graph xxf
3

2
5)(   by plotting points 

 
In general, we evaluate the function at two or more inputs to find at least two points on 
the graph.  Usually it is best to pick input values that will “work nicely” in the equation.  
In this equation, multiples of 3 will work nicely due to the 2/3 in the equation, and of 
course using x = 0 to get the vertical intercept.  Evaluating f(x) at x = 0, 3 and 6: 

1)6(
3

2
5)6(

3)3(
3

2
5)3(

5)0(
3

2
5)0(







f

f

f

 

 
These evaluations tell us that the points (0,5), (3,3), and (6,1) lie on the graph of the 
line.  Plotting these points and drawing a line through them gives us the graph 
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When using the initial value and rate of change to graph, we need to consider the 
graphical interpretation of these values.  Remember the initial value of the function is the 
output when the input is zero, so in the equation mxbxf )( , the graph includes the 
point (0, b).  On the graph, this is the vertical intercept – the point where the graph 
crosses the vertical axis. 
 
For the rate of change, it is helpful to recall that we calculated this value as  

input of change

output of change
m  

 
From a graph of a line, this tells us that if we divide the vertical difference, or rise, of the 
function outputs by the horizontal difference, or run, of the inputs, we will obtain the rate 
of change, also called slope of the line. 
 

run

rise
m 

input of change

output of change
 

 
Notice that this ratio is the same regardless of which two points we use 
 

  
 
 
Graphical Interpretation of a Linear Equation 

Graphically, in the equation mxbxf )(  
b is the vertical intercept of the graph and tells us we can start our graph at (0, b) 
m is the slope of the line and tells us how far to rise & run to get to the next point 

 
 
Example 2 

Graph xxf
3

2
5)(   using the vertical intercept and slope. 

 
The vertical intercept of the function is (0, 5), giving us a point on the graph of the line.   

run 2, rise 1
m = ½  

rise 2, run 4 
m = 2/4 = ½   

run 2, rise 1
m = ½  
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The slope is 
3

2
 .  This tells us that for every 3 units the graphs “runs” in the horizontal, 

the vertical “rise” decreases by 2 units.  In graphing, we can use this by first plotting our 
vertical intercept on the graph, then using the slope to find a second point.  From the 
initial value (0, 5) the slope tells us that if we move to the right 3, we will move down 2, 
moving us to the point (3, 3).  We can continue this again to find a third point at (6, 1). 
 

 
 
 
Try it Now 

1. Consider that the slope -2/3 could also be written as 2/-3 .  Using 2/-3, find another 
point on the graph that has a negative x value. 

 
 
Another option for graphing is to use transformations of the identity function xxf )( .  
In the equation mxxf )( , the m is acting as the vertical stretch of the identity function.  
When m is negative, there is also a vertical reflection of the graph. Looking at some 
examples: 
 

 
 

1
( )

2
f x x  

1
( )

3
f x x  

( )f x x  ( ) 3f x x  ( ) 2f x x  

1
( )

2
f x x   

( )f x x   
( ) 2f x x   

123



  Chapter 2 

 

114

In bmxxf )( , the b acts as the vertical shift, moving the graph up and down without 
affecting the slope of the line.  Some examples: 
 
 

 
 
Using Vertical Stretches or Compressions along with Vertical Shifts is another way to 
look at identifying different types of linear functions.  Although this may not be the 
easiest way for you to graph this type of function, make sure you practice each method. 
 
 
Example 3 

Graph xxf
2

1
3)(   using transformations. 

 
The equation is the graph of the identity function vertically compressed by ½ and 
vertically shifted down 3. 
 
Vertical compression   combined with Vertical shift 

      
 
 
 

( ) 2f x x   
( )f x x  

( ) 2f x x   

( ) 4f x x   

( ) 4f x x   
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Notice how this nicely compares to the other method where the vertical intercept is found 
at (0, -3) and to get to the next point we rise (go up vertically) by 1 unit and run (go 
horizontally) by 2 units to get to the next point (2,-2), and the next one (4, -1).  In these 
three points (0,-3), (2, -2), and (4, -1), the output values change by +1, and the x values 
change by +2, corresponding with the slope m = 1/2. 
 
 
Example 4 

Match each equation with one of the lines in the graph below 

3
2

1
)(

32)(

32)(

32)(







xxj

xxh

xxg

xxf

 

 
 
Only one graph has a vertical intercept of -3, so we can immediately match that graph 
with g(x).  For the three graphs with a vertical intercept at 3, only one has a negative 
slope, so we can match that line with h(x).  Of the other two, the steeper line would 
have a larger slope, so we can match that graph with equation f(x), and the flatter line 
with the equation j(x). 
 

 
 

1
( ) 3

2
j x x   

( ) 2 3h x x    

( ) 2 3g x x   

( ) 2 3f x x   
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In addition to understanding the basic behavior of a linear function, increasing or 
decreasing and recognizing the slope and vertical intercept, it is often helpful to know the 
horizontal intercept of the function – where it crosses the horizontal axis. 
 
 
Finding Horizontal Intercept 

The horizontal intercept of the function is where the graph crosses the horizontal axis.  
It can be found for any function by solving f(x) = 0. 

 
 
Example 5 

Find the horizontal intercept of xxf
2

1
3)(   

 
Setting the function equal to zero to find what input will put us on the horizontal axis, 

6
2

1
3

2

1
30







x

x

x

 

 
The graph crosses the horizontal axis at (6,0) 

 
 
There are two special cases of lines: a horizontal line and a 
vertical line.  In a horizontal line like the one graphed to the 
right, notice that between any two points, the change in the 
outputs is 0.  In the slope equation, the numerator will be 0, 
resulting in a slope of 0.  Using a slope of 0 in the 

mxbxf )( , the equation simplifies to bxf )( .  
 
 
 
In the case of a vertical line, notice that between any two 
points, the change in the inputs is zero.  In the slope 
equation, the denominator will be zero, and you may recall 
that we cannot divide by the zero; the slope of a vertical line 
is undefined.  You might also notice that a vertical line is not 
a function.  To write the equation of vertical line, we simply 
write input=value. 
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Horizontal and Vertical Lines 
Horizontal lines have equations of the form bxf )(  
Vertical lines have equations of the form x = a 

 
 
Example 6 

Write an equation for the horizontal line graphed above. 
 
This line would have equation ( ) 2f x   

 
 
Example 7 

Write an equation for the vertical line graphed above. 
 
This line would have equation 2x   

 
 
Try it Now 

2. Describe the function xxf 36)(   in terms of transformations of the identity 
function and find its horizontal intercept.   

 
 
Parallel and Perpendicular Lines 
 
When two lines are graphed at the same time, the lines will be parallel if they are 
increasing at the same rate – if the rates of change are the same.  In this case, the graphs 
will never cross. 
 
 
Parallel Lines 

Two lines are parallel if the slopes are equal.  In other words, given two linear 
equations xmbxf 1)(   and xmbxg 2)(   

The lines will be parallel if 21 mm   
 
 
Example 8 

Find a line parallel to xxf 36)(   that passes through the point (3, 0) 
 
We know the line we’re looking for will have the same slope as the given line, m = 3.  
Using this and the given point, we can solve for the new line’s vertical intercept: 

xbxg 3)(    then at (3, 0), 

9

)3(30




b

b
 

 
The line we’re looking for is xxg 39)(   
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If two lines are not parallel, one other interesting possibility is that the lines are 
perpendicular, which means the lines form a right angle (90 degree angle – a square 
corner) where they meet.  In this case, the slopes when multiplied together will equal -1.  
Solving for one slope leads us to the definition: 
 
 
Perpendicular Lines 

Given two linear equations xmbxf 1)(   and xmbxg 2)(   

The lines will be perpendicular if  121 mm , and so 
1

2

1

m
m


  

We often say the slope of a perpendicular line has a slope that is the negative reciprocal 
 
 
Example 9 

What slope would be perpendicular to a line with: 
A slope of 2? 
A slope of  -4?   

A slope of 
3

2
? 

 

If the original line had slope 2, the perpendicular slope would be 
2

1
2


m  

If the original line had slope -4, the perpendicular slope would be 
4

1

4

1
2 




m  

If the original line had slope 
3

2
, the perpendicular slope would be 

2

3

3
2

1
2





m  

 
 
Example 10 

Find the equation of a line perpendicular to xxf 36)(   and passing through the point 
(3, 0) 
 

The original line has slope m = 3.  The perpendicular line will have slope 
3

1
m .  

Using this and the given point, we can find the equation for the line. 

xbxg
3

1
)(    then at (3, 0), 

1

)3(
3

1
0





b

b
 

 

The line we’re looking for is xxg
3

1
1)(   
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Try it Now 
3. Given the line tth 24)(   find a line that is a) Parallel  and b) Perpendicular and 
both lines must pass through the point (0, 0) 

 
 
Example 12 

A line passes through the points (-2, 6) and (4, 5).  Find the equation of a perpendicular 
line that passes through the point (4, 5). 
 
From the two given points on the reference line, we can calculate the slope of that line: 

6

1

)2(4

65
1







m  

 
The perpendicular line will have slope 

6

6
1
1

2 



m  

 
We can then solve for the vertical intercept to pass through the desired point: 

xbxg 6)(    then at (4, 5), 

19

)4(65




b

b
 

Giving the line xxg 619)(   
 
 
Intersections of Lines 
 
The graphs of two lines will intersect if they are not parallel.  They will intersect at the 
point that satisfies both equations.  To find this point when the equations are given as 
functions, we can solve for an input value so that )()( xgxf  .  In other words, we can 
set the formulas for the lines equal, and solve for the input that satisfies the equation. 
 
 
Example 13 

Find the intersection of the lines 43)(  tth  and ttj  5)(  
 
Setting )()( tjth  , 

4

9

94

543






t

t

tt

 

This tells us the lines intersect when the input is 9/4.   
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We can then find the output value of the intersection point by evaluating either function 
at this input 

4

11

4

9
5

4

9









j  

 

These lines intersect at the point 







4

11
,

4

9
.  Looking at the graph, this result seems 

reasonable. 

 
 
 
Try it Now 

4. Look at the graph in example 13 above and answer the following for the function j(t): 
a. Vertical intercept coordinates 
b. Horizontal intercepts coordinates 
c. Slope 
d. Is j(t) parallel or perpendicular to h(t) (or neither) 
e. Is j(t) an Increasing or Decreasing function (or neither) 
f. Write a transformation description from the identity toolkit function f(x) = x 

 
 
Finding the intersection allows us to answer other questions as well, such as discovering 
when one function is larger than another. 
 
 
Example 14 

Using the functions from the previous example, for what values of t is )()( tjth   
 
To answer this question, it is helpful first to know where the functions are equal, since 
that is the point where h(t) could switch from being greater to smaller than j(t) or vice-

versa.  From the previous example, we know the functions are equal at 
4

9
t .  By 

examining the graph, we can see that h(t), the function with positive slope, is going to 
be larger than the other function to the right of the intersection.  So )()( tjth   when 

4

9
t  

h(t) 

j(t) 
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Important Topics of this Section 
Methods for graphing linear functions 
Another name for slope = rise/run 
Horizontal intercepts (a,0) 
Horizontal lines 
Vertical lines 
Parallel lines 
Perpendicular lines 
Intersecting lines 

 
 
Try it Now Answers 

1. (-3,7)  found by starting at the vertical intercept, going up 2 units and 3 in the 
negative direction. You could have also answered, (-6, 9) or (-9, 11) etc… 
2. Vertically stretched by a factor of 3, Vertically flipped (flipped over the x axis),  
Vertically shifted up by 6 units.  6-3x=0  when x=2 
3. Parallel ttf 2)(   ;  Perpendicular ttg 2/1)(   
4. Given j(t) = 5-t 
  a. (0,5) 
  b. (5,0)  
  c. Slope -1 
  d. Neither parallel nor perpendicular 
  e. Decreasing function 
  f. Given the identity function, perform a vertical flip (over the t axis) and shift up 5 
units. 
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Section 2.2 Exercises 
  
Match each linear equation with its graph 
 
1.   1f x x    

2.   2 1f x x    

3.   1
1

2
f x x    

4.   2f x   

5.   2f x x   

6.   3 2f x x   

 
 
Sketch a line with the given features 
7. An x-intercept of (-4, 0) and y-intercept of (0, -2) 

8. An x-intercept of (-2, 0) and y-intercept of (0, 4) 

9. A vertical intercept of (0, 7) and slope 
3

2
  

10. A vertical intercept of (0, 3) and slope 
2

5
 

11. Passing through the points (-6,-2) and (6,-6) 

12. Passing through the points (-3,-4) and (3,0) 

 
Sketch each equation 
13.   2 1f x x      14.   3 2g x x    

15.   1
2

3
h x x     16.   2

3
3

k x x   

17.   3 2k t t     18.   2 3p t t    

19. 3x      20. 2x    

21.   4r x      22.   3q x    

  
 
 
 

A 
B 

C

D 

E 
F 
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23. If ( )g x  is the ( )f x x  after a vertical compression by 3 / 4 , a shift left by 2, and a 
shift down by 4 

a. Write an equation for  g x  

b. What is the slope of this line? 
c. Find the vertical intercept of this line.  

 
24.  If ( )g x  is the ( )f x x  after a vertical compression by 1/ 3 , a shift right by 1, and a 

shift up by 3 
a. Write an equation for  g x  

b. What is the slope of this line? 
c. Find the vertical intercept of this line.  

  
Write the equation of the line shown 

25.    26.  
 

27.    28.  
 
 
Find the horizontal and vertical intercepts of each equation 
29.   2f x x       30.   2 4g x x   

31.   3 5h x x      32.   5 1k x x     

33. 2 5 20x y       34. 7 2 56x y   
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Given below are descriptions of two lines. Find the slope of Line 1 and Line 2. Are each 
pair of lines parallel, perpendicular or neither? 
35. Line 1: Passes through (0,6)  and (3, 24)  

Line 2: Passes through ( 1,19)  and (8, 71)  
 

36. Line 1: Passes through ( 8, 55)   and (10, 89)  
Line 2: Passes through (9, 44)  and (4, 14)  
 

37. Line 1: Passes through (2,3)  and (4, 1)  
Line 2: Passes through (6,3)  and (8,5)  
 

38. Line 1: Passes through (1, 7)  and (5,5)  
Line 2: Passes through ( 1, 3)   and (1,1)  
 

39. Line 1: Passes through (0, 5)  and (3,3)  
Line 2: Passes through (1, 5)  and (3, 2)  
 

40. Line 1: Passes through (2,5)  and (5, 1)  
Line 2: Passes through ( 3,7)  and (3, 5)  
 

41. Write an equation for a line parallel to   5 3f x x    and passing through the point 

(2,-12) 
 

42. Write an equation for a line parallel to ( ) 3 1g x x   and passing through the point 
(4,9) 
  

43. Write an equation for a line perpendicular to ( ) 2 4h t t    and passing through the 
point (-4,-1) 
 

44. Write an equation for a line perpendicular to ( ) 3 4p t t   and passing through the 
point (3,1) 
 

45. Find the point at which the line ( ) 2 1f x x    intersects the line ( )g x x   
 

46. Find the point at which the line ( ) 2 5f x x   intersects the line ( ) 3 5g x x    
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47. Use algebra to find the point at which the line   4 274
  

5 25
f x x   intersects the line 

  9 73
 

4 10
h x x   

 

48. Use algebra to find the point at which the line   7 457
 

4 60
f x x   intersects the line 

  4 31
 

3 5
g x x   

  
49. A car rental company offers two plans for renting a car.  

Plan A: 30 dollars per day and 18 cents per mile  
Plan B: 50 dollars per day with free unlimited mileage  
For what range of miles will plan B save you money?  
 
 

50. A cell phone company offers two data options for its prepaid phones 
Pay per use:  $0.002 per Kilobyte (KB) used 
Data Package:  $5 for 5 Megabytes (5120 Kilobytes) + $0.002 per addition KB 
Assuming you will use less than 5 Megabytes, for what range of use will the data 
package save you money? 
 

51. Sketch an accurate picture of the line having equation   1
2

2
f x x  . Let c be an 

unknown constant.  [UW] 
a. Find the point of intersection between the line you have graphed and the 

line   1g x cx  ; your answer will be a point in the xy plane whose 

coordinates involve the unknown c. 
b. Find c so that the intersection point in (a) has x-coordinate 10. 
c. Find c so that the intersection point in (a) lies on the x-axis. 
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Section 2.3 Modeling with Linear Functions 
 
When modeling scenarios with a linear function and solving problems involving 
quantities changing linearly, we typically follow the same problem-solving strategies that 
we would use for any type of function: 
 
 
Problem solving strategy 

1) Identify changing quantities, and then carefully and clearly define descriptive 
variables to represent those quantities.  When appropriate, sketch a picture or define 
a coordinate system. 

2) Carefully read the problem to identify important information.  Look for information 
giving values for the variables, or values for parts of the functional model, like slope 
and initial value. 

3) Carefully read the problem to identify what we are trying to find, identify, solve, or 
interpret.   

4) Identify a solution pathway from the provided information to what we are trying to 
find.  Often this will involve checking and tracking units, building a table or even 
finding a formula for the function being used to model the problem.  

5) When needed, find a formula for the function. 
6) Solve or evaluate using the formula you found for the desired quantities. 
7) Clearly convey your result using appropriate units, and answer in full sentences 

when appropriate. 
 
 
Example 1 

Emily saved up $3500 for her summer visit to Seattle.  She anticipates spending $400 
each week on rent, food, and fun.  Find and interpret the horizontal intercept and 
determine a reasonable domain and range for this function. 
 
In the problem, there are two changing quantities:  time and money.  The amount of 
money she has remaining while on vacation depends on how long she stays.  We can 
define our variables, including units. 
Output: M, money remaining, in dollars 
Input: t, time, in weeks 
 
Reading the problem, we identify two important values.  The first, $3500, is the initial 
value for M.  The other value appears to be a rate of change – the units of dollars per 
week match the units of our output variable divided by our input variable.  She is 
spending money each week, so you should recognize that the amount of money 
remaining is decreasing each week and the slope is negative.   
 
To answer the first question, looking for the horizontal intercept, it would be helpful to 
have an equation modeling this scenario.  Using the intercept and slope provided in the 
problem, we can write the equation: ttM 4003500)(  .   

136



Section 2.3 Modeling with Linear Functions  127 

 

 
To find the horizontal intercept, we set the output to zero, and solve for the input: 

75.8
400

3500

40035000





t

t
 

 
The horizontal intercept is 8.75 weeks.  Since this represents the input value where the 
output will be zero, interpreting this, we could say:  Emily will have no money left after 
8.75 weeks. 
 
When modeling any real life scenario with functions, there is typically a limited domain 
over which that model will be valid – almost no trend continues indefinitely.  In this 
case, it certainly doesn’t make sense to talk about input values less than zero.  It is also 
likely that this model is not valid after the horizontal intercept (unless Emily’s going to 
start using a credit card and go into debt).   
 
The domain represents the set of input values and so the reasonable domain for this 
function is 75.80  t .  
 
However, in a real world scenario, the rental might be weekly or nightly.  She may not 
be able to stay a partial week and so all options should be considered.  Emily could stay 
in Seattle for 0 to 8 full weeks (and a couple of days), but would have to go into debt to 
stay 9 full weeks, so restricted to whole weeks, a reasonable domain without going in to 
debt would be 80  t , or 90  t if she went into debt to finish out the last week. 
 
The range represents the set of output values and she starts with $3500 and ends with $0 
after 8.75 weeks so the corresponding range is 3500)(0  tM .  
 
If we limit the rental to whole weeks however, if she left after 8 weeks because she 
didn’t have enough to stay for a full 9 weeks, she would have M(8) = 3500 -400(8) = 
$300 dollars left after 8 weeks, giving a range of 3500)(300  tM .  If she wanted to 
stay the full 9 weeks she would be $100 in debt giving a range of 3500)(100  tM . 
 
Most importantly remember that domain and range are tied together, and what ever you 
decide is most appropriate for the domain (the independent variable) will dictate the 
requirements for the range (the dependent variable) 
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Example 2 
Jamal is choosing between two moving companies.  The first, U-haul, charges an up-
front fee of $20, then 59 cents a mile.  The second, Budget, charges an up-front fee of 
$16, then 63 cents a mile3.  When will U-haul be the better choice for Jamal? 
 
The two important quantities in this problem are the cost, and the number of miles that 
are driven.  Since we have two companies to consider, we will define two functions: 
 
Input:  m, miles driven 
Outputs:   
Y(m):  cost, in dollars, for renting from U-haul 
B(m):  cost, in dollars, for renting from Budget 
 
Reading the problem carefully, it appears that we were given an initial cost and a rate of 
change for each company.  Since our outputs are measured in dollars but the costs per 
mile given in the problem are in cents, we will need to convert these quantities to match 
our desired units:  $0.59 a mile for U-haul, and $0.63 a mile for Budget. 
 
Looking to what we’re trying to find, we want to know when U-haul will be the better 
choice.  Since all we have to make that decision from is the costs, we are looking for 
when U-haul will cost less, or when )()( mBmY  .  The solution pathway will lead us 
to find the equations for the two functions, find the intersection, then look to see where 
the Y(m) function is smaller.  Using the rates of change and initial charges, we can write 
the equations: 

mmB

mmY

63.016)(

59.020)(




 

 
These graphs are sketched to the right, with Y(m) 
drawn dashed. 
 
To find the intersection, we set the equations 
equal and solve: 
Y(m) = B(m) 

100

04.04

63.01659.020






m

m

mm

 

 
This tells us that the cost from the two companies will be the same if 100 miles are 
driven.  Either by looking at the graph, or noting that Y(m) is growing at a slower rate, 
we can conclude that U-haul will be the cheaper price when more than 100 miles are 
driven. 

 
 

                                                 
3 Rates retrieved Aug 2, 2010 from http://www.budgettruck.com and http://www.uhaul.com/ 
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Example 3 
A town’s population has been growing linearly.  In 2004 the population was 6,200.  By 
2009 the population had grown to 8,100.  If this trend continues, 
a. Predict the population in 2013 
b. When will the population reach 15000? 
 
The two changing quantities are the population and time.  While we could use the actual 
year value as the input quantity, doing so tends to lead to very ugly equations, since the 
vertical intercept would correspond to the year 0, more than 2000 years ago!   
To make things a little nicer, and to make our lives easier too, we will define our input 
as years since 2004: 
Input:  t, years since 2004 
Output:  P(t), the town’s population 
 
The problem gives us two input-output pairs.  Converting them to match our defined 
variables, the year 2004 would correspond to t = 0, giving the point (0, 6200).  Notice 
that through our clever choice of variable definition, we have “given” ourselves the 
vertical intercept of the function.  The year 2009 would correspond to t = 5, giving the 
point (5, 8100).   
 
To predict the population in 2013 (t = 9), we would need an equation for the population.  
Likewise, to find when the population would reach 15000, we would need to solve for 
the input that would provide an output of 15000.  Either way, we need an equation.  To 
find it, we start by calculating the rate of change: 

380
5

1900

05

62008100





m people per year 

 
Since we already know the vertical intercept of the line, we can immediately write the 
equation: 

ttP 3806200)(   
 
To predict the population in 2013, we evaluate our function at t = 9 

9620)9(3806200)9( P  
If the trend continues, our model predicts a population of 9,620 in 2013. 
 
To find when the population will reach 15,000, we can set P(t) = 15000 and solve for t. 

158.23

3808800

380620015000






t

t

t

 

 
Our model predicts the population will reach 15,000 in a little more than 23 years after 
2004, or somewhere around the year 2027. 
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Example 4 
Anna and Emanuel start at the same intersection.  Anna walks east at 4 miles per hour 
while Emanuel walks south at 3 miles per hour.  They are communicating with a two-
way radio with a range of 2 miles.  How long after they start walking will they fall out 
of radio contact? 
 
In essence, we can partially answer this question by saying; they will fall out of radio 
contact when they are 2 miles apart, which leads us to ask a new question: how long 
will it take them to be 2 miles apart? 
 
In this problem, our changing quantities are time and the two peoples’ positions, but 
ultimately we need to know how long will it take for them to be 2 miles apart.  We can 
see that time will be our input variable, so we’ll define 
Input:  t, time in hours.  
 
Since it is not obvious how to define our output variables, we’ll start by drawing a 
picture. 
 
 
 
 
 
 
 
 
 
Because of the complexity of this question, it may be helpful to introduce some 
intermediary variables.  These are quantities that we aren’t directly interested in, but 
seem important to the problem.  For this problem, Anna’s and Emanuel’s distances 
from the starting point seem important.  To notate these, we are going to define a 
coordinate system, putting the “starting point” at the intersection where they both 
started, then we’re going to introduce a variable, A, to represent Anna’s position, and 
define it to be a measurement from the starting point, in the eastward direction.  
Likewise, we’ll introduce a variable, E, to represent Emanuel’s position, measured from 
the starting point in the southward direction.  Note that in defining the coordinate 
system we specified both the origin, or starting point, of the measurement, as well as the 
direction of measure.   
 
While we’re at it, we’ll define a third variable, D, to be the measurement of the distance 
between Anna and Emanuel.  Showing the variables on the picture is often helpful: 
Looking at the variables on the picture, we remember we need to know how long it 
takes for D, the distance between them to equal 2 miles. 
 
 
 
 

Anna walking east, 4 miles/hour 

Emanuel walking south, 3 miles/hour 

Distance between them 
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Seeing this picture we remember that in order to find the distance 
between the two, we can use the Pythagorean theorem, a property 
of right triangles.   
 
From here, we can now look back at the problem for relevant information.  Anna is 
walking 4 miles per hour, and Emanuel is walking 3 miles per hour, which are rates of 
change.  Using those, we can write formulas for the distance each has walked.   
 
They both start at the same intersection and so when t = 0, the distance travelled by each 
person should also be 0, so given the rate for each, and the initial value for each we get: 
 

( ) 4

( ) 3

A t t

E t t


  

 
Using the Pythagorean theorem we get: 
 

2 2 2

2 2 2 2 2 2

2

( ) ( ) ( )

( ) (4 ) (3 ) 16 9 25

( ) 25 5

D t A t E t

D t t t t t t

D t t t

 

    

   
 
Interestingly, the distance between them is also a linear function.  Using it, we can now 
answer the question of when the distance between them will reach 2 miles: 

( ) 2

5 2

2
0.4

5

D t

t

t




 
 

 
They will fall out of radio contact in 0.4 hours, or 24 minutes. 

 
 
 
 
 
 
 

A 

E 
D

 
 
 

2 2 2a b c   

a 

b 

c
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Example 5 
There is currently a straight road leading from the town of Westborough to a town 30 
miles east and 10 miles north.  Partway down this road, it junctions with a second road, 
perpendicular to the first, leading to the town of Eastborough.  If the town of 
Eastborough is located 20 miles directly east of the town of Westborough, how far is the 
road junction from Westborough? 
 
It might help here to draw a picture of 
the situation.  It would then be helpful to 
introduce a coordinate system.  While we 
could place the origin anywhere, placing 
it at Westborough seems convenient.  
This puts the other town at coordinates 
(30, 10), and Eastborough at (20, 0) 
 
Using this point along with the origin, we can find the slope of the line from 

Westborough to the other town:  
3

1

030

010





m  .   This gives the equation of the road 

from Westborough to the other town to be xxW
3

1
)(  . 

 
From this, we can determine the perpendicular road to Eastborough will have slope 

3m .  Since the town of Eastborough is at the point (20, 0), we can find the equation: 
bxxE  3)(    plug in the point (20, 0) 

b )20(30  
60b     

603)(  xxE  
 
We can now find the coordinates of the junction of the roads by finding the intersection 
of these lines.  Setting them equal, 

603
3

1
 xx  

60
3

10
x  

18010 x  
18x     Substituting this back into W(x) 

6)18(
3

1
)18( Wy  

The roads intersect at the point (18, 6).  Using the distance formula, we can now find 
the distance from Westborough to the junction: 

934.18)06()018( 22 dist  miles 

 
 
 

Westborough 

Other town 

(30, 10) 

20 miles Eastborough 

(20, 0) (0, 0) 
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Important Topics of this Section 
The problem solving process 
1) Identify changing quantities, and then carefully and clearly define descriptive 

variables to represent those quantities.  When appropriate, sketch a picture or define 
a coordinate system. 

2) Carefully read the problem to identify important information.  Look for information 
giving values for the variables, or values for parts of the functional model, like slope 
and initial value. 

3) Carefully read the problem to identify what we are trying to find, identify, solve, or 
interpret.   

4) Identify a solution pathway from the provided information to what we are trying to 
find.  Often this will involve checking and tracking units, building a table or even 
finding a formula for the function being used to model the problem.  

5) When needed, find a formula for the function. 
6) Solve or evaluate using the formula you found for the desired quantities. 
7) Clearly convey your result using appropriate units, and answer in full sentences 

when appropriate. 
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Section 2.3 Exercises 
 
1. In 2004, a school population was 1001. By 2008 the population had grown to 1697.  

Assume the population is changing linearly. 
a. How much did the population grow between the year 2004 and 2008?  
b. How long did it take the population to grow from 1001 students to 1697 

students?  
c. What is the average population growth per year?  
d. What was the population in the year 2000?  
e. Find an equation for the population, P, of the school t years after 2000.  
f. Using your equation, predict the population of the school in 2011.  

 
2. In 2003, a town’s population was 1431. By 2007 the population had grown to 2134.  

Assume the population is changing linearly. 
a. How much did the population grow between the year 2003 and 2007?  
b. How long did it take the population to grow from 1431 people to 2134?  
c. What is the average population growth per year?  
d. What was the population in the year 2000?  
e. Find an equation for the population, P, of the town t years after 2000.  
f. Using your equation, predict the population of the town in 2014.  

 
3. A phone company has a monthly cellular plan where a customer pays a flat monthly 

fee and then a certain amount of money per minute used on the phone. If a customer 
uses 410 minutes, the monthly cost will be $71.50. If the customer uses 720 minutes, 
the monthly cost will be $118.  

a. Find a linear equation for the monthly cost of the cell plan as a function of x, 
the number of monthly minutes used. 

b. Interpret the slope and vertical intercept of the equation. 
c. Use your equation to find the total monthly cost if 687 minutes are used. 

 
4. A phone company has a monthly cellular data plan where a customer pays a flat 

monthly fee and then a certain amount of money per megabyte (MB) of data used on 
the phone. If a customer uses 20 MB, the monthly cost will be $11.20. If the customer 
uses 130 MB, the monthly cost will be $17.80.  

a. Find a linear equation for the monthly cost of the data plan as a function of x, 
the number of MB used. 

b. Interpret the slope and vertical intercept of the equation. 
c. Use your equation to find the total monthly cost if 250 MB are used. 
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5. In 1991, the moose population in a park was measured to be 4360. By 1999, the 
population was measured again to be 5880. If the population continues to change 
linearly, 

a. Find a formula for the moose population, P. 
b. What does your model predict the moose population to be in 2003? 

 
6. In 2003, the owl population in a park was measured to be 340. By 2007, the 

population was measured again to be 285. If the population continues to change 
linearly, 

a. Find a formula for the owl population, P. 
b. What does your model predict the owl population to be in 2012? 

 
7. The Federal Helium Reserve held about 16 billion cubic feet of helium in 2010, and is 

being depleted by about 2.1 billion cubic feet each year.   
a. Give a linear equation for the remaining federal helium reserves, R, in terms 

of t, the number of years since 2010.  
b. In 2015, what will the helium reserves be? 
c. If the rate of depletion isn’t change, when will the Federal Helium Reserve be 

depleted? 
 

8. Suppose the world's current oil reserves are 1820 billion barrels. If, on average, the 
total reserves is decreasing by 25 billion barrels of oil each year: 

a. Give a linear equation for the remaining oil reserves, R, in terms of t, the 
number of years since now.  

b. Seven years from now, what will the oil reserves be? 
c. If the rate of depletion isn’t change, when will the world’s oil reserves be 

depleted? 
 

9. You are choosing between two different prepaid cell phone plans. The first plan 
charges a rate of 26 cents per minute. The second plan charges a monthly fee of 
$19.95 plus 11 cents per minute. How many minutes would you have to use in a 
month in order for the second plan to be preferable?  
 

10. You are choosing between two different window washing companies.  The first 
charges $5 per window.  The second charges a base fee of $40 plus $3 per window.  
How many windows would you need to have for the second company to be 
preferable? 
 

11. When hired at a new job selling jewelry, you are given two pay options: 
Option A: Base salary of $17,000 a year, with a commission of 12% of your sales 
Option B: Base salary of $20,000 a year, with a commission of 5% of your sales 
How much jewelry would you need to sell for option A to produce a larger income? 
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12. When hired at a new job selling electronics, you are given two pay options: 
Option A: Base salary of $14,000 a year, with a commission of 10% of your sales 
Option B: Base salary of $19,000 a year, with a commission of 4% of your sales 
How much electronics would you need to sell for option A to produce a larger 
income? 
 

13. Find the area of a triangle bounded by the y axis, the line   6
9

7
f x x  , and the line 

perpendicular to ( )f x  that passes through the origin. 
 

14. Find the area of a triangle bounded by the x axis, the line   1
12

3
f x x  , and the 

line perpendicular to ( )f x  that passes through the origin. 
 

15. Find the area of a parallelogram bounded by the y axis, the line 3x  , the line 

  1 2f x x  , and the line parallel to ( )f x  passing through (2, 7) 

 
16. Find the area of a parallelogram bounded by the x axis, the line ( ) 2g x  , the line 

  3f x x , and the line parallel to ( )f x  passing through (6, 1) 

 

17. If 0b   and 0m  , then the line  f x b mx   cuts off a triangle from the first 

quadrant.  Express the area of that triangle in terms of m and b.   [UW] 
 

18. Find the value of m so the lines   5f x mx   and  g x x  and the y-axis form a 

triangle with an area of 10.   [UW] 
 

19. The median home value in Mississippi and Hawaii (adjusted for inflation) are shown 
below.   If we assume that the house values are changing linearly, 

Year Mississippi Hawaii 

1950 25200 74400 

2000 71400 272700 
a. In which state have home values increased at a higher rate?  
b. If these trends were to continue, what would be the median home value in 

Mississippi in 2010?  
c.  If we assume the linear trend existed before 1950 and continues after 2000, 

the two states' median house values will be (or were) equal in what year? (The 
answer might be absurd) 
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20. The median home value in Indiana and Alabama (adjusted for inflation) are shown 
below.  If we assume that the house values are changing linearly, 

Year Indiana Alabama 

1950 37700 27100 

2000 94300 85100 
a. In which state have home values increased at a higher rate?  
b. If these trends were to continue, what would be the median home value in 

Indiana in 2010? 
c.  If we assume the linear trend existed before 1950 and continues after 2000, 

the two states' median house values will be (or were) equal in what year? (The 
answer might be absurd) 
 

21. Pam is taking a train from the town of Rome to the town of Florence. Rome is located 
30 miles due West of the town of Paris. Florence is 25 miles East, and 45 miles North 
of Rome.  On her trip, how close does Pam get to Paris?  [UW] 
 

22. You’re flying from Joint Base Lewis-McChord (JBLM) to an undisclosed location 
226 km south and 230 km east. Mt. Rainier is located approximately 56 km east and 
40 km south of JBLM. If you are flying at a constant speed of 800 km/hr, how long 
after you depart JBLM will you be the closest to Mt. Rainier? 
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Section 2.4 Fitting Linear Models to Data 
 
In the real world, rarely do things follow trends perfectly.  When we expect the trend to 
behave linearly, or when inspection suggests the trend is behaving linearly, it is often 
desirable to find an equation to approximate the data. Finding an equation to approximate 
the data helps us understand the behavior of the data and allows us to use the linear 
model to make predictions about the data, inside and outside of the data range.   
 
 
Example 1 

The table below shows the number of cricket chirps in 15 seconds, and the air 
temperature, in degrees Fahrenheit4.  Plot this data, and determine whether the data 
appears to be linearly related. 

 
Plotting this data, it appears there may be a trend, and that the trend appears roughly 
linear, though certainly not perfectly so.   
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The simplest way to find an equation to approximate this data is to try to “eyeball” a line 
that seems to fit the data pretty well, then find an equation for that line based on the slope 
and intercept.   
 
You can see from the trend in the data that the number of chirps increases as the 
temperature increases.  As you consider a function for this data you should know that you 
are looking at an increasing function or a function with a positive slope. 
 
 
 
 

                                                 
4 Selected data from http://classic.globe.gov/fsl/scientistsblog/2007/10/. Retrieved Aug 3, 2010 

chirps 44 35 20.4 33 31 35 18.5 37 26 
Temp 80.5 70.5 57 66 68 72 52 73.5 53 
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Flashback 
1. a. What descriptive variables would you choose to represent Temperature & Chirps? 
    b. Which variable is the independent variable and which is the dependent variable? 
    c. Based on this data and the graph, what is a reasonable domain & range? 
    d. Based on the data alone, is this function one-to-one, explain? 

 
 
Example 2 

Using the table of values from the previous example, find a linear function that fits the 
data by “eyeballing” a line that seems to fit. 
 
On a graph, we could try sketching in a line.  
The scale on the axes has been adjusted to 
including the vertical axis in the graph. 
 
Using the starting and ending points of our 
“hand drawn” line, points (0, 30) and (50, 90), 

this graph has a slope of  
60

1.2
50

m    and a 

vertical intercept at 30, giving an equation of  
 

( ) 30 1.2T c c   
where c is the number of chirps in 15 seconds, 
and T(c) is the temperature in degrees 
Fahrenheit. 

 
 
This linear equation can then be used to approximate the solution to various questions we 
might ask about the trend.  While the data does not perfectly fall on the linear equation, 
the equation is our best guess as to how the relationship will behave outside of the values 
we have data for.  There is a difference, though, between making predictions inside the 
domain and range of values we have data for, and outside that domain and range.   
 
 
Interpolation and Extrapolation 

Interpolation: When we predict a value inside the domain and range of the data 
Extrapolation: When we predict a value outside the domain and range of the data 

 
 
For the Temperature as a function of chirps in our hand drawn model above:   
 
Interpolation would occur if we used our model to predict temperature when the values 
for chirps are between 18.5 and 44. 
 
Extrapolation would occur if we used our model to predict temperature when the values 
for chirps are less than 18.5 or greater than 44. 
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 Example 3 
a) Would predicting the temperature when crickets are chirping 30 times in 15 seconds 
be interpolation or extrapolation?  Make the prediction, and discuss if it is reasonable. 
 
b) Would predicting the number of chirps crickets will make at 40 degrees be 
interpolation or extrapolation?  Make the prediction, and discuss if it is reasonable. 
 
With our cricket data, our number of chirps in the data provided varied from 18.5 to 44.  
A prediction at 30 chirps per 15 seconds is inside the domain of our data, so would be 
interpolation.  Using our model: 

(30) 30 1.2(30) 66T    degrees. 
Based on the data we have, this value seems reasonable. 
 
The temperature values varied from 52 to 80.5.   Predicting the number of chirps at 40 
degrees is extrapolation since 40 is outside the range of our data.  Using our model: 
40 30 1.2

10 1.2

8.33

c

c

c

 



 

 
Our model predicts the crickets would chirp 8.33 times in 15 seconds.  While this might 
be possible, we have no reason to believe our model is valid outside the domain and 
range.  In fact, generally crickets stop chirping altogether below around 50 degrees. 

 
 
When our model no longer applies after some point, it is sometimes called model 
breakdown.  
 
 
Try it Now  

What temperature would you predict if you counted 20 chirps in 15 seconds? 
 
 
Fitting Lines with Technology 
While eyeballing a line works reasonably well, there are statistical techniques for fitting a 
line to data that minimize the differences between the line and data values5.  This 
technique is called least-square regression, and can be computed by many graphing 
calculators, spreadsheet software like Excel or Google Docs, statistical software, and 
many web-based calculators6. 
 
 
 
 

                                                 
5 Technically, the method minimizes the sum of the squared differences in the vertical direction between 
the line and the data values. 
6 For example, http://www.shodor.org/unchem/math/lls/leastsq.html  
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Example 4 
Find the least-squares regression line 
using the cricket chirp data from above. 
 
Using the cricket chirp data from earlier, 
with technology we obtain the equation: 

( ) 30.281 1.143T c c   
 
Notice that this line is quite similar to the 
equation we “eyeballed”, but should fit 
the data better.  Notice also that using 
this equation would change our 
prediction for the temperature when 
hearing 30 chirps in 15 seconds from 66 
degrees to: 

(30) 30.281 1.143(30) 64.571 64.6T     degrees. 
 
 
 Most calculators and computer software will also provide you with the correlation 
coefficient, a measure of how closely the line fits the data. 
 
 
Correlation Coefficient 

The correlation coefficient is a value, r, between -1 and 1.   
r > 0 suggests a positive (increasing) relationship 
r < 0 suggests a negative (decreasing) relationship 
The closer the value is to 0, the more scattered the data 
The closer the value is to 1 or -1, the less scattered the data is 

 
 
The correlation coefficient provides an easy way to get some idea of how close to a line 
the data falls. 
 
We should only compute the correlation coefficient for data that follows a linear pattern; 
if the data exhibits a non-linear pattern, the correlation coefficient is meaningless.  To get 
a sense for the relationship between the value of r and the graph of the data, here are 
some large data sets with their correlation coefficients: 
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Year ‘94 ‘95 ‘96 ‘97 ‘98 ‘99 ‘00 ‘01 ‘02 ‘03 ‘04 
Consumption 
(billion of 
gallons) 113 116 118 119 123 125 126 128 131 133 136 

Examples of Correlation Coefficient Values 
 

7 
 
 
Example 5 

Calculate the correlation coefficient for our cricket data. 
 
Because the data appears to follow a linear pattern, we can use technology to calculate  
r = 0.9509.  Since this value is very close to 1, it suggests a strong increasing linear 
relationship. 

 
 
Example 6 

Gasoline consumption in the US has been increasing steadily.  Consumption data from 
1994 to 2004 is shown below.8   Determine if the trend is linear, and if so, find a model 
for the data.  Use the model to predict the consumption in 2008. 
 
 
 
 
 
 
To make things simpler, a new 
input variable is introduced, t, 
representing years since 1994.  
 
Using technology, the 
correlation coefficient was 
calculated to be 0.9965, 
suggesting a very strong 
increasing linear trend.   

                                                 
7 http://en.wikipedia.org/wiki/File:Correlation_examples.png  
8 http://www.bts.gov/publications/national_transportation_statistics/2005/html/table_04_10.html 
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The least-squares regression equation is: 
( ) 113.318 2.209C t t  .  

 
Using this to predict consumption in 2008 (t = 14),  

(14) 113.318 2.209(14) 144.244C     billions of gallons 
 
The model predicts 144.244 billion gallons of gasoline will be consumed in 2008. 

 
 
Try it Now 

2. Use the model created by technology in example 6 to predict the gas consumption in 
2011.  Is this an interpolation or an extrapolation?  

 
 
Important Topics of this Section 

Fitting linear models to data by hand 
Fitting linear models to data using technology 
Interpolation 
Extrapolation 
Correlation coefficient 

 
 
Flashback Answers 

1. a. T = Temperature,  C = Chirps (answers may vary) 
    b. Independent (Chirps) , Dependent (Temperature) 
    c. Reasonable Domain (18.5, 44) , Reasonable Range (52, 80.5) (answers may vary) 
    d. NO, it is not one-to-one, there are two different output values for 35 chirps. 

 
 
Try it Now Answers 

1. 54 degrees Fahrenheit 
2. 150.871 billions of gallons, extrapolation  
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Section 2.4 Exercises 
 
1. The following is data for the first and second Quiz scores for 8 students in a class. 

Plot the points, then sketch a line that best fits the data. 
 

First Quiz 11 20 24 25 33 42 46 49 

Second Quiz 10 16 23 28 30 39 40 49 

 
 
2. Eight students were asked to estimate their score on a 10 point quiz.   Their estimated 

and actual scores are given.  Plot the points, then sketch a line that best fits the data.  
 
Predicted 5 7 6 8 10 9 10 7 

Actual 6 6 7 8 9 9 10 6 

 
 

Based on each set of data given, calculate the regression line using your calculator or 
other technology tool, and determine the correlation coefficient. 

3. x y 
5 4 
7 12 

10 17 
12 22 
15 24 

 

4. x y 
8 23

15 41
26 53
31 72
56 103

 

5. x y 
3 21.9
4 22.22
5 22.74
6 22.26
7 20.78
8 17.6
9 16.52

10 18.54
11 15.76
12 13.68
13 14.1
14 14.02
15 11.94
16 12.76
17 11.28
18 9.1

6. x y 
4 44.8 
5 43.1 
6 38.8 
7 39 
8 38 
9 32.7 

10 30.1 
11 29.3 
12 27 
13 25.8 
14 24.7 
15 22 
16 20.1 
17 19.8 
18 16.8 
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7. A regression was run to determine if there is a relationship between hours of TV 
watched per day (x) and number of situps a person can do (y).  The results of the 
regression are given below.  Use this to predict the number of situps a person who 
watches 11 hours of TV can do. 

y=ax+b 
a=-1.341 
b=32.234 
r2=0.803 
r=-0.896 

 
8. A regression was run to determine if there is a relationship between the diameter of a 

tree (x, in inches) and the tree’s age (y, in years).  The results of the regression are 
given below.  Use this to predict the age of a tree with diameter 10 inches. 

y=ax+b 
a=6.301 
b=-1.044 
r2=0.940 
r=-0.970 

 
Match each scatterplot shown below with one of the four specified correlations. 
9. r = 0.95  10. r = -0.89  11. r = 0.26  12. r = -0.39 

A  B   C   D  

13. The US census tracks the percentage of persons 25 years or older who are college 
graduates.  That data for several years is given below.  Determine if the trend appears 
linear.  If so and the trend continues, in what year will the percentage exceed 35%? 

 
Year 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008

Percent 
Graduates 

21.3 21.4 22.2 23.6 24.4 25.6 26.7 27.7 28 29.4 

 
 
14. The US import of wine (in hectoliters) for several years if given below.  Determine if 

the trend appears linear.  If so and the trend continues, in what year will imports 
exceed 12,000 hectoliters? 

 
Year 1992 1994 1996 1998 2000 2002 2004 2006 2008 2009

Imports 2665 2688 3565 4129 4584 5655 6549 7950 8487 9462
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Section 2.5 Absolute Value Functions 
 
So far in this chapter we have been studying the behavior of linear functions. The 
Absolute Value Functions is a piecewise defined function made up of two linear 
functions.  The name, Absolute Value Function, should be familiar to you from 
Section 1.2.  In its basic form ( )f x x  it is one of our toolkit functions.   

 
 
Absolute Value Function 

The absolute value function can be defined as 
0

( )
0

x if x
f x x

x if x


   

 

 
 
The absolute value function is commonly used to determine the distance between 
two numbers on the number line.  Given two values a and b, then ba   will give 

the distance, a positive quantity, between these values, regardless of which value is 
larger. 
 
 
Example 1 

Describe all values, x, within a distance of 4 from the number 5. 
 
We want the distance between x and 5 to be less than or equal to 4.  The distance can be 
represented using the absolute value, giving the expression 

45 x  

 
 
Example 2 

A survey poll reports in 2010 reported 78% of Americans believe that people who are 
gay should be able to serve in the US military, with a reported margin of error of 3%9.  
The margin of error tells us how far off the actual value could be from the survey 
value10.  Express the set of possible values using absolute values. 
 
Since we want the size of the difference between the actual percentage, p, and the 
reported percentage to be less than 3%, 

378 p  

 
 
 
                                                 
9 http://www.pollingreport.com/civil.htm, retrieved August 4, 2010 
10 Technically, margin of error usually means that the surveyors are 95% confident that actual value falls 
within this range. 
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Try it Now 
1. Students who score within 20 points of  80 will pass the test.  Write this as a distance 
from 80 using the absolute value notation.  

 
 
Important Features 
 
The most significant feature of the absolute value graph is the corner point where the 
graph changes direction.  When finding the equation for a transformed absolute 
value function, this point is very helpful for determining the horizontal and vertical 
shifts. 
 
 
Example 3 

Write an equation for the function graphed below. 

 
 
 
The basic absolute value function changes direction at the origin, so this graph has been 
shifted to the right 3 and down 2 from the basic toolkit function.  We might also notice 
that the graph appears stretched, since the linear portions have slopes of 2 and -2.  From 
this information we can write the equation: 

232)(  xxf ,  treating the stretch as a vertical stretch 

2)3(2)(  xxf ,  treating the stretch as a horizontal compression 

 
Note that these equations are algebraically equivalent – the stretch for an absolute value 
function can be written interchangeably as a vertical or horizontal stretch/compression. 
 
If you had not been able to determine the stretch based on the slopes of the lines, you 
can solve for the stretch factor by putting in a known pair of values for x and f(x) 

23)(  xaxf   Now substituting in the point (1, 2) 

2

24

2312






a

a

a
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Try it Now 
2. Given the description of the transformed absolute value function write the equation.  
The absolute value function is horizontally shifted left 2 units, is vertically flipped, and 
vertically shifted up 3 units,  

 
 
The graph of an absolute value function will have a vertical intercept, when the 
input is zero.  The graph may or may not have horizontal intercepts, depending on 
how the graph has been shifted and reflected.  It is possible for the absolute value 
function to have zero, one, or two horizontal intercepts. 
 
Zero horizontal intercepts  One   Two 

     
 
 
To find the horizontal intercepts, we will need to solve an equation involving an 
absolute value. 
 
Notice that the absolute value function is not one-to-one, so typically inverses of 
absolute value functions are not discussed. 
 
 
Solving Absolute Value Equations 
 
To solve an equation like 628  x , we can notice that the absolute value will be 

equal to eight if the quantity inside the absolute value were 8 or -8.  This leads to 
two different equations we can solve independently: 

862 x  or 862 x  
142 x   22 x  

7x    1x  
 
 
Solutions to Absolute Value Equations 

An equation of the form BA  , with 0B , will have solutions when  

BA   or BA   
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Example 4 
Find the horizontal intercepts of the graph of 714)(  xxf  

 
The horizontal intercepts will occur when 0)( xf .  Solving, 

7140  x  Isolate the absolute value on one side of the equation 

147  x   Now we can break this into two separate equations: 

2

3

4

6

46

147






x

x

x

 or 

2
4

8

48

147









x

x

x

 

 

The graph has two horizontal intercepts, at 
2

3
x  and x = -2 

 
 
Example 5 

Solve 2241  x  

 
Isolating the absolute value on one side the equation, 

2241  x  

241  x  

2
4

1
 x  

 
At this point, we notice that this equation has no solutions – the absolute value always 
returns a positive value, so it is impossible for the absolute value to equal a negative 
value. 

 
 
Try it Now 

3. Find the horizontal & vertical intercepts for the function 32)(  xxf  

 
 
Solving Absolute Value Inequalities 
 
When absolute value inequalities are written to describe a set of values, like the 
inequality 45 x  we wrote earlier, it is sometimes desirable to express this set of 

values without the absolute value, either using inequalities, or using interval 
notation. 
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We will explore two approaches to solving absolute value inequalities: 
1) Using the graph 
2) Using test values 

 
 
Example 6 

Solve 45 x  

 
With both approaches, we will need to know first where the corresponding equality is 
true.  In this case we first will find where 45 x .  We do this because the absolute 

value is a nice friendly function with no breaks, so the only way the function values can 
switch from being less than 4 to being greater than 4 is by passing through where the 
values equal 4.  Solve 45 x , 

9

45




x

x
 or 

1

45




x

x
 

 
To use a graph, we can sketch the function 5)(  xxf .  To help us see where the 

outputs are 4, the line 4)( xg  could also be sketched. 

 
 
On the graph, we can see that indeed the output values of the absolute value are equal to 
4 at x = 1 and x = 9.  Based on the shape of the graph, we can determine the absolute 
value is less than or equal to 4 between these two points, when 91  x .  In interval 
notation, this would be the interval [1,9].  
 
As an alternative to graphing, after determining that the absolute value is equal to 4 at x 
= 1 and x = 9, we know the graph can only change from being less than 4 to greater than 
4 at these values.  This divides the number line up into three intervals:  x<1, 1<x<9, and 
x>9.  To determine when the function is less than 4, we could pick a value in each 
interval and see if the output is less than or greater than 4. 
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Interval Test x   f(x)  <4 or >4? 
x<1  0  550   greater 

1<x<9 6  156   less 

x>9  11  6511   greater 

 
Since the only interval in which the output at the test value is less than 4, we can 
conclude the solution to 45 x  is 91  x .  

 
 
 
Example 7 

Given the function 354
2

1
)(  xxf , determine for what x values the function 

values are negative. 
 

We are trying to determine where f(x) < 0, which is when 0354
2

1
 x .  We begin 

by isolating the absolute value: 

354
2

1
 x  when we multiply both sides by -2, it reverses the inequality 

654 x  

 
Next we solve for the equality 654 x  

4

11

114

654






x

x

x

 or 

4

1

14

654







x

x

x

 

 
We can now either pick test values or sketch a graph of the function to determine on 
which intervals the original function value are negative.  Notice that it is not even really 
important exactly what the graph looks like, as long as we know that it crosses the 

horizontal axis at 
4

1
x  and 

4

11
x , and that the graph has been reflected vertically.   
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From the graph of the function, we can see the function values are negative to the left of 

the first horizontal intercept at 
4

1
x , and negative to the right of the second intercept 

at 
4

11
x .  This gives us the solution to the inequality: 

 

4

11

4

1



 xorx  

 

In interval notation, this would be 





 






 

 ,
4

11

4

1
,  

 
 
Try it Now 

4.  Solve 642  k  

 
 
Important Topics of this Section 

The properties of the absolute value function  
Solving absolute value equations 
Finding intercepts 
Solving absolute value inequalities 

 
 
Try it Now Answers 

1.  Using the variable p, for passing,  2080 p  

2. 32)(  xxf  

3. f(0) = 1, so the vertical intercept is at (0,1).  f(x)= 0 when x = -5 and x = 1 so the 
horizontal intercepts are at (-5,0) & (1,0)  
4. 1k or 7k ; in interval notation this would be     ,71,  
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Section 2.5 Exercises 
 
Write an equation for each transformation of ( ) | |f x x  
 

1.    2.  
 

3.    4.  
 
 
Sketch a graph of each function 
5. ( )  | 1| 1f x x       6.   3 4f x x    

7.    2 3 1f x x       8.   3 2 3f x x    

9.   2 4 3f x x       10.   3 9 2f x x    

 
Solve each the equation 
11. | 5 2 | 11 x       12. | 4 2 | 15x     

13. 2 | 4 | 7 x      14. 3 | 5 | 5x    

15. 3 1 4 2 x         16. 5 4 7 2x      
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Find the horizontal and vertical intercepts of each function 

17. ( )  2 | 1| 10f x x       18.   4 3 4f x x     

19.   3 2 1f x x       20.   2 1 6f x x    

 

Solve each inequality 

21. | 5 | 6x        22. | 3 | 7x    

23. | 2 | 3x        24. | 4 | 2x    

25. | 3 9 | 4x       26. | 2 9 | 8x    
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Section 3.1 Power Functions & Polynomial Functions 
 
A square is cut out of cardboard, with each side having some length L.  If we wanted to 
write a function for the area of the square, with L as the input, and the area as output, you 
may recall that area can be found by multiplying the length times the width.  Since our 
shape is a square, the length & the width are the same, giving the formula: 

2)( LLLLA   
 
Likewise, if we wanted a function for the volume of a cube with each side having some 
length L, you may recall that volume can be found by multiplying length by width by 
height, which are all equal for a cube, giving the formula: 

3)( LLLLLV   
 
These two functions are examples of power functions; functions that are some power of 
the variable. 
 
 
Power Function 

A power function is a function that can be represented in the form 
pxxf )(  

Where the base is the variable and the exponent, p, is a number. 
 
 
Example 1 

Which of our toolkit functions are power functions? 
 
The constant and identity functions are power functions, since they can be written as 

0)( xxf   and 1)( xxf   respectively. 
The quadratic and cubic functions are both power functions with whole number powers: 

2)( xxf   and 3)( xxf  . 
 
The rational functions are both power functions with negative whole number powers 
since they can be written as 1)(  xxf and 2)(  xxf . 
 
The square and cube root functions are both power functions with fractional powers 
since they can be written as 21)( xxf  or 31)( xxf  . 

165



Chapter 3 

 

156

Try it Now 
1. What point(s) do the toolkit power functions have in common? 

 
 
Characteristics of Power Functions 
 
Shown to the right are the graphs of 

642 )(and,)(,)( xxfxxfxxf  , all 
even whole number powers.  Notice that all 
these graphs have a fairly similar shape, very 
similar to the quadratic toolkit, but as the 
power increases the graphs flatten somewhat 
near the origin, and grow faster as the input 
increases. 
 
To describe the behavior as numbers become larger and larger, we use the idea of 
infinity.  The symbol for positive infinity is  , and   for negative infinity.  When we 
say that “x approaches infinity”, which can be symbolically written as x , we are 
describing a behavior – we are saying that x is getting large in the positive direction.   
 
With the even power function, as the input becomes large in either the positive or 
negative directions, the output values become very large positive numbers.  Equivalently, 
we could describe this by saying that as x approaches positive or negative infinity, the f(x) 
values approach positive infinity.  In symbolic form, we could write: as x , 

)(xf . 
 
Shown here are the graphs of 

753 )(and,)(,)( xxfxxfxxf  , all odd whole 
number powers.  Notice all these graphs look 
similar to the cubic toolkit, but again as the power 
increases the graphs flatten near the origin and 
grow faster as the input increases. 
 
For these odd power functions, as x approaches 
negative infinity, f(x) approaches negative infinity.  
As x approaches positive infinity, f(x) approaches 
positive infinity.  In symbolic form we write:  as 

x , )(xf  and as x , )(xf . 
 
 
Ling Run Behavior 

The behavior of the graph of a function as the input takes on large negative values 
( x ) and large positive values ( x ) as is referred to as the long run behavior 
of the function. 

 

2( )f x x  

6( )f x x  
4( )f x x  

3( )f x x  

7( )f x x  
5( )f x x  
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Example 2 
Describe the long run behavior of the graph of 8)( xxf  . 
 
Since 8)( xxf   has a whole, even power, we would expect this function to behave 
somewhat like the quadratic function.  As the input gets large positive or negative, we 
would expect the output to grow in the positive direction.  In symbolic form, as 

x , )(xf .  
 
 
Example 3 

Describe the long run behavior of the graph of 9)( xxf   
 
Since this function has a whole odd power, we would expect it to behave somewhat like 
the cubic function.  The negative in front of the function will cause a vertical reflection, 
so as the inputs grow large positive, the outputs will grow large in the negative 
direction, and as the inputs grow large negative, the outputs will grow large in the 
positive direction.  In symbolic form, for the long run behavior we would write: as 

x , )(xf and as x , )(xf . 
 
You may use words or symbols to describe the long run behavior of these functions. 

 
 
Try it Now 

2. Describe in words and symbols the long run behavior of 4)( xxf   
 
 
Treatment of the rational and radical forms of power functions will be saved for later. 
 
 
Polynomials 
 
An oil pipeline bursts in the Gulf of Mexico, causing an oil slick roughly in a circular 
shape.  The slick is currently 24 miles in radius, but that radius is increasing by 8 miles 
each week.   If we wanted to write a formula for the area covered by the oil slick, we 
could do so by composing two functions together.  The first is a formula for the radius, r, 
of the spill, which depends on the number of weeks, w, that have passed.  Hopefully you 
recognized that this relationship is linear:   

wwr 824)(   
 
We can combine this with the formula for the area, A, of a circle:  

2)( rrA   
 
Composing these functions gives a formula for the area in terms of weeks: 

2)824()824())(()( wwAwrAwA    
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Multiplying this out gives the formula 

264384576)( wwwA    
 
This formula is an example of a polynomial.  A polynomial is simply the sum of terms 
consisting of transformed power functions with positive whole number powers. 
 
 
Terminology of Polynomial Functions 

A polynomial is function of the form n
n xaxaxaaxf  2

210)(  

 
Each of the ai constants are called coefficients and can be positive, negative, whole 
numbers, decimals, or fractions. 
 
A term of the polynomial is any one piece of the sum, any i

i xa . Each individual term is 

a transformed power function  
 
The degree of the polynomial is the highest power of the variable that occurs in the 
polynomial. 
 
The leading term is the term containing the highest power of the variable; the term 
with the highest degree.  
 
The leading coefficient is the coefficient on the leading term. 
 
Because of the definition of the leading term we often rearrange polynomials so that the 
powers are descending and the parts are easier to determine. 

01
2

2.....)( axaxaxaxf n
n   

 
 
Example 4 

Identify the degree, leading term, and leading coefficient of these polynomials: 
32 423)( xxxf   

ttttg 725)( 35   

26)( 3  ppph  
 
For the function f(x), the degree is 3, the highest power on x.  The leading term is the 
term containing that power, 34x .  The leading coefficient is the coefficient of that 
term, -4. 
 
For g(t), the degree is 5, the leading term is 55t , and the leading coefficient is 5. 
 
For h(p), the degree is 3, the leading term is 3p , so the leading coefficient is -1. 

168



3.1 Power and Polynomial Functions 

 

159

Long Run Behavior of Polynomials 
For any polynomial, the long run behavior of the polynomial will match the long run 
behavior of the leading term. 

 
 
Example 5 

What can we determine about the long run behavior and degree of the equation for the 
polynomial graphed here? 

 
 
Since the graph grows large and positive as the inputs grow large and positive, we 
describe the long run behavior symbolically by writing: as x , )(xf , and as 

x , )(xf . 
 
In words we could say that as x values approach infinity, the function values approach 
infinity, and as x values approach negative infinity the function values approach 
negative infinity. 
 
We can tell this graph has the shape of an odd degree power function which has not 
been reflected, so the degree of the polynomial creating this graph must be odd. 

 
 
Try it Now 

3. Given the function )5)(1)(2(2.0)(  xxxxf use your algebra skills write the 
function in polynomial form and determine the leading term, degree, and long run 
behavior of the function.  

 
 
Short Run Behavior 
Characteristics of the graph such as vertical and horizontal intercepts and the places the 
graph changes direction are part of the short run behavior of the polynomial.   
 
Like with all functions, the vertical intercept is where the graph crosses the vertical axis, 
and occurs when the input value is zero.  Since a polynomial is a function, there can only 
be one vertical intercept, which occurs at 0a ,  or the point ),0( 0a .  The horizontal 

intercepts occur at the input values that correspond with an output value of zero.  It is 
possible to have more than one horizontal intercept. 
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Example 6 
Given the polynomial function )4)(1)(2()(  xxxxf , given in factored form for 
your convenience, determine the vertical and horizontal intercepts.   
 
The vertical intercept occurs when the input is zero.   

8)40)(10)(20()0( f .   
 
The graph crosses the vertical axis at the point (0, 8) 
 
The horizontal intercepts occur when the output is zero. 

)4)(1)(2(0  xxx  when x = 2, -1, or 4 
 
The graph crosses the horizontal axis at the points (2, 0), (-1, 0), and (4, 0) 

 
 
Notice that the polynomial in the previous example, which would be degree three if 
multiplied out, had three horizontal intercepts and two turning points - places where the 
graph changes direction.  We will make a general statement here without justification at 
this time – the reasons will become clear later in this chapter. 
 
 
Intercepts and Turning Points of Polynomials 

A polynomial of degree n will have: 
At most n horizontal intercepts.  An odd degree polynomial will always have at least 
one. 
At most n-1 turning points 

 
 
Example 7 

What can we conclude about the graph of the polynomial shown here? 

 
Based on the long run behavior, with the graph becoming large positive on both ends of 
the graph, we can determine that this is the graph of an even degree polynomial.  The 
graph has 2 horizontal intercepts, suggesting a degree of 2 or greater, and 3 turning 
points, suggesting a degree of 4 or greater.  Based on this, it would be reasonable to 
conclude that the degree is even and at least 4, so it is probably a fourth degree 
polynomial. 

 
 

170



3.1 Power and Polynomial Functions 

 

161

Try it Now 
4. Given the function )5)(1)(2(2.0)(  xxxxf determine the short run behavior. 

 
 
Important Topics of this Section 

Power Functions 
Polynomials 
Coefficients 
Leading coefficient 
Term 
Leading Term 
Degree of a polynomial  
Long run behavior 
Short run behavior 

 
 
Try it Now Answers 

1. (0, 0) and (1, 1) are common to all power functions 
2. As x approaches positive and negative infinity, f(x) approaches negative infinity:  as 

x , )(xf  because of the vertical flip. 

3. The leading term is 32.0 x , so it is a degree 3 polynomial, as x approaches infinity (or 
gets very large in the positive direction) f(x) approaches infinity, and as x approaches 
negative infinity (or gets very large in the negative direction) f(x) approaches negative 
infinity.  (Basically the long run behavior is the same as the cubic function) 
4. Horizontal intercepts are (2, 0) (-1, 0) and (5, 0), the vertical intercept is (0, 2) and 
there are 2 turns in the graph. 
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Section 3.1 Exercises 
 
Find the long run behavior of each function as x   and x   
1.   4f x x   2.   6f x x    3.   3f x x   4.   5f x x  

5.   2f x x    6.   4f x x    7.   7f x x    8.   9f x x   

 
Find the degree and leading coefficient of each polynomial 
9. 74x       10. 65x    
11. 25 x      12. 36 3 4x x   
13. 4 22  3  1 x x x          14. 5 4 26 2   3x x x    
15.   2 3 4 (3 1)x x x      16.   3 1 1 (4 3)x x x     

 
Find the long run behavior of each function as x   and x   
17. 4 22  3  1 x x x          18. 5 4 26 2   3x x x    
19. 23  2x x       20. 3 22  3x x x     
 
21. What is the maximum number of x-intercepts and turning points for a polynomial of 
degree 5?  
 
22. What is the maximum number of x-intercepts and turning points for a polynomial of 
degree 8?  
 
What is the least possible degree of each graph? 

23.   24.   25.   26.   
 

27.   28.   29.   30.  
 
Find the vertical and horizontal intercepts of each function 
31.     2 1 2 ( 3)f t t t t      32.     3 1 4 ( 5)f x x x x     

33.    2 3 1 (2 1)g n n n      34.    3 4 (4 3)k u n n       
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Section 3.2 Quadratic Functions 
 
In this section, we will explore the family of 2nd degree polynomials, the quadratic 
functions.  While they share many characteristics of polynomials in general, the 
calculations involved in working with quadratics is typically a little simpler, which makes 
them a good place to start our exploration of short run behavior.  In addition, quadratics 
commonly arise from problems involving area and projectile motion, providing some 
interesting applications. 
 
 
Example 1 

A backyard farmer wants to enclose a rectangular space for a new garden.  She has 
purchased 80 feet of wire fencing to enclose 3 sides, and will put the 4th side against the 
backyard fence.  Find a formula for the area of the fence if the sides of fencing 
perpendicular to the existing fence have length L. 
 
In a scenario like this involving geometry, it is often 
helpful to draw a picture.  It might also be helpful to 
introduce a temporary variable, W, to represent the side 
of fencing parallel to the 4th side or backyard fence.   
 
Since we know we only have 80 feet of fence available, 
we know that 

80 LWL , or more simply, 802 WL  
This allows us to represent the width, W, in terms of L:  LW 280   
 
Now we are ready to write an equation for the area the fence encloses.  We know the 
area of a rectangle is length multiplied by width, so  

)280( LLLWA   
2280)( LLLA    

This formula represents the area of the fence in terms of the variable length L. 
 
 
Short run Behavior: Vertex 
 
We now explore the interesting features of the graphs of quadratics.  In addition to 
intercepts, quadratics have an interesting feature where they change direction, called the 
vertex.  You probably noticed that all quadratics are related to transformations of the 
basic quadratic function 2)( xxf  . 
 
 
 
 
 

Backyard 

Garden 

W 

L 
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Example 2 
Write an equation for the quadratic graphed below as a transformation of 2)( xxf  , 
then expand the formula and simplify terms to write the equation in standard 
polynomial form. 

 
We can see the graph is the basic quadratic shifted to the left 2 and down 3, giving a 
formula in the form 3)2()( 2  xaxg .  By plugging in a clear point such as (0,-1) 
we can solve for the stretch factor: 

2

1

42

3)20(1 2






a

a

a

 

 

Written as a transformation, the equation for this formula is 3)2(
2

1
)( 2  xxg .  To 

write this in standard polynomial form, we can expand the formula and simplify terms: 

12
2

1
)(

322
2

1
)(

3)44(
2

1
)(

3)2)(2(
2

1
)(

3)2(
2

1
)(

2

2

2

2











xxxg

xxxg

xxxg

xxxg

xxg

 

 
 
Notice that the horizontal and vertical shifts of the basic quadratic determine the location 
of the vertex of the parabola; the vertex is unaffected by stretches and compressions. 
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Try it Now 
1. A coordinate grid has been superimposed 

over the quadratic path of a basketball1.  
Find an equation for the path of the ball.  
Does he make the basket? 

 
 
 
 
 
 

 
 
Forms of Quadratic Functions 

The standard form of a quadratic is cbxaxxf  2)(  

The transformation form of a quadratic is khxaxf  2)()(  
The vertex of the quadratic is located at (h, k) 
Because the vertex can also be seen in this format it is often called vertex form as well 

 
 
In the previous example, we saw that it is possible to rewrite a quadratic in transformed 
form into standard form by expanding the formula.  It would be useful to reverse this 
process, since the transformation form reveals the vertex. 
 
Expanding out the general transformation form of a quadratic gives: 

kahahxaxkhxhxaxf

khxhxakhxaxf




2222

2

2)2()(

))(()()(
 

 
This should be equal to the standard form of the quadratic: 

cbxaxkahahxax  222 2  
 
The second degree terms are already equal.  For the linear terms to be equal, the 
coefficients must be equal: 

bah  2 , so 
a

b
h

2
  

This provides us a method to determine the horizontal shift of the quadratic from the 
standard form.  We could likewise set the constant terms equal to find: 

ckah 2 , so 
a

b
c

a

b
ac

a

b
acahck

442

2

2

22
2 






  

 
In practice, though, it is usually easier to remember that k is the output value of the 
function when the input is h, so )(hfk  . 

                                                 
1 From http://blog.mrmeyer.com/?p=4778, © Dan Meyer, CC-BY 
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Finding Vertex of a Quadratic 
For a quadratic given in standard form, the vertex (h, k) is located at: 

a

b
h

2
 ,   )(

2
hf

a

b
fk 






   

 
 
Example 3 

Find the vertex of the quadratic 762)( 2  xxxf .  Rewrite the quadratic into 
transformation form (vertex form). 
 

The horizontal component of the vertex will be at 
2

3

4

6

)2(2

6

2





a

b
h  

The vertical component of the vertex will be at 
2

5
7

2

3
6

2

3
2

2

3
2























f  

 
Rewriting into transformation form, the stretch factor will be the same as the a in the 
original quadratic.  Using the vertex to determine the shifts,  

2

5

2

3
2)(

2







  xxf  

 
 
Try it Now 

2. Given the equation xxxg 613)( 2   write the equation in Standard Form and then 
in Transformation/Vertex form. 

 
 
In addition to enabling us to more easily graph a quadratic written in standard form, 
finding the vertex serves another important purpose – it allows us to determine the 
maximum or minimum value of the function, depending on which way the graph opens. 
 
 
Example 4 

Returning to our backyard farmer from the beginning of the section, what dimensions 
should she make her garden to maximize the enclosed area? 
 
Earlier we determined the area she could enclose with 80 feet of fencing on three sides 
was given by the equation 2280)( LLLA  .  Notice that quadratic has been vertically 
reflected, since the coefficient on the squared term is negative, so graph will open 
downwards, and the vertex will be a maximum value for the area. 
 
In finding the vertex, we take care since the equation is not written in standard 
polynomial form with decreasing powers.  But we know that a is the coefficient on the 
squared term, so a = -2, b = 80, and c = 0.   
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Finding the vertex: 

20
)2(2

80



h ,   800)20(2)20(80)20( 2  Ak  

 
The maximum value of the function is an area of 800 square feet, which occurs when L 
= 20 feet.  When the shorter sides are 20 feet, that leaves 40 feet of fencing for the 
longer side.  To maximize the area, she should enclose the garden so the two shorter 
sides have length 20 feet, and the longer side parallel to the existing fence has length 40 
feet. 

 
 
Example 5 

A local newspaper currently has 84,000 subscribers, at a quarterly cost of $30.  Market 
research has suggested that if they raised the price to $32, they would lose 5,000 
subscribers.   Assuming that subscriptions are linearly related to the cost, what price 
should the newspaper charge for a quarterly subscription to maximize their revenue? 
 
Revenue is the amount of money a company brings in.  In this case, the revenue can be 
found by multiplying the cost per subscription times the number of subscribers.  We can 
introduce variables, C for cost per subscription and S for the number subscribers, giving 
us the equation 
Revenue = CS 
 
Since the number of subscribers changes with the price, we need to find a relationship 
between the variables.  We know that currently S = 84,000 and C = 30, and that if they 
raise the price to $32 they would lose 5,000 subscribers, giving a second pair of values, 
C = 32 and S = 79,000.  From this we can find a linear equation relating the two 
quantities.  Treating C as the input and S as the output, the equation will have form 

bmCS  .  The slope will be  

500,2
2

000,5

3032

000,84000,79








m  

 
This tells us the paper will lose 2,500 subscribers for each dollar they raise the price.  
We can then solve for the vertical intercept 
 

bCS  2500    Plug in the point S = 85,000 and C = 30 
b )30(2500000,84   Solve for b 

000,159b  
 
This gives us the linear equation 000,159500,2  CS  relating cost and subscribers.  
We now return to our revenue equation. 
 

CSRevenue    Substituting the equation for S from above 
)000,159500,2(Revenue  CC  Expanding 

CC 000,159500,2Revenue 2   
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We now have a quadratic equation for revenue as a function of the subscription cost.  
To find the cost that will maximize revenue for the newspaper, we can find the vertex: 
 

8.31
)500,2(2

000,159



h  

 
The model tells us that the maximum revenue will occur if the newspaper charges 
$31.80 for a subscription.  To find what the maximum revenue is, we can evaluate the 
revenue equation: 
 
Maximum Revenue =  )8.31(000,159)8.31(500,2 2 $2,528,100 

 
 
Short run Behavior: Intercepts 
 
As with any function, we can find the vertical intercepts of a quadratic by evaluating the 
function at an input of zero, and we can find the horizontal intercepts by solving for when 
the output will be zero.  Notice that depending upon the location of the graph, we might 
have zero, one, or two horizontal intercepts. 
 

  
zero horizontal intercepts one horizontal intercept two horizontal intercepts 

 
 
Example 6 

Find the vertical and horizontal intercepts of the quadratic 253)( 2  xxxf  
 
We can find the vertical intercept by evaluating the function at an input of zero: 

22)0(5)0(3)0( 2 f   Vertical intercept at (0,-2) 
 
For the horizontal intercepts, we solve for when the output will be zero 

2530 2  xx  
 
In this case, the quadratic can be factored, providing the simplest method for solution 

)2)(13(0  xx  

3

1

130





x

x
 or 

2

20




x

x
  Horizontal intercepts at 








0,
3

1
 and (-2,0) 
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Notice that in the standard form of a quadratic, the constant term c reveals the vertical 
intercept of the graph. 
 
 
Example 7 

Find the horizontal intercepts of the quadratic 442)( 2  xxxf  
 
Again we will solve for when the output will be zero 

4420 2  xx  
 
Since the quadratic is not factorable in this case, we solve for the intercepts by first 
rewriting the quadratic into transformation form. 

1
)2(2

4

2


a

b
h  64)1(4)1(2)1( 2  fk  

6)1(2)( 2  xxf  
 
Now we can solve for when the output will be zero 

31

31

)1(3

)1(26

6)1(20

2

2

2











x

x

x

x

x

  

 

The graph has horizontal intercepts at )0,31(  and )0,31(   
 
 
Try it Now 

3. In Try it Now problem 2 we found the standard & transformation form for the 
equation xxxg 613)( 2  .  Now find the Vertical & Horizontal intercepts (if any). 

 
 
Since this process is done commonly enough that sometimes people find it easier to solve 
the problem once in general then remember the formula for the result, rather than 
repeating the process.  Based on our previous work we showed that any quadratic in 
standard form can be written into transformation form as: 
 

a

b
c

a

b
xaxf

42
)(

22
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Solving for the horizontal intercepts using this general equation gives: 

a

b
c

a

b
xa

42
0

22







   start to solve for x by moving the constants to the other side 

22

24






 

a

b
xac

a

b
  divide both sides by a 

2

2

2

24






 

a

b
x

a

c

a

b
  find a common denominator to combine fractions 

2

22

2

24

4

4






 

a

b
x

a

ac

a

b
 combine the fractions on the left side of the equation 

2

2

2

24

4






 


a

b
x

a

acb
  take the square root of both sides 

a

b
x

a

acb

24

4
2

2




  subtract b/2a from both sides 

x
a

acb

a

b





2

4

2

2

 combining the fractions 

a

acbb
x

2

42 
   Notice that this can yield two different answers for x 

 
 
Quadratic Formula 

For a quadratic given in standard form, the quadratic formula gives the horizontal 
intercepts of the graph of the quadratic. 

a

acbb
x

2

42 
  

 
 
Example 8 

A ball is thrown upwards from the top of a 40 foot high building at a speed of 80 feet 
per second.  The ball’s height above ground can be modeled by the equation 

408016)( 2  ttth .   
What is the maximum height of the ball? 
When does the ball hit the ground? 
 
To find the maximum height of the ball, we would need to know the vertex of the 
quadratic. 

2

5

32

80

)16(2

80



h ,   14040

2

5
80

2

5
16

2

5
2





















 hk  

 
The ball reaches a maximum height of 140 feet after 2.5 seconds 
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To find when the ball hits the ground, we need to determine when the height is zero – 
when h(t) = 0.  While we could do this using the transformation form of the quadratic, 
we can also use the quadratic formula: 

32

896080

)16(2

)40)(16(48080 2








t  

 
Since the square root does not evaluate to a whole number, we can use a calculator to 
approximate the values of the solutions: 

458.5
32

896080





t  or  458.0
32

896080





t  

 
The second answer is outside the reasonable domain of our model, so we conclude the 
ball will hit the ground after about 5.458 seconds. 

 
 
Try it Now 

4. For these two equations determine if the vertex will be a maximum value or a 
minimum value. 
 a.  78)( 2  xxxg  

 b.  2)3(3)( 2  xxg  
 
 
Important Topics of this Section 

Quadratic functions 
 Standard form 
 Transformation form/Vertex form 
 Vertex as a maximum / Vertex as a minimum 
Short run behavior 
 Vertex / Horizontal & Vertical intercepts  
Quadratic formula 

 
 
Try it Now Answers 

1. The path passes through the origin with vertex at (-4, 7).  
27

( ) ( 4) 7
16

h x x    .  To make the shot, h(-7.5) would 

need to be about 4.  ( 7.5) 1.64h   ; he doesn’t make it. 
 
2. 136)( 2  xxxg  in Standard form;  4)3()( 2  xxg in Transformation form 
 
3. Vertical intercept at (0, 13),  NO horizontal intercepts. 
 
4. a. Vertex is a minimum value 
    b. Vertex is a maximum value 
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Section 3.2 Exercises 
 
Write an equation for the quadratic graphed 

1.    2.  
 

3.    4.   
 

5.    6.  
 
For each of the follow quadratics, find a) the vertex, b) the vertical intercept, and c) the 
horizontal intercepts. 
7.   22 10 12y x x x      8.   23 6 9z p x x     

9.   22 10 4f x x x      10.   22 14 12g x x x     

11.   24 6 1h t t t       12.   22 4 15 k t x x     

 
 
Rewrite the quadratic into vertex form 
13.   2 12 32f x x x      14.   2 2 3g x x x    

15.   22 8 10h x x x      16.   23 6 9k x x x     
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17. Find the values of b and c so   28f x x bx c     has vertex  2, 7  

18. Find the values of b and c so   26f x x bx c    has vertex (7, 9)  

 
Write an equation for a quadratic with the given features 
19. x-intercepts (-3, 0) and (1, 0), and y intercept (0, 2) 
20. x-intercepts (2, 0) and (-5, 0), and y intercept (0, 3) 
21. x-intercepts (2, 0) and (5, 0), and y intercept (0, 6) 
22. x-intercepts (1, 0) and (3, 0), and y intercept (0, 4) 
23. Vertex at (4, 0), and y intercept (0, -4) 
24. Vertex at (5, 6), and y intercept (0, -1) 
25. Vertex at (-3, 2), and passing through (3, -2) 
26. Vertex at (1, -3), and passing through (-2, 3) 

 
27. A rocket is launched in the air.  Its height, in meters above sea level, as a function of 

time is given by   24.9 229 234h t t t    .   

a. From what height was the rocket launched? 
b. How high above sea level does the rocket get at its peak? 
c. Assuming the rocket will splash down in the ocean, at what time does 

splashdown occur? 
 

28. A ball is thrown in the air from the top of a building.  Its height, in meters above 

ground, as a function of time is given by   24.9 24 8h t t t    .   

a. From what height was the ball thrown? 
b. How high above ground does the ball get at its peak? 
c. When does the ball hit the ground? 

 

29. The height of a ball thrown in the air is given by   21
6 3

12
h x x x    , where x is 

the horizontal distance in feet from the point at which the ball is thrown. 
a. How high is the ball when it was thrown? 
b. What is the maximum height of the ball? 
c. How far from the thrower does the ball strike the ground? 

 

30. A javelin is thrown in the air.  Its height is given by   21
8 6

20
h x x x    , where x 

is the horizontal distance in feet from the point at which the javelin is thrown. 
a. How high is the javelin when it was thrown? 
b. What is the maximum height of the javelin? 
c. How far from the thrower does the javelin strike the ground? 
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31. A box with a square base and no top is to be made from a square piece of cardboard 
by cutting 6 in. squares from each corner and folding up the sides. The box is to hold 
1000 in3. How big a piece of cardboard is needed? 
 

32. A box with a square base and no top is to be made from a square piece of cardboard 
by cutting 4 in. squares from each corner and folding up the sides. The box is to hold 
2700 in3. How big a piece of cardboard is needed? 
 

33. A farmer wishes to enclose two pens with fencing, as shown.  
If the farmer has 500 feet of fencing to work with, what 
dimensions will maximize the area enclosed? 
 

34. A farmer wishes to enclose three pens with fencing, as shown.  
If the farmer has 700 feet of fencing to work with, what 
dimensions will maximize the area enclosed? 

 
35. You have a wire that is 56 cm long. You wish to cut it into two pieces. One piece will 

be bent into the shape of a square. The other piece will be bent into the shape of a 
circle. Let A represent the total area of the square and the circle. What is the 
circumference of the circle when A is a minimum? 
 

36. You have a wire that is 71 cm long. You wish to cut it into two pieces. One piece will 
be bent into the shape of a right triangle with base equal to height. The other piece 
will be bent into the shape of a circle. Let A represent the total area of the triangle and 
the circle. What is the circumference of the circle when A is a minimum? 
 

37. A soccer stadium holds 62000 spectators. With a ticket price of $11 the average 
attendance has been 26,000. When the price dropped to $9, the average attendance 
rose to 31,000. Assuming that attendance is linearly related to ticket price, what ticket 
price would maximize revenue? 
 

38. A farmer finds that if she plants 75 trees per acre, each tree will yield 20 bushels of 
fruit. She estimates that for each additional tree planted per acre, the yield of each tree 
will decrease by 3 bushels. How many trees should she plant per acre to maximize her 
harvest? 
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39. A hot air balloon takes off from the 
edge of a mountain lake. Impose a 
coordinate system as pictured and 
assume that the path of the balloon 
follows the graph of 

  22
45

2500
f x x x   . The land rises 

at a constant incline from the lake at the 
rate of 2 vertical feet for each 20 
horizontal feet. [UW] 

a. What is the maximum height of the balloon above plateau level? 
b. What is the maximum height of the balloon above ground level? 
c. Where does the balloon land on the ground? 
d. Where is the balloon 50 feet above the ground? 

  
 
40. A hot air balloon takes off from 

the edge of a plateau. Impose a 
coordinate system as pictured 
below and assume that the path 
the balloon follows is the graph 
of the quadratic function 

  24 4

2500 5
f x x x   . The 

land drops at a constant incline 
from the plateau at the rate of 1 
vertical foot for each 5 
horizontal feet. [UW] 

a. What is the maximum height of the balloon above plateau level? 
b. What is the maximum height of the balloon above ground level? 
c. Where does the balloon land on the ground? 
d. Where is the balloon 50 feet above the ground? 
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Section 3.3 Graphs of Polynomial Functions 
 
In the previous section we explored the short run behavior of quadratics, a special case of 
polynomials.  In this section we will explore the short run behavior of polynomials in 
general. 
 
Short run Behavior:  Intercepts 
 
As with any function, the vertical intercept can be found by evaluating the function at an 
input of zero.  Since this is evaluation, it is relatively easy to do it for any degree 
polynomial. 
 
To find horizontal intercepts, we need to solve for when the output will be zero.  For 
general polynomials, this can be a challenging prospect.  While quadratics can be solved 
using the relatively simple quadratic formula, the corresponding formulas for cubic and 
4th degree polynomials are not simple enough to remember, and formulas do not exist for 
general higher degree polynomials.  Consequently, we will limit ourselves to three cases: 

1) The polynomial can be factored using known methods: greatest common 
factor and trinomial factoring.   

2) The polynomial is given in factored form 
3) Technology is used to determine the intercepts 

 
 
Example 1 

Find the horizontal intercepts of 246 23)( xxxxf  . 
 
We can attempt to factor this polynomial to find solutions for f(x) = 0 

023 246  xxx   Factoring out the greatest common factor 
  023 242  xxx   Factoring the inside as a quadratic 

   021 222  xxx   Then break apart to find solutions 

0

02




x

x
 or 

 

1

1

01
2

2






x

x

x

 or  

 

2

2

02
2

2







x

x

x

 

 
This gives us 5 horizontal intercepts. 

 
 
Example 2 

Find the vertical and horizontal intercepts of )32()2()( 2  tttg  
 
The vertical intercept can be found by evaluating g(0).   

12)3)0(2()20()0( 2 g  
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The horizontal intercepts can be found by solving g(t) = 0 
0)32()2( 2  tt   Since this is already factored, we can break it apart: 

2

02

0)2( 2






t

t

t

 or 

2

3

0)32(






t

t
 

 
 
Example 3 

Find the horizontal intercepts of 
64)( 23  tttth  

 
Since this polynomial is not in factored form, has no 
common factors, and does not appear to be factorable 
using techniques we know, we can turn to technology 
to find the intercepts.   
 
Graphing this function, it appears there are horizontal 
intercepts at x = -3, -2, and 1 
 

 
 
Try it Now 

1. Find the vertical and horizontal intercepts of the function 24 4)( tttf   
 
 
Graphical Behavior at Intercepts 
 
If we graph the function 

32 )1()2)(3()(  xxxxf , notice that the 
behavior at each of the horizontal intercepts is 
different. 
 
At the horizontal intercept x = -3, coming from 
the )3( x  factor of the polynomial, the graph 
passes directly through the horizontal intercept.  
The factor is linear (has a power of 1), so the 
behavior near the intercept is like that of a line - it 
passes directly through the intercept. We call this 
a single zero, since the zero is formed from a 
single factor of the function. 
 
At the horizontal intercept x = 2, coming from the 2)2( x  factor of the polynomial, the 
graph touches the axis at the intercept and changes direction.  The factor is quadratic 
(degree 2), so the behavior near the intercept is like that of a quadratic – it bounces off of 
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the horizontal axis at the intercept.  Since )2)(2()2( 2  xxx , the factor is repeated 
twice, so we call this a double zero. 
 
At the horizontal intercept x = -1, coming from the 3)1( x  factor of the polynomial, the 
graph passes through the axis at the intercept, but flattens out a bit first.  This factor is 
cubic (degree 3), so the behavior near the intercept is like that of a cubic, with the same 
“S” type shape near the intercept that the toolkit 3x  has. We call this a triple zero. 
 
By utilizing these behaviors, we can sketch a reasonable graph of a factored polynomial 
function without needing technology. 
 
 
Graphical Behavior of Polynomials at Horizontal Intercepts 

If a polynomial contains a factor of the form phx )(  , the behavior near the horizontal 
intercept h is determined by the power on the factor. 
 p = 1    p = 2    p = 3  

   
 Single zero      Double zero          Triple zero  
  
For higher even powers 4,6,8 etc… the graph will still bounce off of the graph but the 
graph will appear flatter with increasing even power as it approaches and leaves the 
axis. 
 
For higher odd powers, 5,7,9 etc… the graph will still pass through the graph but the 
graph will appear flatter with increasing odd power as it approaches and leaves the axis. 

 
 
 
Example 4 

Sketch a graph of )5()3(2)( 2  xxxf  
 
This graph has two horizontal intercepts.  At x = -3, the factor is squared, indicating the 
graph will bounce at this horizontal intercept.  At x = 5, the factor is not squared, 
indicating the graph will pass through the axis at this intercept. 
 
Additionally, we can see the leading term, if this polynomial were multiplied out, would 
be 32x , so the long-run behavior is that of a vertically reflected cubic, with the 
outputs decreasing as the inputs get large positive, and the inputs increasing as the 
inputs get large negative. 
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To sketch this we consider the following: 
As x  the function )(xf  so we know the graph starts in the 2nd quadrant 
and is decreasing toward the horizontal axis. 
 
At (-3, 0) the graph bounces off of the horizontal axis and so the function must start 
increasing. 
 
At (0, 90) the graph crosses the vertical axis at the vertical intercept 
 
Somewhere after this point the graph must turn back down / or start decreasing toward 
the horizontal axis since the graph passes through the next intercept at (5,0)  
 
As x  the function )(xf  so we know the graph continues to decrease and we 
can stop drawing the graph in the 4th quadrant. 
 
Using technology we see that the resulting graph will look like: 

 
  
 
Solving Polynomial Inequalities 
 
One application of our ability to find intercepts and sketch a graph of polynomials is the 
ability to solve polynomial inequalities.  It is a very common question to ask when a 
function will be positive and negative.  We can solve polynomial inequalities by either 
utilizing the graph, or by using test values. 
 
 
Example 5 

Solve 0)4()1)(3( 2  xxx  
 
As with all inequalities, we start by solving the equality 0)4()1)(3( 2  xxx , 
which has solutions at x = -3, -1, and 4.  We know the function can only change from 
positive to negative at these values, so these divide the inputs into 4 intervals.   
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We could choose a test value in each interval and evaluate the function 
)4()1)(3()( 2  xxxxf  at each test value to determine if the function is positive or 

negative in that interval 
 

 
 
On a number line this would look like: 
 

 
 
From our test values, we can determine this function is positive when x < -3 or x > 4, or 
in interval notation, ),4()3,(   

 
 
We could have also determined on which intervals the function was positive by sketching 
a graph of the function.  We illustrate that technique in the next example 
 
 
Example 6 

Find the domain of the function 256)( tttv   
 
A square root only is defined when the quantity we are taking the square root of is zero 
or greater.  Thus, the domain of this function will be when 056 2  tt . 
 
Again we start by solving the equality 056 2  tt .  While we could use the 
quadratic formula, this equation factors nicely to 0)1)(6(  tt , giving horizontal 
intercepts t = 1 and t = -6.  Sketching a graph of this quadratic will allow us to 
determine when it is positive: 

 
 
From the graph we can see this function is positive for inputs between the intercepts.  
So 056 2  tt  for 16  t , and this will be the domain of the v(t) function. 

Interval Test x in interval f( test value) >0 or <0? 
x < -3 -4 72 > 0 
-3 < x < -1 -2 -6 < 0 
-1 < x .< 4 0 -12 < 0 
x > 4 5 288 > 0 

0 0 0 positive negative negative positive 
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Try it Now 
2. Given the function xxxxg 6)( 23   use the methods that we have learned so far 
to find the vertical & horizontal intercepts, determine where the function is negative and 
positive, describe the long run behavior and sketch the graph without technology. 

 
 
Writing Equations using Intercepts 
 
Since a polynomial function written in factored form will have a horizontal intercept 
where each factor is equal to zero, we can form an equation that will pass through a set of 
horizontal intercepts by introducing a corresponding set of factors. 
 
 
Factored Form of Polynomials 

If a polynomial has horizontal intercepts at nxxxx ,,, 21  , then the polynomial can be 

written in the factored form 
np

n
pp xxxxxxaxf )()()()( 21

21    

where the powers pi on each factor can be determined by the behavior of the graph at 
the corresponding intercept, and the stretch factor a can be determined given a value of 
the function other than the horizontal intercept. 

 
 
Example 7  

Write an equation for the polynomial graphed here 

 
 
This graph has three horizontal intercepts: x = -3, 2, and 5.  At x = -3 and 5 the graph 
passes through the axis, suggesting the corresponding factors of the polynomial will be 
linear.  At x = 2 the graph bounces at the intercept, suggesting the corresponding factor 
of the polynomial will be 2nd degree or quadratic.  Together, this gives us: 

)5()2)(3()( 2  xxxaxf  
 
To determine the stretch factor, we can utilize another point on the graph.  Here, the 
vertical intercept appears to be (0,-2), so we can plug in those values to solve for a 
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30

1

602

)50()20)(30(2 2






a

a

a

 

 

The graphed polynomial would have equation )5()2)(3(
30

1
)( 2  xxxxf  

 
 
Try it Now 

3. Given the graph, determine and write the equation for the graph in factored form. 
 

 
 
 
Estimating Extrema 
 
With quadratics, we were able to algebraically find the maximum or minimum value of 
the function by finding the vertex.  For general polynomials, finding these turning points 
is not possible without more advanced techniques from calculus.  Even then, finding 
where extrema occur can still be algebraically challenging.  For now, we will estimate the 
locations of turning points using technology to generate a graph. 
 
 
Example 8 

An open-top box is to be constructed by cutting out squares from each corner of a 14cm 
by 20cm sheet of plastic then folding up the sides.  Find the size of squares that should 
be cut out to maximize the volume enclosed by the box. 
 
We will start this problem by drawing a picture, labeling the 
width of the cut-out squares with a variable, w.       
 
  
 
 

w 

w 
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Notice that after a square is cut out from each end, it leaves (14-2w) cm by (20-2w) cm 
for the base of the box, and the box will be w cm tall.  This gives the volume: 

32 468280)220)(214()( wwwwwwwV   
 
Using technology to sketch a graph allows us to estimate the maximum value for the 
volume, restricted to reasonable values for w – values from 0 to 7. 
 

 
 
From this graph, we can estimate the maximum value is around 340, and occurs when 
the squares are about 2.75cm square.  To improve this estimate, we could use features 
of our technology if available, or simply change our window to zoom in on our graph. 
 

 
From this zoomed-in view, we can refine our estimate for the max volume to about 339, 
when the squares are 2.7cm square. 

 
 
Try it Now 

4. Use technology to find the Maximum and Minimum values on the interval [-1, 4] of 
the equation )4()1()2(2.0)( 23  xxxxf .  
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Important Topics of this Section 
Short Run Behavior 
 Intercepts (Horizontal & Vertical) 
Methods to find Horizontal intercepts 
 Factoring Methods 
 Factored Forms 
 Technology 
Graphical Behavior at intercepts 
Single, Double and Triple zeros (or power 1,2 & 3 behaviors) 
Solving polynomial inequalities using test values & graphing techniques 
Writing equations using intercepts 
Estimating extrema 

 
 
Try it Now Answers 

1.  Vertical intercept (0, 0) Horizontal intercepts (0, 0), (-2, 0), (2, 0) 
2. Vertical intercept (0, 0) Horizontal intercepts (-2, 0), (0, 0), (3, 0) 
    The function is negative from (  , -2) and (0, 3) 
    The function is positive from (-2, 0) and (3, ) 
    The leading term is 3x so as x , )(xg and as x , )(xg  
 

 
 

3. 3 21
( ) ( 2) ( 1) ( 4)

8
f x x x x      

4.  Approximately, (0, -6.5) minimum and approximately (3.5, 7) maximum. 
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Section 3.3 Exercises 
 
Find the C and t intercepts of each function 
1.     2 4 1 ( 6)C t t t t      2.     3 2 3 ( 5)C t t t t      

3.    2
4 2 ( 1)C t t t t      4.     2

2 3 1C t t t t    

5.   4 3 22 8 6C t t t t      6.   4 3 24 12 40C t t t t    

 
Use your calculator or other graphing technology to solve graphically for the zeros of the 
function 
7.   3 27 4 30f x x x x       8.   3 26 28g x x x x      

 
Find the long run behavior of each function as t   and t   

9.      3 3
3 5 3 ( 2)h t t t t      10.      2 3

2 3 1 ( 2)k t t t t     

11.     2
2 1 3p t t t t       12.     3

4 2 1q t t t t     

 
Sketch a graph of each equation 

13.    2
3 ( 2)f x x x      14.     2

4 1g x x x    

15.      3 2
1 3h x x x      16.      3 2

3 2k x x x    

17.    2 1 ( 3)m x x x x       18.    3 2 ( 4)n x x x x       

 
Solve each inequality 

19.   2
3 2 0x x      20.   2

5 1 0x x    

21.    1 2 3 0x x x       22.    4 3 6 0x x x       

 
Find the domain of each function 

23.   242 19 2f x x x       24.   228 17 3g x x x    

25.   24 5h x x x      26.   22 7 3k x x x    

27.     2
3 2n x x x      28.    2

1 ( 3)m x x x    

29.   2

1

2 8
p t

t t


 
    30.   2

4

4 5
q t

x x
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Write an equation for a polynomial the given features 
31. Degree 3.  Zeros at x = -2, x = 1, and x = 3.  Vertical intercept at (0, -4) 

32. Degree 3.  Zeros at x = -5, x = -2, and x = 1.  Vertical intercept at (0, 6) 

33. Degree 5.  Roots of multiplicity 2 at x = 3 and x = 1, and a root of multiplicity 1 at     
x = -3.  Vertical intercept at (0, 9) 

34. Degree 4.  Root of multiplicity 2 at x = 4, and a roots of multiplicity 1 at x = 1 and     
x = -2.  Vertical intercept at (0, -3) 

35. Degree 5.  Double zero at x = 1, and triple zero at x = 3.  Passes through the point    
(2, 15) 

36. Degree 5.  Single zero at x = -2 and x = 3, and triple zero at x = 1.  Passes through the 
point (2, 4) 

 
Write an equation for the polynomial graphed 
 

37.  38.  39.  

40. 41.  42.   
 

43.  44.  
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Write an equation for the polynomial graphed 
 

45.    46.  
 

47.  48.  
 

49.  50.  
 
51. A rectangle is inscribed with its base on the x axis and its upper corners on the 

parabola 25y x  .  What are the dimensions of such a rectangle with the greatest 

possible area? 
 

52. A rectangle is inscribed with its base on the x axis and its upper corners on the curve 
416y x  .  What are the dimensions of such a rectangle with the greatest possible 

area?
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Section 3.4 Rational Functions 
 
In the last few sections, we have built polynomials based on the positive whole number 
power functions.  In this section we explore the functions based on power functions with 
negative integer powers, the rational functions. 
 
 
Example 1 

You plan to drive 100 miles.  Find a formula for the time the trip will take as a function 
of the speed you drive. 
 
You may recall that multiplying speed by time will give you distance.  If we let t 
represent the drive time in hours, and v represent the velocity (speed or rate) at which 
we drive, then distancevt .  Since our distance is fixed at 100 miles, 100vt .  
Solving this relationship for the time gives us the function we desired: 

1100
100

)(  v
v

vt  

 
 
While this type of relationship can be written using the negative exponent, it is more 
common to see it written as a fraction.   
 
This particular example is one of an inversely proportional relationship – where one 

quantity is a constant divided by the other quantity. 
1

( )f x
x

  

Notice that this is a transformation of the reciprocal toolkit function.  
 
Several natural phenomena, such as gravitational force and volume of sound, behave in a 
manner inversely proportional to the square of the second quantity.  For example, the 

volume, V, of a sound heard at a distance d from the source would be related by 
2d

k
V   

for some constant value k. 

These functions are transformations of the reciprocal squared toolkit function 
2

1
( )f x

x
  

 
We have seen the graphs of the basic reciprocal function and the squared reciprocal 
function from our study of toolkit functions.  These graphs have several important 
features. 
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1
( )f x

x
                                                                                                    

2

1
( )f x

x
  

 
 

Let’s begin by looking at the reciprocal function, 
1

( )f x
x

 .  As you well know, dividing 

by zero is not allowed and therefore zero is not in the Domain, and so the function is 
undefined at an input of zero. 
 
Short run behavior:  
As the input becomes very small or as the input values approach zero from the left side, 
the function values become very large in a negative direction, or approach negative 
infinity.  
We write: as  0x , )(xf . 
 
As we approach 0 from the right side, the input values are still very small, but the 
function values become very large or approach positive infinity. 
We write: as  0x )(xf . 
 
This behavior creates a vertical asymptote.  An asymptote is a line that the graph 
approaches. In this case the graph is approaching the vertical line x = 0 as the input 
becomes close to zero.   
 
Long run behavior:  
As the values of x approach infinity, the function values approach 0. 
As the values of x approach negative infinity, the function values approach 0. 
Symbolically, as x 0)( xf  
 
Based on this long run behavior and the graph we can see that the function approaches 0 
but never actually reaches 0, it just “levels off” as the inputs become large.  This behavior 
creates a horizontal asymptote.  In this case the graph is approaching the horizontal line 

( ) 0f x  as the input becomes very large in the negative and positive direction. 
 
 
Vertical and Horizontal Asymptotes 

A vertical asymptote of a graph is a vertical line x = a where the graph tends towards 
positive or negative infinity as the inputs approach a.  As ax  , )(xf . 
 
A horizontal asymptote of a graph is a horizontal line ( )f x b  where the graph 
approaches the line as the inputs get large. As x , bxf )( . 
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Try it Now: 
1. Use symbolic notation to describe the long run behavior 
and short run behavior for the reciprocal squared function. 

 
 
 
 
Example 2 

Sketch a graph of the reciprocal function shifted two units to the left and up three units.  
Identify the horizontal and vertical asymptotes of the graph, if any. 
 
Transforming the graph left 2 and up 3 would result in the equation 

3
2

1
)( 




x
xf , or equivalently by giving the terms a common denominator, 

2

73
)(





x

x
xf  

 
Shifting the toolkit function would give us 
this graph.  Notice that this equation is 
undefined at x = -2, and the graph also is 
showing a vertical asymptote at x = -2. 
As 2x   , ( )f x  , and as 

2x   , ( )f x   
 
As the inputs grow large, the graph appears 
to be leveling off at ( ) 3f x  , indicating a 
horizontal asymptote at ( ) 3f x  .  
As x , 3)( xf . 
  
Notice that horizontal and vertical asymptotes shifted along with the function. 

 
 
Try it Now 

2. Sketch the graph and find the horizontal and vertical asymptotes of the reciprocal 
squared function that has been shifted right 3 units and down 4 units.  

 
 
In the previous example, we shifted the function in a way that resulted in a function of the 

form 
2

73
)(





x

x
xf .  This is an example of a general rational function. 
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Rational Function 
A rational function is a function that can be written as the ratio of two polynomials, 
p(x) and q(x). 

q
q

p
p

xbxbxbb

xaxaxaa

xq

xp
xf









2
210

2
210

)(

)(
)(    

 
 
Example 3 

A large mixing tank currently contains 100 gallons of water, into which 5 pounds of 
sugar have been mixed.  A tap will open pouring 10 gallons per minute of water into the 
tank at the same time sugar is poured into the tank at a rate of 1 pound per minute.  Find 
the concentration (pounds per gallon) of sugar in the tank after t minutes.   
 
Notice that the water in the tank is changing linearly, as is the amount of sugar in the 
tank.  We can write an equation independently for each: 

twater 10100   
tsugar 15   

 
The concentration, C, will be the ratio of pounds of sugar to gallons of water 

t

t
tC

10100

5
)(




  

 
 
Finding Asymptotes and Intercepts 
 
Given a rational equation, as part of discovering the short run behavior we are interested 
in finding any vertical and horizontal asymptotes, as well as finding any vertical or 
horizontal intercepts as we have in the past. 
 
To find vertical asymptotes, we notice that the vertical asymptotes occurred when the 
denominator of the function was undefined.  With few exceptions, a vertical asymptote 
will occur whenever the denominator is undefined. 
 
 
Example 4 

Find the vertical asymptotes of the function 
2

2

2

25
)(

xx

x
xk




  

 
To find the vertical asymptotes, we determine where this function will be undefined by 
setting the denominator equal to zero: 

1,2

0)1)(2(

02 2






x

xx

xx
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This indicates two vertical asymptotes, which a 
look at a graph confirms. 
 
 
 
 
 
 

 
 
The exception to this rule occurs when both the numerator and denominator of a rational 
function are zero. 
 
 
Example 5 

Find the vertical asymptotes of the function 
2

2
( )

4

x
k x

x





 

 
To find the vertical asymptotes, we determine where this function will be undefined by 
setting the denominator equal to zero: 

2

2

4 0

4

2, 2

x

x

x

 


 

 

 
However, the numerator of this function is also 
equal to zero when x = 2.  Because of this, the 

function will still be undefined at 2, since 
0

0
 is 

still undefined, but the graph will not have a 
vertical asymptote at x = 2.   
 
The graph of this function will have the vertical 
asymptote at x = -2, but at x = 2 the graph will 
have a hole; a single point where the graph is not 
defined, indicated by an open circle. 

 
 
Vertical Asymptotes and Holes of Rational Functions 

The vertical asymptotes of a rational function will occur where the denominator of the 
function is equal to zero and the numerator is not zero. 
 
A hole will occur in a rational function if an input causes both the numerator and 
denominator to both be zero. 
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To find horizontal asymptotes, we are interested in the behavior of the function as the 
input grows large, so we consider long run behavior of the numerator and denominator 
separately.  Recall that a polynomial’s long run behavior will mirror that of the leading 
term.  Likewise, a rational function’s long run behavior will mirror that of the ratio of the 
leading terms of the numerator and denominator functions. 
 
There are three distinct outcomes when this analysis is done: 
 
 
Case 1:  The degree of the denominator > degree of the numerator 

Example: 
54

23
)(

2 



xx

x
xf  

In this case, the long run behavior is 
xx

x
xf

33
)(

2
 .  This tells us that as the inputs grow 

large, this function will behave similarly to the function 
x

xf
3

)(  .  As the inputs grow 

large, the outputs will approach zero, resulting in a horizontal asymptote at ( ) 0f x  . 
As x , 0)( xf  
 
 
Case 2:  The degree of the denominator < degree of the numerator 

Example: 
5

23
)(

2





x

x
xf  

In this case, the long run behavior is x
x

x
xf 3

3
)(

2

 .  This tells us that as the inputs 

grow large, this function will behave similarly to the function xxf 3)(  .  As the inputs 
grow large, the outputs will grow and not level off, so this graph has no horizontal 
asymptote.  Instead, the graph will approach the slanted line xxf 3)(  . 
As x , )(xf , respectively. 
 
Ultimately, if the numerator is larger than the denominator, the long run behavior of the 
graph will mimic the behavior of the reduced long run behavior fraction. As another 

example if we had the function 
5 23

( )
3

x x
f x

x





 with long run behavior 

4
5

3
3

)( x
x

x
xf  , the long run behavior of the graph would look similar to that of an 

even polynomial and as x , )(xf . 
 
 
Case 3:  The degree of the denominator = degree of the numerator 

Example: 
54

23
)(

2

2





xx

x
xf  
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In this case, the long run behavior is 3
3

)(
2

2


x

x
xf .  This tells us that as the inputs 

grow large, this function will behave the similarly to the function 3)( xf , which is a 
horizontal line. As x , 3)( xf , resulting in a horizontal asymptote at ( ) 3f x  . 
 
 
Horizontal Asymptote of Rational Functions 

The horizontal asymptote of a rational function can be determined by looking at the 
degrees of the numerator and denominator. 
Degree of denominator > degree of numerator: Horizontal asymptote at ( ) 0f x   
Degree of denominator < degree of numerator: No horizontal asymptote 

Degree of denominator = degree of numerator: Horizontal asymptote at ratio of leading 
coefficients. 

 
 
Example 6 

In the sugar concentration problem from earlier, we created the equation 

t

t
tC

10100

5
)(




 .   

Find the horizontal asymptote and interpret it in context of the scenario. 
 
Both the numerator and denominator are linear (degree 1), so since the degrees are 
equal, there will be a horizontal asymptote at the ratio of the leading coefficients.  In the 
numerator, the leading term is t, with coefficient 1.  In the denominator, the leading 
term is 10t, with coefficient 10.  The horizontal asymptote will be at the ratio of these 

values: As x , 
10

1
)( xf .  This function will have a horizontal asymptote at 

1
( )

10
f x  . 

 
This tells us that as the input gets large, the output values will approach 1/10.  In 
context, this means that as more time goes by, the concentration of sugar in the tank will 
approach one tenth of a pound of sugar per gallon of water or 1/10 pounds per gallon. 

 
 
Example 7 

Find the horizontal and vertical asymptotes of the function 

)5)(2)(1(

)3)(2(
)(





xxx

xx
xf  

 
The function will have vertical asymptotes when the denominator is zero causing the 
function to be undefined.  The denominator will be zero at x = 1, -2, and 5, indicating 
vertical asymptotes at these values. 
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The numerator is degree 2, while the denominator is degree 3.  Since the degree of the 
denominator is greater than the degree of the numerator, the denominator will grow 
faster than the numerator, causing the outputs to tend towards zero as the inputs get 
large, and so as x , 0)( xf .  This function will have a horizontal asymptote at 

( ) 0f x  . 
 
 
Try it Now 

3. Find the vertical and horizontal asymptotes of the function 

)3)(2(

)12)(12(
)(





xx

xx
xf  

 
 
Intercepts 
 
As with all functions, a rational function will have a vertical intercept when the input is 
zero, if the function is defined at zero.  It is possible for a rational function to not have a 
vertical intercept if the function is undefined at zero. 
 
Likewise, a rational function will have horizontal intercepts at the inputs that cause the 
output to be zero.  It is possible there are no horizontal intercepts.  Since a fraction is only 
equal to zero when the numerator is zero, horizontal intercepts will occur when the 
numerator of the rational function is equal to zero. 
 
 
Example 8 

Find the intercepts of 
)5)(2)(1(

)3)(2(
)(





xxx

xx
xf  

 
We can find the vertical intercept by evaluating the function at zero 

5

3

10

6

)50)(20)(10(

)30)(20(
)0( 







f  

 
The horizontal intercepts will occur when the function is equal to zero: 

)5)(2)(1(

)3)(2(
0





xxx

xx
 This is equivalent to when the numerator is zero 

3,2

)3)(2(0




x

xx
 

 
 
Try it Now 

4. Given the reciprocal squared function that is shifted right 3 units and down 4 units.  
Write this as a rational function and find the horizontal and vertical intercepts and the 
horizontal and vertical asymptotes. 
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From the previous example, you probably noticed that the numerator of a rational 
function reveals the horizontal intercepts of the graph, while the denominator reveals the 
vertical asymptotes of the graph.  As with polynomials, factors of the numerator may 
have powers.  Happily, the effect on the shape of the graph at those intercepts is the same 
as we saw with polynomials.  
 
When factors of the denominator have power, the behavior at that intercept will mirror 
one of the two toolkit reciprocal functions. 

 
We get this behavior when the degree of the factor in the 
denominator is odd.   The distinguishing characteristic is that 
on one side of the vertical asymptote the graph increases, and 
on the other side the graph decreases. 
 
 
 
 
 
 
We get this behavior when the degree of the factor in the 
denominator is even.   The distinguishing characteristic is 
that on both sides of the vertical asymptote the graph either 
increases or decreases. 
 
 
 
 
 

For example, the graph of  

)2()3(

)3()1(
)(

2

2





xx

xx
xf  is shown here. 

 
At the horizontal intercept x = -1 
corresponding to the 2)1( x factor of 
the numerator, the graph bounces at the 
intercept, consistent with the quadratic 
nature of the factor.   
 
At the horizontal intercept x = 3 corresponding to the )3( x factor of the numerator, the 
graph passes through the axis as we’d expect from a linear factor.   
 
At the vertical asymptote x = -3 corresponding to the 2)3( x  factor of the denominator, 
the graph increases on both sides of the asymptote, consistent with the behavior of the  

2

1

x
 toolkit. 
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At the vertical asymptote x = 2 corresponding to the )2( x  factor of the denominator, 
the graph increases on the left side of the asymptote and decreases as the inputs approach 

the asymptote from the right side, consistent with the behavior of the  
x

1
 toolkit. 

 
 
Example 9 

Sketch a graph of 
2

( 2)( 3)
( )

( 1) ( 2)

x x
f x

x x

 


 
 

 
We can start our sketch by finding intercepts and asymptotes.  Evaluating the function 
at zero gives the vertical intercept: 

2

(0 2)(0 3)
(0) 3

(0 1) (0 2)
f

 
 

 
 

 
Looking at when the numerator of the function is zero, we can determine the graph will 
have horizontal intercepts at x = -2 and x = 3.  At each, the behavior will be linear, with 
the graph passing through the intercept. 
 
Looking at when the denominator of the function is zero, we can determine the graph 
will have vertical asymptotes at x = -1 and x = 2.   
 
Finally, the degree of denominator is larger than the degree of the numerator, telling us 
this graph has a horizontal asymptote at y = 0. 
 
To sketch the graph, we might start by plotting the 
three intercepts.  Since the graph has no horizontal 
intercepts between the vertical asymptotes, and the 
vertical intercept is positive, we know the function 
must remain positive between the asymptotes, 
letting us fill in the middle portion of the graph. 
 
Since the factor associated with the vertical 
asymptote at x = -1 was squared, we know the 
graph will have the same behavior on both sides 
of the asymptote.  Since the graph increases as the 
inputs approach the asymptote on the right, the 
graph will increase as the inputs approach the 
asymptote on the left as well.  For the vertical 
asymptote at x = 2, the factor was not squared, so 
the graph will have opposite behavior on either 
side of the asymptote. 
 
After passing through the horizontal intercepts, the graph will then level off towards an 
output of zero, as indicated by the horizontal asymptote. 

207



Chapter 3 

 

198

Try it Now 

5. Given the function 
)3()1(2

)2()2(
)(

2

2





xx

xx
xf , use the characteristics of polynomials 

and rational functions to describe the behavior and sketch the function . 
 
 
Since a rational function written in factored form will have a horizontal intercept where 
each factor of the numerator is equal to zero, we can form a numerator that will pass 
through a set of horizontal intercepts by introducing a corresponding set of factors.  
Likewise since the function will have a vertical asymptote where each factor of the 
denominator is equal to zero, we can form a denominator that will exhibit the vertical 
asymptotes by introducing a corresponding set of factors. 
 
 
Writing Rational Functions from Intercepts and Asymptotes 

If a rational function has horizontal intercepts at nxxxx ,,, 21  , and vertical 

asymptotes at mvvvx ,,, 21   then the function can be written in the form 

n

n

q
m

qq

p
n

pp

vxvxvx

xxxxxx
axf

)()()(

)()()(
)(

21

21

21

21








 

where the powers pi or qi on each factor can be determined by the behavior of the graph 
at the corresponding intercept or asymptote, and the stretch factor a can be determined 
given a value of the function other than the horizontal intercept, or by the horizontal 
asymptote if it is nonzero. 

 
 
Example 10 

Write an equation for the rational function 
graphed here. 
 
The graph appears to have horizontal 
intercepts at x = -2 and x = 3.  At both, the 
graph passes through the intercept, suggesting 
linear factors. 
 
The graph has two vertical asymptotes.  The 
one at x = -1 seems to exhibit the basic 

behavior similar to 
x

1
, with the graph increasing on one side and decreasing on the 

other.  The asymptote at x = 2 is exhibiting a behavior similar to 
2

1

x
, with the graph 

decreasing on both sides of the asymptote.   
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Utilizing this information indicates an equation of the form 

2)2)(1(

)3)(2(
)(





xx

xx
axf  

 
To find the stretch factor, we can use another clear point on the graph, such as the 
vertical intercept (0,-2) 

3

4

6

8
4

6
2

)20)(10(

)30)(20(
2

2















a

a

a

 

 

This gives us a final equation of 
2)2)(1(3

)3)(2(4
)(





xx

xx
xf  

 
 
Important Topics of this Section 

Inversely proportional; Reciprocal toolkit function 
Inversely proportional to the square; Reciprocal squared toolkit function 
Horizontal Asymptotes 
Vertical Asymptotes 
Rational Functions 
 Finding intercepts, asymptotes, and holes. 
 Given equation sketch the graph  
 Identifying the function from a graph 

 
 
Try it Now Answers 

1. Long run behavior, as x , 0)( xf   
    Short run behavior, as 0x , )(xf  (there are no horizontal or vertical 
intercepts) 
 
2.  

 
The function and the asymptotes are shifted 3 units right and 4 units down.   
As 3x , )(xf  and as x , 4)( xf  
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3. Vertical asymptotes at x = 2 and x = -3; horizontal asymptote at y = 4 
 
4. For the transformed reciprocal squared function, we find the rational form. 

96

35244

)3)(3(

)96(41

)3(

)3(41
4

)3(

1
)(

2

22

2

2

2 














xx

xx

xx

xx

x

x

x
xf  

Since the numerator is the same degree as the denominator we know that as 
x , 4)( xf .  4)( xf  is the horizontal asymptote.  Next, we set the 

denominator equal to zero to find the vertical asymptote at x = 3, because as 3x , 
)(xf .  We set the numerator equal to 0 and find the horizontal intercepts are at 

(2.5,0) and (3.5,0), then we evaluate at 0 and the vertical intercept is at 





 

9

35
,0   

 
5.  
Horizontal asymptote at y = 1/2.   
Vertical asymptotes are at x = 1, and x = 3. 
Vertical intercept at (0, 4/3),  
Horizontal intercepts (2, 0) and (-2, 0)  
(-2, 0) is a double zero and the graph bounces off 
the axis at this point.   
(2, 0) is a single zero and crosses the axis at this 
point.  
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Section 3.4 Exercises 
 
Match each equation form with one of the graphs 

1.   x A
f x

x B





 2.    2

x A
g x

x B





 3.  

 2

x A
h x

x B





 4.    

 

2

2

x A
k x

x B





 

 

A   B   C   D  
 
For each function, find the x intercepts, the vertical intercept, the vertical asymptotes, and 
the horizontal asymptote.  Use that information to sketch a graph. 
 

5.   2 3

4

x
p x

x





    6.   5

3 1

x
q x

x





 

 

7.  
 2

4

2
s x

x



    8.  

 2

5

1
r x

x



 

 

9.  
2

2

3 14 5

3 8 16

x x
f x

x x

 


 
    10.  

2

2

2 7 15

3 14 15

x x
g x

x

 


 
 

 
 

11.  
2

2

2 3

1

x x
a x

x

 



   12.  

2

2

6

4

x x
b x

x

 



 

 

13.  
22  1

4

x x
h x

x

 



    14.  

22 3 20

5

x x
k x

x

 



 

 

15.  
2

3 2

3 4 4

4

x x
n x

x x

 



    16.   2

5

2 7 3

x
m x

x x




 
 

 

17.      
 2

1 3 5

2 ( 4)

x x x
w x

x x

  


 
  18.      

   

2
2 5

3 1 4

x x
z x

x x x
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Write an equation for a rational function with the given characteristics 
 
19. Vertical asymptotes at 5x   and 5x    

x intercepts at (2, 0)  and ( 1, 0)   y intercept at  0, 4  

 
20. Vertical asymptotes at 4x    and 1x    

x intercepts at  1, 0  and  5, 0   y intercept at (0, 7)  

 
21. Vertical asymptotes at 4x    and 5x    

x intercepts at  4, 0  and  6, 0   Horizontal asymptote at 7y   

 
22. Vertical asymptotes at 3x    and 6x   

x intercepts at  2, 0  and  1, 0   Horizontal asymptote at 2y    

 
23. Vertical asymptote at 1x     

Double zero at 2x    y intercept at (0, 2)  

 
24. Vertical asymptote at 3x    

Double zero at 1x    y intercept at (0, 4)  

 
Write an equation for the function graphed 

25.   26. \ 
 

27.    28.  
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Write an equation for the function graphed 
 

29.    30.  
 

31.  32.  
 

33.  34.  
 

35.  36.  
 
 
 

213



Chapter 3 

 

204

Write an equation for the function graphed 
 

37.  38.  
 
39. A scientist has a beaker containing 20 mL of a solution containing 20% acid.  To 

dilute this, she adds pure water.   
a. Write an equation for the concentration in the beaker after adding n mL of 

water 
b. Find the concentration if 10 mL of water is added 
c. How many mL of water must be added to obtain a 4% solution? 
d. What is the behavior as n  , and what is the physical significance of this? 

 
40. A scientist has a beaker containing 30 mL of a solution containing 3 grams of 

potassium hydroxide.  To this, she mixes a solution containing 8 milligrams per mL 
of potassium hydroxide.   

a. Write an equation for the concentration in the tank after adding n mL of the 
second solution. 

b. Find the concentration if 10 mL of the second solution is added 
c. How many mL of water must be added to obtain a 50 mg/mL solution? 
d. What is the behavior as n  , and what is the physical significance of this? 

 
41. Oscar is hunting magnetic fields with his gauss meter, a device for measuring the 

strength and polarity of magnetic fields. The reading on the meter will increase as 
Oscar gets closer to a magnet. Oscar is in a long hallway at the end of which is a 
room containing an extremely strong magnet. When he is far down the hallway from 
the room, the meter reads a level of 0.2. He then walks down the hallway and enters 
the room. When he has gone 6 feet into the room, the meter reads 2.3. Eight feet into 
the room, the meter reads 4.4.  [UW] 

a. Give a rational model of form   ax b
m x

cx d





 relating the meter reading ( )m x  

to how many feet x Oscar has gone into the room. 
b. How far must he go for the meter to reach 10? 100? 
c. Considering your function from part (a) and the results of part (b), how far 

into the room do you think the magnet is? 
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42. The more you study for a certain exam, the better your performance on it. If you 
study for 10 hours, your score will be 65%. If you study for 20 hours, your score will 
be 95%. You can get as close as you want to a perfect score just by studying long 
enough. Assume your percentage score, ( )p n , is a function of the number of hours, n, 

that you study in the form ( )
an b

p n
cn d





. If you want a score of 80%, how long do 

you need to study? [UW] 
 

43. A street light is 10 feet North of a 
straight bike path that runs East-
West. Olav is bicycling down the 
path at a rate of 15 MPH. At 
noon, Olav is 33 feet West of the 
point on the bike path closest to 
the street light. (See the picture). 
The relationship between the intensity C of light (in candlepower) and the distance d 

(in feet) from the light source is given by 
2

k
C

d
 , where k is a constant depending on 

the light source.  [UW] 
a. From 20 feet away, the street light has an intensity of 1 candle. What is k? 
b. Find a function which gives the intensity of the light shining on Olav as a 

function of time, in seconds. 
c. When will the light on Olav have maximum intensity? 
d. When will the intensity of the light be 2 candles? 
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Section 3.5 Inverses and Radical Functions 
 
In this section, we will explore the inverses of polynomial and rational functions, and in 
particular the radical functions that arise from finding the inverses of quadratic functions. 
 
 
Example 1 

A parabolic trough water runoff collector is built as shown below.  Find the surface area 
of the water in the trough as a function of the depth of the water. 
 
 
 
 
 
 
 
 
Since it will be helpful to have an equation for the parabolic cross sectional shape, we 
will impose a coordinate system at the cross section, with x measured horizontally and y 
measured vertically, with the origin at the vertex of the parabola.   
 

        
 
From this we find an equation for the parabolic shape.  Since we placed the origin at the 
vertex of the parabola, we know the equation will have form 2)( axxy  .  Our equation 
will need to pass through the point (6,18), from which we can solve for the stretch 
factor a: 

2

1

36

18

618 2





a

a
 

Our parabolic cross section has equation 2

2

1
)( xxy   

 
Since we are interested in the surface area of the water, we are interested in determining 
the width at the top of the water as a function of the water depth.  This is the inverse of 
the function we just determined.  However notice that the original function is not one-
to-one, and indeed given any output there are two inputs that produce the same output, 
one positive and one negative. 

3ft 
12 in 

18 in 

x 

y 
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To find an inverse, we can restrict our original function to a limited domain on which it 
is one-to-one.  In this case, it makes sense to restrict ourselves to positive x values.  On 
this domain, we can find an inverse by solving for the input variable: 

2

2

2

2

1

xy

xy




 

yx 2   

This is not a function as written.  Since we are limiting ourselves to positive x values, 
we eliminate the negative solution, giving us the inverse function we’re looking for 

yyx 2)(   

 
Since x measures from the center out, the entire width of the water at the top will be 2x.  
Since the trough is 3 feet (36 inches) long, the surface area will then be 36(2x), or in 
terms of y: 

yxArea 27272   

 
 
The previous example illustrated two important things:  

1) When finding the inverse of a quadratic, we have to limit ourselves to a domain      
on which the function is one-to-one. 

2) The inverse of a quadratic function is a square root function.  Both are toolkit 
functions and different types of power functions.  

 
Functions involving roots are often called radical functions. 
 
 
Example  2 

Find the inverse of 143)2()( 22  xxxxf  
 
From the transformation form of the equation, we can see the vertex is at (2,-3), and that 
it behaves like a basic quadratic.   Since the graph will be decreasing on one side of the 
vertex, and increasing on the other side, we can restrict this function to a domain on 
which it will be one-to-one by limiting the domain to 2x . 
 
To find the inverse, we start by writing the function in standard polynomial form, 
replacing the f(x) with a simple variable y.  Since this is a quadratic equation, we know 
that to solve it for x we will want to arrange the equation so that it is equal to zero, 
which we can do by subtracting y from both sides of the equation.   

yxx

xxy





140

14
2

2

 

In this format there is no easy way to algebraically put x on one side & everything else 
on the other, but we can recall that given a basic quadratic in standard form 

2( )f x ax bx c    we can solve for x by using the quadratic formula 
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a

cabb
x

2

))((4)()( 2 
 .   We solve apply this to our equation 20 4 1x x y     by 

using 1a  , 4b   , and (1 )c y   
  

2

412
2

2

)1)(1(4)4()4( 2 yy
x





  

 
Of course, as written this is not a function.  Since we restricted our original function to a 
domain of 2x , the outputs of the inverse should be the same, telling us to utilize the 
+ case: 

2

412
2)(1 y

yfx


   

 
 
Try it Now 

1. Find the inverse of the function 2( ) 1f x x  , on the domain 0x   
 
 
While it is not possible to find an inverse of most polynomial functions, some other basic 
polynomials are invertible. 
 
 
Example 3 

Find the inverse of the function 15)( 3  xxf  
 
This is a transformation of the basic cubic toolkit function, and based on our knowledge 
of that function, we know it is one-to-one.  Solving for the inverse by solving for x 

31

3

3

3

5

1
)(

5

1

51

15











 y
yfx

x
y

xy

xy

 

 
 
Notice that this inverse is also a transformation of a power function with a fractional 
power, x1/3. 
 
 
Try it Now 

2.  Which toolkit functions have inverse functions without restricting their domain?  
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Besides being important as an inverse function, radical functions are common in 
important physical models. 
 
 
Example 4 

The velocity, v in feet per second, of a car that slams on its brakes can be determined 
based on the length of skid marks that the tires leave on the ground.  This relationship is 
given by 

gfddv 2)(   

In this formula, g represents acceleration due to gravity (32 ft/sec2), d is the length of 
the skid marks in feet, and f is a constant representing the friction of the surface.  A car 
lost control on wet asphalt, with a friction coefficient of 0.5, leaving 200 foot skid 
marks.  How fast was the car travelling when it lost control? 
 
Using the given values of f = 0.5 and d = 200, we can evaluate the given formula: 

sec/80)200)(5.0)(32(2)200( ftv  , which is about 54.5 miles per hour. 

 
 
Radical functions raise important question of domain when composed with more 
complicated functions. 
 
 
Example 5 

Find the domain of the function 
)1(

)3)(2(
)(





x

xx
xf  

 
Since a square root is only defined when the quantity under the radical is non-negative, 

we need to determine where 0
)1(

)3)(2(





x

xx
.  A rational function can change signs 

(change from positive to negative or vice versa) at horizontal intercepts and at vertical 
asymptotes.  For this equation, the graph could change signs at x = -2, 1, and 3.   
 
To determine on which intervals the rational expression is positive, we could evaluate 
the expression at test values, or sketch a graph.  While both approaches work equally 
well, for this example we will use a graph. 
 
This function has two horizontal intercepts, both of which exhibit linear behavior, 
where the graph will pass through the intercept.  There is one vertical asymptote, linear, 
leading to a behavior similar to the basic reciprocal toolkit function.  There is a vertical 
intercept at (0, 6).  This graph does not have a horizontal asymptote, since the degree of 
the numerator is larger than the degree of the denominator.   
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From the vertical intercept and horizontal intercept at x = -2, we can sketch the left side 
of the graph.  From the behavior at the asymptote, we can sketch the right side of the 
graph. 
 
 
 
From the graph, we can now tell on which 
intervals this expression will be non-negative, 
allowing the radical to be defined. 
f(x) has domain 312  xorx , or in 
interval notation, ),3[)1,2[   

 
 
Like with finding inverses of quadratic functions, it is sometimes desirable to find the 
inverse of a rational function, particularly of rational functions that are the ratio of linear 
functions, such as our concentration examples. 
 
 
Example 6 

The function 
n

n
nC





100

4.020
)(  was used in the previous section to represent the 

concentration of an acid solution after n mL of 40% solution has been added to 100 mL 
of a 20% solution.  We might want to be able to determine instead how much 40% 
solution has been added based on the current concentration of the mixture.  
 
To do this, we would want the inverse of this function: 

n

n
C





100

4.020
  multiply up the denominator 

nnC 4.020)100(   distribute 
nCnC 4.020100   group everything with n on one side 

CnnC  4.020100  factor out n 
nCC )4.0(20100   divide to find the inverse 

C

C
Cn





4.0

20100
)(  

 
If, for example, we wanted to know how many mL of 40% solution need to be added to 
obtain a concentration of 35%, we can simply evaluate the inverse rather than solving 
the original function: 

300
05.0

15

35.04.0

20)35.0(100
)35.0( 




n mL of 40% solution would need to be added. 

 
 
Try it Now 

3. Find the inverse of the function 
3

( )
2

x
f x

x
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Important Topics of this Section 
Imposing a coordinate system 
Finding an inverse function 
 Restricting the domain 
Invertible toolkit functions 
Rational Functions  
Inverses of rational functions 

 
 
Try it Now Answers 

1. 1)(1   yyfx  

2. identity, cubic, square root, cube root, exponential and logarithmic 

3. 1 2 3
( )

1

y
f y

y
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Section 3.5 Exercises 
 
For each function, find a domain on which the function is one-to-one and non-decreasing, 
then find an inverse of the function on this domain. 

1.    2
4f x x     2.    2

2f x x   

3.   212f x x     4.   29f x x   

5.   33 1f x x     6.   34 2f x x   

 
Find the inverse of each function 

7.   9 4 4f x x      8.   6 8 5f x x    

9.   39 2f x x     10.   33f x x   

11.   2

8
f x

x



   12.   3

4
f x

x



 

13.   3

7

x
f x

x





   14.   2

7

x
f x

x





 

15.   3 4

5 4

x
f x

x





    16.   5 1

2 5

x
f x

x





 

 

Police use the formula 20v L  to estimate the speed of a car, v, in miles per hour, 
based on the length, L, in feet, of its skid marks when suddenly braking on a dry, asphalt 
road.  
 
17. At the scene of an accident, a police officer measures a car's skid marks to be 215 feet 

long. Approximately how fast was the car traveling? 
 

18. At the scene of an accident, a police officer measures a car's skid marks to be 135 feet 
long. Approximately how fast was the car traveling? 

The formula 2.7v r  models the maximum safe speed, v, in miles per hour, at which a 
car can travel on a curved road with radius of curvature r, in feet.  
 
19. A highway crew measures the radius of curvature at an exit ramp on a highway as 

430 feet. What is the maximum safe speed? 
 

20. A highway crew measures the radius of curvature at a tight corner on a highway as 
900 feet. What is the maximum safe speed? 
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21. A drainage canal has a cross-
section in the shape of a parabola. 
Suppose that the canal is 10 feet 
deep and 20 feet wide at the top. If 
the water depth in the ditch is 5 
feet, how wide is the surface of the 
water in the ditch? [UW] 
 
 

22. Brooke is located 5 miles out from the 
nearest point A along a straight shoreline in 
her seakayak. Hunger strikes and she wants 
to make it to Kono’s for lunch; see picture. 
Brooke can paddle 2 mph and walk 4 mph. 
[UW] 

a. If she paddles along a straight line 
course to the shore, find an 
expression that computes the total time to reach lunch in terms of the location 
where Brooke beaches the boat. 

b. Determine the total time to reach Kono’s if she paddles directly to the point A. 
c. Determine the total time to reach Kono’s if she paddles directly to Kono’s. 
d. Do you think your answer to b or c is the minimum time required for Brooke 

to reach lunch? 
e. Determine the total time to reach Kono’s if she paddles directly to a point on 

the shore half way between point A and Kono’s. How does this time compare 
to the times in parts b or c?  Do you need to modify your answer to part d?  
 

23. Clovis is standing at the edge of a cliff, which slopes 4 feet downward from him for 
every 1 horizontal foot. He launches a small model rocket from where he is standing. 
With the origin of the coordinate system located where he is standing, and the x-axis 
extending horizontally, the path of the rocket is described by the formula 

22 120y x x   . [UW] 

a. Give a function ( )h f x  relating the height h of the rocket above the sloping 

ground to its x-coordinate. 
b. Find the maximum height of the rocket above the sloping ground. What is its 

x-coordinate when it is at its maximum height? 
c. Clovis measures its height h of the rocket above the sloping ground while it is 

going up. Give a function  x g h  relating the x-coordinate of the rocket to 

h. 
d. Does this function still work when the rocket is going down? Explain. 
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24. A trough has a semicircular 

cross section with a radius 
of 5 feet. Water starts 
flowing into the trough in 
such a way that the depth of 
the water is increasing at a 
rate of 2 inches per hour. 
[UW] 

a. Give a function 

 w f t  relating 

the width w of the surface of the water to the time t, in hours. Make sure to 
specify the domain and compute the range too. 

b. After how many hours will the surface of the water have width of 6 feet? 

c. Give a function  1t f w  relating the time to the width of the surface of the 

water. Make sure to specify the domain and compute the range too. 
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Section 4.1 Exponential Functions 
 
India is the second most populous country in the world, with a population in 2008 of 
about 1.14 billion people.  The population is growing by about 1.34% each year1.  We 
might ask if we can find a formula to model the population, P, as a function of time, t, in 
years after 2008, if the population continues to grow at this rate. 
 
In linear growth, we had a constant rate of change – a constant number that the output 
increased for each increase in input.  For example, in the equation 43)(  xxf , the 
slope tells us the output increases by three each time the input increases by one.  This 
population scenario is different – we have a percent rate of change rather than a constant 
number of people as our rate of change.  To see the significance of this difference 
consider these two companies: 
Company A has 100 stores, and expands by opening 50 new stores a year 
Company B has 100 stores, and expands by increasing the number of stores by  50% of 
their total each year.  
 
Looking at a few years of growth for these companies: 
 

Year Stores, company A  Stores, company B 
0 100 Starting with  100 each 

 
100 

1 100 + 50 = 150 They both grow by 50 
stores in the first year. 
 

100 + 50% of 100 
100 + 0.50(100) = 150 

2 150 + 50 = 200 Store A grows by 50, 
Store B grows by 75 
 

150 + 50% of 150 
150 + 0.50(150) = 225 

3 200 + 50 = 250 Store A grows by 50, 
Store B grows by 112.5 
 

225 + 50% of 225 
225 + 0.50(225) = 337.5 

                                                 
1 World Bank, World Development Indicators, as reported on http://www.google.com/publicdata, retrieved 
August 20, 2010 
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Notice that with the percent growth, each year, the company is growing by 50% of the 
current year total, so as the company grows larger, the number of stores added in a year 
grows as well. 
 
To try to simplify the calculations, notice that after 1 year the number of stores for 
company B was: 

)100(50.0100    or equivalently by factoring  
150)50.01(100   

  
We can think of this as “the new number of stores is the original 100% plus another 
50%” 
 
After 2 years, the number of stores was: 

)150(50.0150   or equivalently by factoring 
)50.01(150   now recall the 150 came from 100(1+0.50).  Substituting that, 

225)50.01(100)50.01)(50.01(100 2   
 
After 3 years, the number of stores was: 

)225(50.0225   or equivalently by factoring 

)50.01(225   now recall the 225 came from 2)50.01(100  . Substituting that, 

5.337)50.01(100)50.01()50.01(100 32   
 
From this, we can generalize, noticing that to show a 50% increase, each year we 
multiply by a factor of (1+0.50), so after n years, our equation would be 

nnB )50.01(100)(   
 
In this equation, the 100 represented the initial quantity, and the 0.50 was the percent 
growth rate.  Generalizing further, we arrive at the general form of exponential functions. 
 
 
Exponential Function 

An exponential growth or decay function is a function that grows or shrinks at a 
constant percent growth rate.  The equation can be written in the form 

xraxf )1()(      or     xabxf )(     where b = 1+r 
Where 
a is the initial or starting value of the function 
r is the percent growth or decay rate, written as a decimal 
b is the growth factor or growth multiplier.  Since powers of negative numbers behave 
strangely, we limit b to positive values. 

 
 
To see more clearly the difference between exponential and linear growth, compare the 
two tables and graphs below, which illustrate the growth of company A and B described 
above over a longer time frame if the growth patterns were to continue 
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        B 
years Company A Company B 

2 200 225
4 300 506
6 400 1139
8 500 2563

10 600 5767
              A 
 
 
 
Example 1 

Write an exponential function for India’s population, and use it to predict the population 
in 2020. 
  
At the beginning of the chapter we were given India’s population of 1.14 billion in the 
year 2008 and a percent growth rate of 1.34%.  Using 2008 as our starting time (t = 0), 
our initial population will be 1.14 billion.  Since the percent growth rate was 1.34%, our 
value for r = 0.0134.   
Using the basic formula for exponential growth xraxf )1()(   we can write the 

formula,  ttf )0134.01(14.1)(   
 
To estimate the population in 2020, we evaluate the function at t = 12, since 2020 is 12 
years after 2008. 

337.1)0134.01(14.1)12( 12 f billion people in 2020 
 
 
Try it Now 

1. Given the three statements below, identify which one(s) is(are) exponential functions. 
 
A. The cost of living allowance for state employees increases salaries by 3.1% each 
year. 
B. State employees can expect a $300 raise each year they work for the state. 
C. Tuition costs have increased by 2.8% each year for the last 3 years. 

 
 
Example 2 

A certificate of deposit (CD) is a type of savings account offered by banks, typically 
offering a higher interest rate in return for a fixed length of time you will leave your 
money invested.  If a bank offers a 24 month CD with an annual interest rate of 1.2% 
compounded monthly, how much will a $1000 investment grow to over those 24 
months? 
First, we must notice that the interest rate is an annual rate, but is compounded monthly, 
meaning interest is calculated and added to the account monthly.  To find the monthly 
interest rate, we divide the annual rate of 1.2% by 12 since there are 12 months in a 
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year:  1.2%/12 = 0.1%.  Each month we will earn 0.1% interest.  From this, we can set 
up an exponential function, with our initial amount of $1000 and a growth rate of r = 
0.001, and our input m measured in months. 

m

mf 





 

12

012.
11000)(   

mmf )001.01(1000)(   

After 24 months, the account will have grown to 24(24) 1000(1 0.001) $1024.28f     
 
 
Try it Now 

2. Looking at these two equations that represent the balance in two different savings 
accounts, which account is growing faster, and which account will have a higher 
balance after 3 years? 

 ttA 05.11000)(     ttB 075.1900)(   
 
 
In all the preceding examples, we saw exponential growth.  Exponential functions can 
also be used to model quantities that are decreasing at a percent rate.  An example of this 
is radioactive decay, a process in which radioactive isotopes of certain atoms transform to 
an atom of a different type, causing a percentage decrease of the original material over 
time. 
 
 
Example 3 

Bismuth-210 is an isotope that radioactively decays by about 13% each day, meaning 
13% of the remaining Bismuth-210 transforms into another atom (polonium-210 in this 
case) each day.  If you begin with 100 mg of Bismuth-210, how much remains after one 
week? 
 
With radioactive decay, instead of the quantity increasing at a percent rate, the quantity 
is decreasing at a percent rate.  Our initial quantity is a = 100 mg, and our growth rate 
will be negative 13%, since we are decreasing:  r = -0.13.  This gives the equation: 

dddQ )87.0(100)13.01(100)(   
This can also be explained by recognizing that if 13% decays, then 87 % remains. 
 
After one week, 7 days, the quantity remaining would be 

73.37)87.0(100)7( 7 Q mg of Bismuth-210 remains. 
 
 
Try it Now  

3.  A population of 1000 is decaying 3% each year.  Find the population in 30 years. 
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Example 4 
T(q) represents the total number of Android smart phone contracts, in the thousands 
held by a certain Verizon store region measured quarterly since Jan 1st, 2010,  
Interpret all of the parts of the equation 3056.231)64.1(86)2( 2 T . 
 
Interpreting this from the basic exponential form, we know that 86 is our initial value. 
This means that on Jan 1st, 2010 this region had 86,000 android smart phone contracts.  
Since b = 1 + r = 1.64, we know that every quarter the number of smart phone contracts 
are growing by 64%.  T(2) = 231.3056 means that in the 2nd quarter (or at the end of the 
second quarter) there were approximately 231,305 Android smart phone contracts. 

 
 
Finding Equations of Exponential Functions 
In the previous examples, we were able to write equations for exponential functions since 
we knew the initial quantity and the growth rate.  If we do not know the growth rate, but 
instead know only some input and output pairs of values, we can still construct an 
exponential function equation. 
 
 
Example 5 

In 2002, 80 deer were reintroduced into a wildlife refuge area from which the 
population had previously been hunted to elimination.  By 2008, the population had 
grown to 180 deer.  If this population grows exponentially, find a formula for the 
function. 
 
By defining our input variable to be t, years after 2002, the information listed can be 
written as two input-output pairs:  (0,80) and (6,180).  Notice that by choosing our input 
variable to be measured as years after the first year value provided, we have effectively 
“given” ourselves the initial value for the function:  a = 80.  This gives us an equation 
of the form  

tbtf 80)(  . 
Substituting in our second input-output pair allows us to solve for b: 

1447.1
4

9

4

9

80

180

80180

6

6

6







b

b

b

 

This gives us our equation for the population: 
ttf )1447.1(80)(   

 
Recall that since b = 1+r, we can interpret this to mean that the population growth rate, 
r = 0.1447 and so the population is growing by about 14.47% each year.   
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In the previous example, we chose to use the xabxf )(  form of the exponential 

function rather than the xraxf )1()(   form.  This choice was entirely arbitrary – either 
form would be fine to use. 
 
When finding equations, the value for b or r will usually have to be rounded to be written 
easily.  To preserve accuracy, it is important to not over-round these values.  Typically, 
you want to be sure to preserve at least 3 significant digits in the growth rate.  For 
example, if your value for b was 1.00317643, you would want to round this no further 
than to 1.00318.   
 
In the previous example, we were able to “give” ourselves the initial value by clever 
definition of our input variable.  Next we consider the case where we can’t do this. 
 
 
Example 6 

Find an equation for an exponential function passing through the points (-2,6) and (2,1) 
 
Since we don’t have the initial value, we will take a general approach that will work for 
any function form with unknown parameters:  we will substitute in both given input-
output pairs in the function form xabxf )(  and solve for the unknown values, a & b. 

Substituting in (-2, 6) gives 26  ab  
Substituting in (2, 1) gives 21 ab  
 
We now solve these as a system of equations.  To do so, we could try a substitution 
approach, solving one equation for a variable, then substituting that expression into the 
second equation. 
Solving 26  ab  for a: 

2
2

6
6a b

b   

 
In the second equation, 21 ab , we substitute the expression above for a: 

6389.0
6

1

6

1

61

)6(1

4

4

4

22









b

b

b

bb

 

 
Going back to the equation 26ba   lets us find a 

4492.2)6389.0(66 22  ba  
 
Putting this together gives the equation  xxf )6389.0(4492.2)(   
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Try it Now 
4. Given the two points (1, 3) and (2, 4.5) find the equation of an exponential function 
that passes through these two points. 

 
 
Example 7 

Find an equation for the exponential function graphed below 
 

 
The initial value for the function is not clear in this graph, so we will instead work using 
two clearer points.  There are three fairly clear points: (-1, 1), (1, 2), and (3, 4).  As we 
saw in the last example, two points are sufficient to find the equation for a standard 
exponential, so we will use the latter two points.   
Substituting in (1,2) gives 12 ab  
Substituting in (3,4) gives 34 ab  
 

Solving the first equation for a gives 
b

a
2

 .   

 
Substituting this expression for a into the second equation: 
 

34 ab  

b

b
b

b

3
3 22

4   Simplify the right hand side 

2

2

24
2

2







b

b

b

 

 

Since we restrict ourselves to positive values of b, we will use 2b .  We can then go 
back and find a: 

2
2

22


b
a  

 

This gives us a final equation of xxf )2(2)(   
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Compound Interest 
In the bank certificate of deposit (CD) example earlier in the section, we encountered 
compound interest.  Typically bank accounts and other savings instruments in which 
earnings are reinvested, such as mutual funds and retirement accounts, follow the pattern 
of compound interest.  The term compounding comes from the behavior that interest is 
earned not only on the original value, but on the accumulated value of the account. 
 
In the example from earlier, the interest was compounded monthly, so we took the annual 
interest rate, usually called the nominal rate or annual percentage rate (APR) and 
divided by 12, the number of compounds in a year, to find the monthly interest.  The 
exponent was then measured in months.   
 
Generalizing this, we can form a general equation for compound interest.  If the APR is 
written in decimal form as r, and there are k compounds per year, then the interest per 
compounding period will be r/k.  Likewise, if we are interested in the value after t years, 
then there will be kt compounding periods in that time.   
 
 
Compound Interest Formula 

Compound Interest can be calculated using the formula 
kt

k

r
atA 






  1)(  

Where 
A(t) is the account value 
t is measured in years 
a is the starting amount of the account, often called the principal 
r is the annual percentage rate (APR), also called the nominal rate 
k is the number of compounds in one year 

 
 
Example 8 

If you invest $3,000 in an investment account paying 3% interest compounded 
quarterly, how much will the account be worth in 10 years? 
 
Since we are starting with $3000, a = 3000 
Our interest rate is 3%, so r = 0.03 
Since we are compounding quarterly, we are compounding 4 times per year, so k = 4 
We want to know the value of the account in 10 years, we are looking for A(10), the 
value when t = 10. 
 

05.4045$
4

03.0
13000)10(

)10(4







 A  

 
The account will be worth $4045.05 in 10 years. 
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Example 9 
A 529 plan is a college savings plan in which a relative can invest money to pay for a 
child’s later college tuition, and the account grows tax free.  If Lily wants to set up a 
529 account for her new granddaughter, wants the account to grow to $40,000 over 18 
years, and she believes the account will earn 6% compounded semi-annually (twice a 
year), how much will Lily need to invest in the account now? 
 
Since the account is earning 6%, r = 0.06 
Since interest is compounded twice a year, k = 2 
 
In this problem, we don’t know how much we are starting with, so we will be solving 
for a, the initial amount needed.  We do know we want the end amount to be $40,000, 
so we will be looking for the value of a so that A(18) = 40,000.   

801,13$
8983.2

000,40

)8983.2(000,40

2

06.0
1)18(000,40

)18(2











 

a

a

aA

 

 
Lily will need to invest $13,801 to have $40,000 in 18 years. 

 
 
Try it now 

5. Recalculate example 2 from above with quarterly compounding  
 
 
Because of compounding throughout the year, with compound interest the actual increase 
in a year is more than the annual percentage rate.  If $1,000 were invested at 10%, the 
table below shows the value after 1 year at different compounding frequencies: 
 

Frequency Value after 1 year 
Annually $1100 
Semiannually $1102.50 
Quarterly $1103.81 
Monthly $1104.71 
Daily $1105.16 

 
If we were to compute the actual percentage increase for the daily compounding, there 
was an increase of $105.16 from an original amount of $1,000, for a percentage increase 

of 10516.0
1000

16.105
 = 10.516% increase.  This quantity is called the annual percentage 

yield (APY). 
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Notice that given any starting amount, the amount after 1 year would be 
k

k

r
aA 






  1)1( .  To find the total change, we would subtract the original amount, then 

to find the percentage change we would divide that by the original amount: 

11

1







 







  k

k

k

r

a

a
k

r
a

 

 
 
Annual Percentage Yield 

The annual percentage yield is the actual percent a quantity increases in one year.  It 
can be calculated as  

11 





 

k

k

r
APY  

 
 
Notice this is equivalent to finding the value of $1 after 1 year, and subtracting the 
original dollar. 
 
 
Example 10 

Bank A offers an account paying 1.2% compounded quarterly.  Bank B offers an 
account paying 1.1% compounded monthly.  Which is offering a better rate? 
 
We can compare these rates using the annual percentage yield – the actual percent 
increase in a year. 

Bank A:  012054.01
4

012.0
1

4







 APY  = 1.2054% 

Bank B: 011056.01
12

011.0
1

12







 APY  = 1.1056% 

 
The monthly compounding is not enough to catch up with Bank A’s better APR.  Bank 
A offers a better rate. 

 
 
A Limit to Compounding 
As we saw earlier, the amount we earn increases as we increase the compounding 
frequency.  The table, though, shows that the increase from annual to semi-annual 
compounding is larger than the increase from monthly to daily compounding.  This might 
lead us to believe that although increasing the frequency of compounding will increase 
our result, there is an upper limit to this. 
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To see this, let us examine the value of $1 invested at 100% interest for 1 year.   
 

Frequency Value 
Annual $2 
Semiannually $2.25 
Quarterly $2.441406 
Monthly $2.613035 
Daily $2.714567 
Hourly $2.718127 
Minutely $2.718279 
Secondly $2.718282 

 
These values do indeed appear to be approaching an upper limit.  This value ends up 
being so important that it gets represented by its own letter, much like how  represents a 
number. 
 
 
Euler’s Number: e 

e is the letter used to represent the value that 
k

k






 

1
1  approaches as k gets big. 

718282.2e  
 
 
Since usually e is used as the base of an exponential, most scientific and graphing 
calculators have a button that can calculate powers of e, usually labeled ex.  Some 
computer software instead defines a function exp(x), where exp(x) = ex. 
 
Because e arises when compounding frequency gets big, e allows us to define continuous 
growth and is also one of our basic toolkit functions ( ) xf x e  
 
 
Continuous Growth Equation 

Continuous Growth can be calculated using the formula  
rxaexf )(  

Where 
a is the starting amount  
r is the continuous growth rate 

 
 
This type of equation is commonly used when describing quantities that change 
continuously, like chemical reactions, growth of large populations, and radioactive decay.   
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Example 11 
Radon-222 decays at a continuous rate of 17.3% per day.  How much will 100mg of 
Radon-222 decay to in 3 days? 
 
Since we are given a continuous decay rate, we use the continuous growth formula.  
Since we are decaying, we know the growth rate will be negative: r = -0.173 

512.59100)3( )3(173.0  ef mg of Radon-222 will remain. 
 
 
Try it Now 

6.  Interpret the following, 0.12( ) 20 tS t e if S(t) represents the growth of a substance in 
grams, and time is measured in days. 

 
 
Continuous growth is also often applied to compounded interest, allowing us to talk about 
continuous compounding. 
 
The continuous growth rate is like the nominal growth rate – it reflects the growth rate 
before considering compounding.  This is different than the annual growth rate used in 
the xraxf )1()(  , which is like the annual percentage yield – it reflects the actual 
amount the output grows in a year. 
 
 
Example 12 

If $1000 is invested in an account earning 10% compounded continuously, find the 
value after 1 year. 
 
Here, the continuous growth rate is 10%, so r = 0.10.  
We start with $1000, so a = 1000. 
To find the value after 1 year, 

17.1105$1000)1( )1(10.0  ef  
 
 
Notice that this value is slightly larger than the amount generated by daily compounding 
in the table computed earlier. 
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Important Topics of this Section 
Percent growth  
Exponential functions 
 Finding equations 
 Interpreting equations 
 Graphs 
Exponential Growth & Decay 
Compounded interest 
Annual Percent Yield 
Continuous Growth 

  
 
Try it Now Answers 

1. A & C are exponential functions, they grow by a % not a constant number. 
2. B(t) is growing faster, but after 3 years A(t) still has a higher account balance 
3. 0071.401)97.0(1000 30   

4.  xxf 5.12)(   
5. $1024.25 
6. An initial substance weighing 20g is growing at a continuous rate of 12% per day. 
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Section 4.1 Exercises 
 
For each table below, could the table represent a function that is linear, exponential, or 
neither? 

1. x 1 2 3 4 
f(x) 70 40 10 -20 

 

2. x 1 2 3 4 
g(x) 40 32 26 22 

 

3. x 1 2 3 4 
h(x) 70 49 34.3 24.01 

 

4. x 1 2 3 4 
k(x) 90 80 70 60 

 

5. x 1 2 3 4 
m(x) 80 61 42.9 25.61 

 

6. x 1 2 3 4 
n(x) 90 81 72.9 65.61 

 
7. A population numbers 11,000 organisms initially and grows by 8.5% each year.  

Write an exponential model for the population. 
 

8. A population is currently 6,000 and has been increasing by 1.2% each day.  Write an 
exponential model for the population. 
 

9. The fox population in a certain region has an annual growth rate of 9 percent per year. 
It is estimated that the population in the year 2010 was 23,900.  Estimate the fox 
population in the year 2018. 
 

10. The amount of area covered by blackberry bushes in a park has been growing by 12% 
each year. It is estimated that the area covered in 2009 was 4,500 square feet.  
Estimate area that will be covered in 2020. 
 

11. A vehicle purchased for $32,500 depreciates at a constant rate of 5% each year. 
Determine the approximate value of the vehicle 12 years after purchase. 
 

12. A business purchases $125,000 of office furniture which depreciates at a constant rate 
of 12% each year.  Find the residual value of the furniture 6 years after purchase. 
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Find an equation for an exponential passing through the two points 
13.  0, 6 , (3, 750)    14.  0, 3 , (2, 75)     

15.  0, 2000 , (2, 20)    16.  0, 9000 , (3, 72)   

17.  3
1, , 3, 24

2
  
 

   18.  2
1, , 1,10

5
  
 

  

19.    2,6 , 3,1     20.  3, 4 , (3, 2)  

21.  3,1 , (5, 4)     22.  2,5 , (6, 9)  

 

23. A radioactive substance decays exponentially. A scientist begins with 100 milligrams 
of a radioactive substance. After 35 hours, 50 mg of the substance remains. How 
many milligrams will remain after 54 hours? 
  

24. A radioactive substance decays exponentially. A scientist begins with 110 milligrams 
of a radioactive substance. After 31 hours, 55 mg of the substance remains. How 
many milligrams will remain after 42 hours? 
 

25. A house was valued at $110,000 in the year 1985. The value appreciated to $145,000 
by the year 2005.  What was the annual growth rate between 1985 and 2005?  
Assume that the house value continues to grow by the same percentage. What will the 
value equal in the year 2010? 
  

26. An investment was valued at $11,000 in the year 1995. The value appreciated to 
$14,000 by the year 2008.  What was the annual growth rate between 1995 and 2008?  
Assume that the value continues to grow by the same percentage. What will the value 
equal in the year 2012? 
 

27. A car was valued at $38,000 in the year 2003. The value depreciated to $11,000 by 
the year 2009.  Assume that the car value continues to drop by the same percentage. 
What will the value be in the year 2013? 
 

28. A car was valued at $24,000 in the year 2006. The value depreciated to $20,000 by 
the year 2009.  Assume that the car value continues to drop by the same percentage. 
What will the value be in the year 2014? 
 

29. If 4000 dollars is invested in a bank account at an interest rate of 7 per cent per year, 
find the amount in the bank after 9 years if interest is compounded annually, 
quarterly, monthly, and continuously. 
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30. If 6000 dollars is invested in a bank account at an interest rate of 9 per cent per year, 
find the amount in the bank after 5 years if interest is compounded annually, 
quarterly, monthly, and continuously. 
 

31. Find the annual percentage yield (APY) for a savings account with annual percentage 
rate of 3% compounded quarterly. 
 

32. Find the annual percentage yield (APY) for a savings account with annual percentage 
rate of 5% compounded monthly. 
 

33. A population of bacteria is growing according to the equation 0.21 ( ) 1 600 tP t e , with t 

measured in years.  Estimate when the population will exceed 7569. 
 

34. A population of bacteria is growing according to the equation 0.17 ( ) 1 200 tP t e , with t 

measured in years.  Estimate when the population will exceed 3443. 
 

35. In 1968, the U.S. minimum wage was $1.60 per hour. In 1976, the minimum wage 
was $2.30 per hour. Assume the minimum wage grows according to an exponential 
model ( )w t , where t represents the time in years after 1960.  [UW] 

a. Find a formula for ( )w t . 

b. What does the model predict for the minimum wage in 1960? 
c. If the minimum wage was $5.15 in 1996, is this above, below or equal to what 

the model predicts. 
 

36. In 1989, research scientists published a model for predicting the cumulative number 

of AIDS cases (in thousands) reported in the United States:  
3

1980
155

10

t
a t

   
 

, 

where t is the year.  This paper was considered a “relief”, since there was a fear the 
correct model would be of exponential type. Pick two data points predicted by the 
research model ( )a t  to construct a new exponential model ( )b t  for the number of 

cumulative AIDS cases. Discuss how the two models differ and explain the use of the 
word “relief.”  [UW] 
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37. You have a chess board as pictured, with 
squares numbered 1 through 64. You also have 
a huge change jar with an unlimited number of 
dimes. On the first square you place one dime. 
On the second square you stack 2 dimes. Then 
you continue, always doubling the number 
from the previous square.  [UW] 

a. How many dimes will you have 
stacked on the 10th square? 

b. How many dimes will you have 
stacked on the nth square? 

c. How many dimes will you have 
stacked on the 64th square? 

d. Assuming a dime is 1 mm thick, how 
high will this last pile be? 

e. The distance from the earth to the sun is approximately 150 million km. 
Relate the height of the last pile of dimes to this distance. 
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Section 4.2 Graphs of Exponential Functions 
 
Like with linear functions, the graph of an exponential function is determined by the 
values for the parameters in the equation in a logical way.   
 
To get a sense for the behavior of exponentials, let us begin by looking more closely at 
the basic toolkit function xxf 2)(  .  Listing a table of values for this function: 
 

x -3 -2 -1 0 1 2 3 
f(x) 1/8 ¼ ½ 1 2 4 8 

 
Notice that: 

1) This function is positive for all values of x 
2) As x increases, the function grows faster and faster 
3) As x decreases, the function values grow smaller, approaching zero. 
4) This is an example of exponential growth 

 

Looking at the function 
x

xg 







2

1
)(  

x -3 -2 -1 0 1 2 3 
g(x) 8 4 2 1 ½ ¼ 1/8 

 
Note this function is also positive for all values of x, but in this case grows as x decreases, 
and decreases towards zero as x increases.  This is an example of exponential decay.  You 
may notice from the table that this function appears to be the horizontal reflection of the 

xxf 2)(   table.  This is in fact the case: 

)(
2

1
)2(2)( 1 xgxf

x
xx 






   

 
Looking at the graphs also confirms this relationship: 
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Since the initial value of the function is the function value at an input of zero, the initial 
value will give us the vertical intercept of the graph.  From the graphs above, we can see 
that an exponential graph will have a horizontal asymptote on one side of the graph, and 
can either increase or decrease, depending upon the growth factor.  This horizontal 
asymptote will also help us determine the long run behavior and is easy to see from the 
graph.  
 
The graph will grow when the growth rate is positive, which will make the growth factor 
b larger than one.  When the growth rate is negative, the growth factor will be less than 
one. 
 
 
Graphical Features of Exponential Functions 

Graphically, in the function xabxf )(  
a is the vertical intercept of the graph 
b determines the rate at which the graph grows 
 the graph will increase if b > 1 
 the graph will decrease if 0 < b < 1 
The graph will have a horizontal asymptote at y = 0 
 
The domain of the function is all real numbers 
The range of the function is 0)( xf  

 
 
When sketching the graph of an exponential, it can be helpful to remember that the graph 
will pass through the points (0, a) and (1, ab) 
 
The value b will determine the functions long run behavior. 
If b > 1, as x  , )(xf  and as x ,  0)( xf . 
If 0 < b < 1, as x , 0)( xf  and as x , )(xf . 
 
 
Example 1 

Sketch a graph of 
x

xf 







3

1
4)(  

 
This graph will have a vertical intercept at (0,4), 

and pass through the point 







3

4
,1 .  Since b < 1, 

the graph will be decreasing towards zero.   
 
We can also see from the graph the long run 
behavior: as x  the function 0)( xf  and 
as x  the function )(xf . 
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To get a better feeling for the effect of a and b on the graph, examine the sets of graphs 
below.  The first set shows various graphs, where a remains the same and we only change 
the value for b. 
 
 
 

  
 
Notice that the closer the value of b is to 1, the flatter the graph will be.    
 
In the next set of graphs, a is altered and our value for b remains the same. 
 
 
 

 
 
Notice that changing the value for a changes the vertical intercept.  Since a is multiplying 
the bx term, a acts as a stretch factor, not as a shift.  Notice also that the long run behavior 
for all of these functions is the same because the growth factor did not change. 
 
 
 
 
 
 
 
 

2x  

1.5x  

3x  

0.9x  

 1
2

x

 

 1
3

x

 

 0.5 1.2x  

1.2x  

 2 1.2x  

 3 1.2x   4 1.2x  
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Example 2 
Match each equation with its graph. 

x

x

x

x

xk

xh

xg

xf

)7.0(4)(

)3.1(4)(

)8.1(2)(

)3.1(2)(









 

 
 
 
 
 
The graph of k(x) is the easiest to identify, since it is the only equation with a growth 
factor less than one, which will produce a decreasing graph.  The graph of h(x) can be 
identified as the only growing exponential with a vertical intercept at (0,4).  The graphs 
of f(x) and g(x) both have a vertical intercept at (0,2), but since g(x) has a larger growth 
factor, we can identify it as the graph increasing faster. 
 

 
 
 
Try it Now 

1. Graph the following functions on the same axis: xxf )2()(   ; xxg )2(2)(  ; 
xxh )2/1(2)(  . 

 
 
Transformations of Exponential Graphs 
 
While exponential functions can be transformed following the same rules as any function, 
there are a few interesting features of transformations that can be identified.  The first 
was seen at the beginning of the section – that a horizontal reflection is equivalent to a 
change in the growth factor.  Likewise, since a is itself a stretch factor, a vertical stretch 
of an exponential is equivalent to a change in the initial value of the function. 
 

f(x) 

g(x) 

h(x) 
k(x) 
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Next consider the effect of a horizontal shift of an exponential.  Shifting the function 
xxf )2(3)(   four units to the left would give 4)2(3)4(  xxf .  Employing exponent 

rules, we could rewrite this: 
xxxxf )2(48)2()2(3)2(3)4( 44    

 
Interestingly, it turns out that a horizontal shift of an exponential is equivalent to a change 
in initial value of the function. 
 
Lastly, consider the effect of a vertical shift of an exponential.  Shifting xxf )2(3)(   

down 4 units would give the equation 4)2(3)(  xxf , yielding the graph 

 
 
Notice that this graph is substantially different than the basic exponential graph.  Unlike a 
basic exponential, this graph does not have a horizontal asymptote at y = 0; due to the 
vertical shift, the horizontal asymptote has also shifted to y = -4.  We can see that as 
x   the function ( )f x   and as x   the function ( ) 4f x  . 
 
From this, we have determined that a vertical shift is the only transformation of an 
exponential that changes the graph in a way unique from the effects of the basic 
parameters of an exponential 
 
 
Transformations of Exponentials 

Any transformed exponential can be written in the form 
cabxf x )(  

Where  
c is the horizontal asymptote of the shifted exponential 

 
 
Note that due to the shift, the vertical intercept is also shifted to (0,a+c). 
 
 
Try it Now 

2. Write the equation and graph the exponential function described below; 
xexf )( is vertically stretched by a factor of 2, flipped across the y axis and shifted up 

4 units. 
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Example 3 

Sketch a graph of 4
2

1
3)( 








x

xf  

 
Notice that in this exponential, the negative in the stretch factor -3 will cause a vertical 
reflection of the graph, and the vertical shift up 4 will move the horizontal asymptote to 

y = 4.  Sketching this as a transformation of a 
x

xg 







2

1
)(  graph, 

The basic 
x

xg 







2

1
)(          Vertically reflected and stretched by 3 

       
 
Vertically shifted up four units 

 
 
 
Notice that while the domain of this function is unchanged, due to the reflection and 
shift, the range of this function is f(x) < 4. 
As x  the function 4)( xf  and as x the function ( )f x   

 
 
Equations leading to graphs like the one above are common as models for learning 
models and models of growth approaching a limit. 
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Example 4 
Find an equation for the graph sketched below 

 
 
Looking at this graph, it appears to have a horizontal asymptote at y = 5, suggesting an 
equation of the form 5)(  xabxf .  To find values for a and b, we can identify two 
other points on the graph.  It appears the graph passes through (0,2) and (-1,3), so we 
can use those points.  Substituting in (0,2) allows us to solve for a 

3

52

52 0





a

a

ab

 

 
Substituting in (-1,3) allows us to solve for b 

5.1
2

3

32

3
2

533 1








 

b

b
b

b

 

 
The final equation for our graph is 5)5.1(3)(  xxf  

 
 
Try it Now   

3. Given the graph of the transformed exponential function, write the equation and 
describe the long run behavior. 
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Important Topics of this Section 
Graphs of exponential functions 
 Intercept 
 Growth factor 
Exponential Growth 
Exponential Decay 
Horizontal intercepts 
Long run behavior  
Transformations 

 
 
Try it Now Answers 

1.  
 
 

2. 42)(  xexf ;   

3. 1)5(.3)(  xxf  or ( ) 3(2 ) 1xf x   ;  As x  the function )(xf  and as 
x the function 1)( xf  

 
 

( ) 2xf x   

 ( ) 2 2xg x   

1
( ) 2

2

x

h x
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Section 4.2 Exercises 
 
Match each equation with one of the graphs below 

1.    2 0.69
x

f x    

2.    2 1.28
x

f x    

3.    2 0.81
x

f x   

4.    4 1.28
x

f x     

5.    2 1.59
x

f x      

6.    4 0.69
x

f x     

 
If all the graphs to the right have equations with form 

  xf x ab    

7. Which graph has the largest value for b?   

8. Which graph has the smallest value for b?   

9. Which graph has the largest value for a? 

10. Which graph has the smallest value for a? 

 
 
Sketch a graph of each of the following transformations of   2xf x   

11.   2 xf x      12.   2xg x      

13.   2 3xh x       14.   2 4xf x     

15.   22xf x      16.   32xk x    

 
Starting with the graph of   4xf x  , write the equation of the graph that results from 

17. Shifting ( )f x  4 units upwards 

18. Shifting ( )f x  3 units downwards 

19. Shifting ( )f x  2 units left 

20. Shifting ( )f x  5 units right 

21. Reflecting ( )f x  about the x-axis 

22. Reflecting ( )f x  about the y-axis 

 
 
 

A

B
C

D 
E 

F 

A

B
C

D 

E 

F 
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Describe the long run behavior, as x    and x   of each function 

23.    5 4 1xf x        24.    2 3 2xf x      

25.   1
3 2

2

x

f x
   
 

    26.   1
4 1

4

x

f x
   
 

 

27.    3 4 2
x

f x
      28.    2 3 1

x
f x

     

 
Find an equation for each graph as a transformation of   2xf x   

29.    30.  
 

31.     32.   
 
Find an equation for the exponential graphed. 

33.    34.  
 

35.    36.  
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Section 4.3 Logarithmic Functions 
 
A population of 50 flies is expected to double every week, leading to an equation of the 
form xxf )2(50)(  .  When will this population reach 500?  Trying to solve this problem 
leads to  

x

x

210

)2(50500




 

 
While we have set up exponential models and used them to make predictions, you may 
have noticed that solving exponential equations has not yet been mentioned.  The reason 
is simple: none of the algebraic tools discussed so far are sufficient to solve exponential 
equations.  Consider the equation 102 x  above.  We know that 823   and 1624  , so 
it is clear that x must be some value between 3 and 4.  We could use technology to create 
a table of values or graph to better estimate the solution.   

 
 
From the graph, we could better estimate the solution to be around 3.3.  This result is still 
fairly unsatisfactory, and since the exponential function is one-to-one, it would be great 
to have an inverse function.  None of the functions we have already discussed would 
serve as an inverse function and so we must introduce a new function, named log as the 
inverse of an exponential function.  Since exponential functions have different bases, we 
will define corresponding logarithms of different bases as well. 
 
 
Logarithm 

The logarithm (base b) function, written  xblog , is the inverse of the exponential 

function (base b). 
 
 
Since the logarithm and exponential are inverses, it follows that: 
 
 
Properties of Logs: Inverse Properties 

  xb x
b log    

xb xb log  
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Recall also that from the definition of an inverse function that if caf )( , then 

acf  )(1 .  Applying this to the exponential and logarithmic functions: 
 
 
Logarithm Equivalent to an Exponential 

The statement cba   is equivalent to the statement acb )(log  

 
Alternatively, we could show this by starting with the exponential function ac b , then 
taking the log base b of both sides, giving log ( ) log a

b bc b .  Using the inverse property 

of logs we see that log ( )b c a . 

 
Since log is a function, it is most correctly written as )(log cb , using parentheses to 

denote function evaluate, just as we would with f(c).  However, when the input is a single 
variable or number, it is common to see the parentheses dropped and the expression 
written as cblog . 

 
 
Example 1 

Write these exponential expressions as logarithmic expressions: 

823      2552     
10000

1
10 4   

 
823    is equivalent to 3)8(log2   

 
2552    is equivalent to 2)25(log5   

4 1
10

10000
   is equivalent to 10

1
log 4

10000
    
 

 

 
 
Example 2 

Write these logarithmic expressions as exponential expressions 

 
2

1
6log6      29log3   

 

 
2

1
6log6    is equivalent to 66 2/1   

  29log3     is equivalent to 932   

 
 
Try it Now 

Write the exponential expression 1642   as a logarithm. 
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By establishing the relationship between exponential and logarithmic functions, we can 
now solve basic logarithmic and exponential equations by rewriting. 
 
 
Example 3 

Solve   2log4 x  for x. 
 
By rewriting this expression as an exponential, x24 , so x = 16 

 
 
Example 4 

Solve 102 x  for x. 
 
By rewriting this expression as a logarithm, we get )10(log2x  

 
 
While this does define a solution, and an exact solution at that, you may find it somewhat 
unsatisfying since it is difficult to compare this expression to the decimal estimate we had 
made to the solution earlier.  Also, giving an exact expression for a solution is not always 
useful – often we really need a decimal approximation to the solution.  Luckily, this is a 
task calculators and computers are quite adept at.  Unluckily for us, most calculators and 
computers will only evaluate logarithms of two bases.  Happily, this ends up not being a 
problem, as we’ll see briefly. 
 
 
Common and Natural Logarithms 

The common log is the logarithm with base 10, and is typically written )log(x  
The natural log is the logarithm with base e, and is typically written )ln(x  

 
 
Example 5 

Evaluate )1000log(  using the definition of the 
common log. 
 
To evaluate )1000log( , we can say 

)1000log(x , then rewrite into exponential 
form using the common log base of 10. 

100010 x  
From this, we might recognize that 1000 is the 
cube of 10, so x = 3. 
We also can use the inverse property of logs to 
write 310log 3

10   

 
 

Values of the common log 
number number as 

exponential
log(number)

1000 103 3 
100 102 2 
10 101 1 
1 100 0 
0.1 10-1 -1 
0.01 10-2 -2 
0.001 10-3 -3 
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Try it Now 
2. Evaluate )1000000log(  

 
 
Example 6 

Evaluate )ln( e  using the definition of the natural log. 
 

To evaluate )ln( e , we can say )ln( ex  .  Rewriting as an exponential,  

ee x  .  You may recall that the square root is equivalent to a power of ½ so x = ½. 
 
 
Example 7 

Evaluate log(500) using your calculator or computer. 
 
Using a computer, we can evaluate 69897.2)500log(   

 
 
To utilize the common or natural logarithm functions to evaluate expressions like 

)10(log2 , we need to establish some additional properties. 
 
 
Properties of Logs: Exponent Property 

   ArA b
r

b loglog   

 
 
To show why this is true, we offer a proof. 
Since the logarithm and exponential are inverses, Ab Ab log . 

So  rAr bbA log  

Utilizing the exponential rule that states   abba xx  ,  

  ArrAr bb bbA loglog   
 
So then    Ar

b
r

b
bbA logloglog   

Again utilizing the inverse property on the right side yields the result 
  ArA b

r
b loglog   

 
 
Example 8 

Rewrite  25log3  using the exponent property for logs. 

 
Since 25 = 52,  

    5log25log25log 3
2

33   
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Example 9 
Rewrite )ln(4 x using the exponent property for logs 
 
Using the property in reverse,  4ln)ln(4 xx   

 
 
Try it Now 

3. Rewrite using the exponent property for logs: 







2

1
ln

x
  

 
 
The exponent property allows us to find a method for changing the base of a logarithmic 
expression. 
 
 
Properties of Logs: Change of Base 

 
)(log

)(log
log

b

A
A

c

c
b   

 
 
Proof. 
Let   xAb log .  Rewriting as an exponential gives Ab x  .  Taking the log base c of 

both sides of this equation gives 
Ab c

x
c loglog     

Now utilizing the exponent property for logs on the left side,  
Abx cc loglog   

Dividing, we obtain 

b

A
x

c

c

log

log
  or replacing our expression for x, 

b

A
A

c

c
b log

log
log   

 
With this change of base formula, we can finally find a good decimal approximation to 
our question from the beginning of the section. 
 
 
Example 10 

Evaluate )10(log2  using the change of base formula. 
 
According to the change of base formula, we can rewrite the log base 2 as a logarithm 
of any other base.  Since our calculators can evaluate the natural log, we might choose 
to use the natural logarithm, which is the log base e 

2ln

10ln

2log

10log
10log2 

e

e  

Using our calculators to evaluate this, 
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3219.3
69315.0

30259.2

2ln

10ln
  

 
This finally allows us to answer our original question – the population of flies we 
discussed at the beginning of the section will take 3.32 weeks to grow to 500. 

 
 
Example 11 

Evaluate )100(log5  using the change of base formula. 

 
We can rewrite this expression using any other base.  If our calculators are able to 
evaluate the common logarithm, we could rewrite using the common log, base 10. 
 

861.2
69897.0

2

5log

100log
)100(log

10

10
5   

 
 
While we were able to solve the basic exponential equation 102 x  by rewriting in 
exponential form and then using the change of base formula to evaluate the logarithm, the 
proof of the change of base formula illuminates an alternative approach to solving 
exponential equations.  
 
 
Solving exponential equations: 

1. Isolate the exponential expressions when possible 
2. Take the logarithm of both sides 
3. Utilize the exponent property for logarithms to pull the variable out of the exponent 
4. Use algebra to solve for the variable. 

 
 
Example 12 

Solve 102 x  for x. 
 
Using this alternative approach, rather than rewrite this exponential into logarithmic 
form, we will take the logarithm of both sides of the equation.  Since we often wish to 
evaluate the result to a decimal answer, we will usually utilize either the common log or 
natural log.  For this example, we’ll use the natural log: 
  )10ln(2ln x   Utilizing the exponent property for logs, 

  )10ln(2ln x   Now dividing by ln(2), 

 2ln

)10ln(
x  

 
Notice that this result is equivalent to the result we found using the change of base 
formula. 
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Example 13 
In the first section, we predicted the population (in billions) of India t years after 2008 
by the equation ttf )0134.01(14.1)(  .  If the population continues following this 
trend, when will the population reach 2 billion? 
 
We need to solve for the t so that f(t) = 2 
 

t)0134.1(14.12   Divide by 1.14 to isolate the exponential expression 

t0134.1
14.1

2
  Take the logarithm of both sides of the equation 

 t0134.1ln
14.1

2
ln 








 Apply the exponent property on the right side 

 0134.1ln
14.1

2
ln t








 Divide both sides by ln(1.0134) 

  23.42
0134.1ln
14.1

2
ln










t  years 

 
If this growth rate continues, the model predicts the population of India will reach 2 
billion about 42 years after 2008, or approximately in the year 2050. 

 
 
Try it Now 

4.  Solve 10)93.0(5 x  
 
 
In addition to solving exponential equations, logarithmic expressions are common in 
many physical situations. 
 
 
Example 14 

In chemistry, pH is a measure of the acidity or basicity of a liquid.  The pH is related to 
the concentration of hydrogen ions, H+, measured in Moles, by the equation 

  HpH log .   
If a liquid has concentration of 0.0001 Moles, determine the pH. 
Determine the hydrogen concentration of a liquid with pH of 7. 
 
To answer the first question, we evaluate the expression  0001.0log .  While we could 
use our calculators for this, we do not really need them here, since we can use the 
inverse property of logs: 

    4)4(10log0001.0log 4    
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To answer the second question, we need to solve the equation   Hlog7 .  Begin by 
isolating the logarithm on one side of the equation by dividing by a negative. 

  Hlog7   
  
Now rewriting into exponential form yields the answer 

0000001.010 7  H  Moles 
 
 
Logarithms also provide us a mechanism for finding continuous growth equations for 
exponentials given two points. 
 
 
Example 15 

A population of beetles grows from 100 to 130 in 2 weeks.  Find the continuous growth 
rate. 
 
Measuring t is weeks, we are looking for an equation rtaetP )(  so that P(0) = 100 and 
P(2) = 130.  Using the first pair of values, 

0100 rae , so a = 100. 
 
Using the second pair of values,  

2100130 re   Divide by 100 
2

100

130 re   Take the natural log of both sides 

 2ln)3.1ln( re  Use the inverse property of logs 

1312.0
2

)3.1ln(

2)3.1ln(





r

r
 

 
This population is growing at a continuous rate of 13.12% per week. 

 
 
In general, we can relate the standard form of an exponential with the continuous growth 
form by noting (using k to represent the continuous growth rate to avoid the confusion of 
using r twice in two different ways in the same formula) 

kxx aera  )1(   
kxx er  )1(  

ker 1  
 
Using this, we see that it is always possible to convert from the continuous growth form 
of an exponential to the standard form and vice versa. 
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Example 16 
A company’s sales have been growing following the function tetS 12.05000)(  .  Find 
the annual growth rate. 
 
Noting that ker 1 , then 1275.0112.0  er , so the annual growth rate is 12.75%.  
The sales function could also be written in the form ttS )1275.01(5000)(   

 
 
Important Topics of this Section 

The Logarithmic function as the inverse of the exponential function 
Writing logarithmic & exponential expressions 
Properties of logs 
    Inverse properties 
    Exponential properties 
    Change of base  
Common log 
Natural log 
Solving exponential equations 

 
 
Try it Now Answers 

1.   4log24log216log 4
2

44   
2.  6 
3. )ln(2 x  

4. 5513.9
)93.0ln(

)2ln(
  

 

260



Section 4.3 Logarithmic Functions 

 

251

Section 4.3 Exercises 
 
Rewrite each equation in exponential form 
1. 4log ( )q m  2. 3log ( )t k   3. log ( )a b c   4. log ( )p z u    

 5. log v t   6.  log r s   7.  ln w n   8.  ln x y  

  
Rewrite each equation in logarithmic form.   
9. 4x y   10. 5y x   11. dc k   12. zn L  

13. 10a b   14. 10 p v   15. ke h   16. ye x  

 
Solve for x. 
17.  3log 2x   18. 4log ( ) 3x   19. 2log ( ) 3x    20. 5log ( ) 1x    

21.  log 3x    22.  log 5x    23.  ln 2x    24.  ln 2x        

 
Simplify each expression using logarithm properties 

25.  5log 25   26.  2log 8   27. 3

1
log

27
 
 
 

  28. 6

1
log

36
 
 
 

 

29.  6log 6    30.  3
5log 5   31.  log 10,000  32.  log 100  

33.  log 0.001  34.  log 0.00001  35.  2ln e   36.  3ln e   

 
Evaluate using your calculator 
37.  log 0.04   38.  log 1045   39.  ln 15   40.  ln 0.02    

 
Solve each equation for the variable 

41. 5 14x    42. 3 23x    43. 
1

7
15

x    44. 
1

3
4

x   

45. 5 17xe     46. 3 12xe    47. 4 53 38x    48. 2 34 44x   

49.  1000 1.03 5000
t     50.  200 1.06 550

t   

51.  3
3 1.04 8

t       52.  4
2 1.08 7

t   

53. 0.1250 10te       54. 0.0310 4te   

55. 
1

10 8 5
2

x
   
 

     56. 
1

100 100 70
4

x
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Convert the equation into continuous growth   ktf t ae  form 

57.    300 0.91
t

f t     58.    120 0.07
t

f t    

59.    10 1.04
t

f t      60.    1400 1.12
t

f t   

 
Convert the equation into annual growth   tf t ab  form 

61.   0.061 50 tf t e     62.   0.12100 tf t e  

63.   0.01250 tf t e     64.   0.8580 tf t e  

 
65. The population of Kenya was 39.8 million in 2009 and has been growing by about 

2.6% each year.  If this trend continues, when will the population exceed 45 million? 
 

66. The population of Algeria was 34.9 million in 2009 and has been growing by about 
1.5% each year.  If this trend continues, when will the population exceed 45 million? 
 

67. The population of Seattle grew from 563,374 in 2000 to 608,660 in 2010.  If the 
population continues to grow exponentially at the same rate, when will the population 
exceed 1 million people? 
 

68. The median household income (adjusted for inflation) in Seattle grew from $42,948 
in 1990 to $45,736 in 2000.  If it continues to grow exponentially at the same rate, 
when will median income exceed $50,000? 
 

69. A scientist begins with 100 mg of a radioactive substance.  After 4 hours, it has 
decayed to 80 mg.  How long will it take to decay to 15 mg? 
 

70. A scientist begins with 100 mg of a radioactive substance.  After 6 days, it has 
decayed to 60 mg.  How long will it take to decay to 10 mg? 
 

71. If $1000 is invested in an account earning 3% compounded monthly, how long will it 
take the account to grow in value to $1500? 
 

72. If $1000 is invested in an account earning 2% compounded quarterly, how long will it 
take the account to grow in value to $1300? 
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Section 4.4 Logarithmic Properties 
 
In the previous section, we derived two important properties of logarithms, which 
allowed us to solve some basic exponential and logarithmic equations.   
 
 
Properties of Logs 

Inverse Properties: 
  xb x

b log    

xb xb log  
 
Exponential Property: 

   ArA b
r

b loglog   

 
Change of Base: 

 
)(log

)(log
log

b

A
A

c

c
b   

 
 
While these properties allow us to solve a large number of problems, they are not 
sufficient to solve all problems in exponential and logarithmic equations.  
 
 
Properties of Logs 

Sum of Logs Property: 
    )(logloglog ACCA bbb   

 
Difference of Logs Property: 

    







C

A
CA bbb logloglog  

 
 
As an important note, the logarithm represents a function and does not follow regular 
algebraic distribution rules that you may be used to. The “word log” does not distribute 
into parenthesis, and so you must learn these new rules.   
 
To help in this process we offer a proof to help solidify our new rules and show how they 
follow from properties you’ve already seen. 
 
Let  Aa blog  and  Cc blog , so by definition of the logarithm, Aba   and Cbc   
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Using these expressions, cabbAC   
Using exponent rules on the right, cabAC   
Taking the log of both sides, and utilizing the inverse property of logs,  

    cabAC ca
bb  loglog  

Replacing a and c with their definition establishes the result 
  CAAC bbb logloglog   

 
The proof for the difference property is very similar. 
 
With these properties, we can rewrite expressions involving multiple logs as a single log, 
or a break an expression involving a single log into expressions involving multiple logs. 
 
 
Example 1 

Write      2log8log5log 333   as a single logarithm. 

 
Using the sum of logs property on the first two terms, 

       40log85log8log5log 3333   

 
This reduces our original expression to    2log40log 33   

 
Then using the difference of logs property, 

     20log
2

40
log2log40log 3333 






  

 
 
Example 2 

Evaluate    4log5log2   without a calculator by first rewriting as a single logarithm. 
 
On the first term, we can use the exponent property of logs to write 

     25log5log5log2 2   
 
With the expression reduced to a sum of two logs,    4log25log  , we can utilize the 
sum of logs property 

    )100log()254log(4log25log   
 
Since 100 = 102, we can evaluate this log without a calculator: 

  210log)100log( 2   
 
 
Try it Now 

1. Without a calculator evaluate by first rewriting as a single logarithm 
   4log8log 22   
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Example 3 

Rewrite 







7

ln
4 yx

 as a sum or difference of logs 

 
First noticing we have a quotient of two expressions, we can utilize the difference 
property of logs to write 

  )7ln(ln
7

ln 4
4









yx

yx
 

 
Then seeing the product in the first term, we use the sum property 
    )7ln()ln(ln)7ln(ln 44  yxyx  

 
Finally, we could use the exponent property on the first term 
  )7ln()ln()ln(4)7ln()ln(ln 4  yxyx  

 
 
Interestingly, solving exponential equations was not the reason 
logarithms were originally developed.  Historically, up until the 
advent of calculators and computers, the power of logarithms was 
that these log properties allowed multiplication, division, roots, 
and powers to be evaluated using addition and subtraction, which 
is much easier to compute without a calculator.  Large books of 
logarithm values were published listing the logarithms of 
numbers, such as in the table to the right.  To find the product of 
two numbers, the sum of log properties were used.  Suppose for 
example we didn’t know the value of 2 times 3.  Using the sum 
property of logs 
 

)3log()2log()32log(   
 
Using the log table, 

7781513.04771213.03010300.0)3log()2log()32log(   
 
We can then use the table again in reverse, looking for 0.7781513 as the result of the log.  
From that we can determine 

)6log(7781513.0)32log(   
 
By doing addition and the table of logs, we were able to determine 632  .    
 

Likewise, to compute a cube root like 3 8  

  )2log(3010300.0)9030900.0(
3

1
)8log(

3

1
8log)8log( 3/13    

So 283   

value log(value)

1  0.0000000

2 0.3010300

3 0.4771213

4 0.6020600

5 0.6989700

6 0.7781513

7 0.8450980

8 0.9030900

9 0.9542425

10 1.0000000
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Although these calculations are simple and insignificant they illustrate the same idea that 
was used for hundreds of years as an efficient way to calculate the product, quotient, 
roots, and powers of large and complicated numbers, either using tables of logarithms or 
mechanical tools called slide rules. 
 
These properties still have practical applications for interpreting changes in exponential 
and logarithmic relationships. 
 
 
Example 4 

Recall that in chemistry,   HpH log .  If the concentration of hydrogen ions in a 
liquid is doubled, what is the affect on pH? 
 
Suppose C is the original concentration of hydrogen ions, and P is the original pH of the 
liquid, so  CP log .   If the concentration is doubled, the new concentration is 2C.  
Then the pH of the new liquid is 

 CpH 2log  
 
Using the sum property of logs, 

    )log()2log()log()2log(2log CCCpH   
 
Since  CP log , the new pH is 

301.0)2log(  PPpH  
 
After the concentration of hydrogen ions is doubled, the pH will decrease by 0.301. 

 
 
Log properties in solving equations 
The logarithm properties often arise when solving problems involving logarithms 
 
 
Example 5 

Solve 2)log()2550log(  xx  
 
In order to rewrite as an exponential, we need a single logarithmic expression on the left 
side of the equation.  Using the difference property of logs, we can rewrite the left side: 

2
2550

log 





 

x

x
 

 
Rewriting in exponential form reduces this to an algebraic equation 

10010
2550 2 


x

x
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Solving, 

2

1

50

25

5025

1002550






x

x

xx

 

 
 
Try it Now 

2.  Solve )2log(1)4log( 2  xx  
 
 
More complex exponential equations can often be solved in more than one way.  In the 
following example, we will solve the same problem in two ways – one using logarithm 
properties, and the other using exponential properties. 
 
 
Example 6a 

In 2008, the population of Kenya was approximately 38.8 million, and was growing by 
2.64% each year, while the population of Sudan was approximately 41.3 million and 
growing by 2.24% each year2.  If these trends continue, when will the population of 
Kenya match that of Sudan? 
 
We start by writing an equation for each population in terms of t, years after 2008. 

t

t

tSudan

tKenya

)224.01(3.41)(

)264.01(8.38)(




 

 
To find when the populations will be equal, we can set the equations equal 

tt )224.1(3.41)264.1(8.38   
 
For our first approach, we take the log of both sides of the equation 

   tt )224.1(3.41log)264.1(8.38log   
 
Utilizing the sum property of logs, we can rewrite each side, 

   tt 224.1log)3.41log(264.1log)8.38log(   
 
Then utilizing the exponent property, we can pull the variables out of the exponent 

   224.1log)3.41log(264.1log)8.38log( tt   
 
Moving all the terms involving t to one side of the equation and the rest of the terms to 
the other side, 

    )8.38log()3.41log(224.1log264.1log  tt  
                                                 
2 World Bank, World Development Indicators, as reported on http://www.google.com/publicdata, retrieved 
August 24, 2010 
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Factoring out the t on the left, 
     )8.38log()3.41log(224.1log264.1log t  

 
Dividing to solve for t 

    942.1
224.1log264.1log

)8.38log()3.41log(





t years until the populations will be equal 

 
 
Example 6b 

Solve the problem above using rewriting before taking the log 
 
Starting at the equation  

tt )224.1(3.41)264.1(8.38   
 
Divide to move the exponential terms to one side of the equation and the constants to 
the other side 

8.38

3.41

224.1

264.1


t

t

 

 
Using exponent rules to group on the left, 

8.38

3.41

224.1

264.1









t

 

 
Taking the log of both sides 


























8.38

3.41
log

224.1

264.1
log

t

 

 
Utilizing the exponent property on the left, 
















8.38

3.41
log

224.1

264.1
logt  

 
Dividing gives 

942.1

224.1

264.1
log

8.38

3.41
log


















t  years 
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While the answer does not immediately appear identical to that produced using the 
previous method, note that by using the different property of logs, the answer could be 
rewritten: 

)224.1log()264.1log(

)8.38log()3.41log(

224.1

264.1
log

8.38

3.41
log





















t  

 
 
While both methods work equally well, it often requires less steps to utilize algebra 
before taking logs, rather than relying on log properties. 
 
 
Try it Now  

3.  Tank A contains 10 liters of water, and 35% of the water evaporates each week.  
Tank B contains 30 liters of water, and 50% of the water evaporates each week.  In how 
many weeks will the tanks contain the same amount of water?  

 
 
Important Topics of this Section 

Inverse  
Exponential 
Change of base 
Sum of logs property 
Difference of logs property 
Solving equations using log rules 

 
 
Try it Now Answers 

1.  5 
2.  12 
3.  4.1874 weeks 
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Section 4.4 Exercises 
 
Simplify using logarithm properties to a single logarithm 
1.    3 3log 28 log 7     2.    3 3log 32 log 4   

3. 3

1
log

7
   
 

     4. 4

1
log

5
   
 

     

5.  3 3

1
log log 50

10
   
 

    6.  4 4log 3 log (7)  

7.  7

1
log 8

3
     8.   5

1
log 36

2
 

9.    4 5log 2 log 3x x    10.    2 3ln 4 ln 3x x    

11.    9 2ln 6 ln 3x x     12.    4log 12 log 4x x    

13.    2log 3log 1x x      14.    23log 2logx x  

15.      1
log log 3log

2
x y z     16.      1

2log log log
3

x y z   

 
Use logarithm properties to expand each expression 

17. 
15 13

19
log

x y

z

 
 
 

    18. 
2 3

5
log

a b

c

 
 
 

 

19. 
2

4 5
ln

a

b c





 
 
 

     20. 
2 3

5
ln

a b

c





 
 
 

 

21.  3 4log x y     22.  3 2log x y  

23. ln
1

y
y

y

 
   

     24. 
2

ln
1

x

x

 
 

 
 

25.  2 3 2 53log x y x y     26.  3 4 3 97log x y x y  
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Solve each equation for the variable 
27. 4 7 9 64 3x x      28. 2 5 3 72 7x x   

29.    17 1.14 19 1.16
x x    30.    20 1.07 8 1.13

x x  

31. 0.12 0.085 10t te e     32. 0.09 0.143 t te e  

33.  2log 7 6 3x        34. 3log (2 4) 2x    

35.  2ln 3x 3 1       36.  4ln 5 5 2x    

37.  3log 2x      38.  5log 3x   

39.    log log 3 3x x       40.    log 4 log 9x x    

41.    log 4 log 3 1x x       42.    log 5 log 2 2x x     

43.  2
6 6log log ( 1) 1x x      44. 2

3 3log ( ) log ( 2) 5x x    

45.      log 12 log log 12x x     46.      log 15 log log 15x x    

47.      ln ln 3 ln 7x x x      48.      ln ln 6 ln 6x x x    
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Section 4.5 Graphs of Logarithmic Functions 
 
Recall that the exponential function xxf 2)(   would produce this table of values 

x -3 -2 -1 0 1 2 3 
f(x) 1/8 ¼ ½ 1 2 4 8 

 
Since the logarithmic function is an inverse of the exponential, xxg 2log)(   would 
produce the table of values 

x 1/8 ¼ ½ 1 2 4 8 
g(x) -3 -2 -1 0 1 2 3 

 
Notice that 

1) As the input increases, the output increases 
2) As x increases, the output decreases more slowly 
3) Since the exponential function only outputs positive values, the logarithm can 

only accept positive values as inputs. 
4) Since the exponential function can accept all real numbers as inputs, the logarithm 

can output any real number 
5) We can also recall from our study of toolkit functions that the domain if the 

logarithmic function is ),0(   and the range is all real numbers or ),(   
 
Sketching the graph, 
 
Notice that as the input approaches zero from 
the right, the output of the function grows 
very large in the negative direction, indicating 
a vertical asymptote at x = 0. 
In symbolic notation we write as 

  )(,0 xfx ,  and 
as  )(, xfx  
 
 
 
Graphical Features of the Logarithm 

Graphically, in the function xxg blog)(   

The graph has a horizontal intercept at (1, 0) 
The graph has a vertical asymptote at x = 0 
The domain of the function is x > 0 or ),0(   
The range of the function is all real numbers ),(   

 
When sketching a general logarithm, it can be helpful to remember that the graph will 
pass through the points (1, 0) and (b, 1) 
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To get a feeling for how the base affects the shape of the graph, examine the sets of 
graphs below. 
 

 
 
Notice that the larger the base, the slower the graph will grow.  For example, the common 
log graph, while it can grow as large as you’d like, it does so very slowly.  For example, 
to reach an output of 8, the input must be 100,000,000. 
 
Another important observation made was the domain of the logarithm.  Along with 
division and the square root, the logarithm is a function that restricts the domain of a 
function. 
 
 
Example 1 

Find the domain of the function )25log()( xxf   
 
The logarithm is only defined with the input is positive, so this function will only be 
defined when 025  x .  Solving this inequality, 

2

5

52





x

x
 

 

The domain of this function is 
2

5
x , or in interval notation, 






 

2

5
,  

 
 
Try it Now 

1. Find the domain of the function 2)5log()(  xxf , before solving this as an 
inequality, consider how the function has been transformed. 

 
 
 
 
 

x2log  

xln  

xlog  
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Transformations of the Logarithmic Function 
Like with exponentials, transformations can be done using the basic transformation 
techniques, but several transformations have interesting relations. 
 

First recall the change of base property tells us that x
bb

x
x c

cc

c
b log

log

1

log

log
log   

From this, we can see that xblog  is a vertical stretch or compression of the graph of the 

xclog  graph.  This tells us that a vertical stretch or compression is equivalent to a change 

of base.  For this reason, we typically represent all graphs of logarithmic functions in 
terms of the common or natural log functions. 
 
Next, consider the effect of a horizontal compression on the graph of a logarithmic 
function.  Considering )log()( cxxf  , we can use the sum property to see 

)log()log()log()( xccxxf   
 
Since log(c) is a constant, the effect of a horizontal compression is the same as the effect 
of a vertical shift.  To see what this effect looks like, 
 
 
Example 2 

Sketch )ln()( xxf   and 2)ln()(  xxg  
 
Graphing these, 

 
 
Note that as we saw, this vertical shift could also be written as a horizontal 
compression: 

)ln()ln()ln(2)ln()( 22 xeexxxg   
 
 
While a horizontal stretch or compression can be written as a vertical shift, a horizontal 
reflection is unique and separate from vertical shifting. 
 
Finally, we will consider the effect of a horizontal shift on the graph of a logarithm 
 
 
 

)ln()( xxf   

2)ln()(  xxg  
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Example 3 

Sketch a graph of )2ln()(  xxf  
 
This is a horizontal shift to the left by 2 units.  Notice that none of our logarithm rules 
allow us rewrite this in another form, so the effect of this transformation is unique.  
Shifting the graph, 

 
 
Notice that due to the horizontal shift, the vertical asymptote shifted as well, to x = -2 

 
 
Combining these transformations, 
 
 
Example 4 

Sketch a graph of )2log(5)(  xxf  
 
Factoring the inside as ))2(log(5)(  xxf  reveals that this graph is that of the 
common logarithm, horizontally reflected, vertically stretched by a factor of 5, and 
shifted to the right by 2 units.   
 
The vertical asymptote will have been 
shifted to x = 2, and the graph will be 
defined for x < 2.  A rough sketch can be 
created by using the vertical asymptote 
along with a couple points on the graph, 
such as 

5)10log(5)2)8(log(5)8(

0)1log(5)21log(5)1(




f

f
 

 
 

 
 
Try it Now 

2. Sketch a graph of the function 1)2log(3)(  xxf  
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Example 5 

Find an equation for the logarithmic function graphed below 

 
 
This graph has a vertical asymptote at x = -2 and has been vertically reflected.  We do 
not know yet the vertical shift (equivalent to horizontal stretch) or the vertical stretch 
(equivalent to a change of base).  We know so far that the equation will have form 

kxaxf  )2log()(  
 
It appears the graph passes through the points (-1,1) and (2,-1).  Substituting in (-1,1), 

k

ka

ka






1

)1log(1

)21log(1

 

 
Next substituting in (2,-1), 

)4log(

2

)4log(2

1)22log(1






a

a

a

 

 

This gives us the equation 1)2log(
)4log(

2
)(  xxf  

 
 
Flashback 

3. Using the graph above write the Domain & Range and describe the long run 
behavior.  
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Important Topics of this Section 
Graph of the logarithmic function (domain & range) 
Transformation of logarithmic functions 
Creating graphs from equations 
Creating equations from graphs 

 
 
Try it Now Answers 

1. Domain:  {x| x > 5}   
2. Input a graph of 1)2log(3)(  xxf  

 
 
Flashback Answers 

3.  Domain:  {x|x>-2}, Range: All Real Numbers;  As   )(,2 xfx and as 
 )(, xfx  
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Section 4.5 Exercises 
 
For each function, find the domain and the vertical asymptote 
1.    log 5f x x      2.    log 2f x x     

3.    ln 3f x x      4.    ln 5f x x   

5.    log 3 1f x x      6.    log 2 5f x x   

7.    3log 2f x x      8.    2log 1f x x    

  
Sketch a graph of each pair of function 
9.        log , lnf x x g x x    10.      2 4log ( ), logf x x g x x   

 
Sketch each transformation 
11.    2logf x x     12.    3lnf x x   

13.    lnf x x      14.    logf x x    

15.   2log ( 2)f x x     16.    3log 4f x x   

 
Write an equation for the transformed logarithm graph shown 

17.     18.   
 

19.    20.   
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Write an equation for the transformed logarithm graph shown 
 

21.     22.  
 

23.     24.
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Section 4.6 Exponential and Logarithmic Models 
 
While we have explored some basic applications of exponential and logarithmic 
functions, in this section we explore some important applications in more depth. 
 
Radioactive Decay 
In an earlier section, we discussed radioactive decay – the idea that radioactive isotopes 
change over time.  One of the common terms associated with radioactive decay is half-
life. 
 
 
Half Life 

The half-life of a radioactive isotope is the time it takes for half the substance to decay. 
 
 
Given the basic exponential growth/decay equation tabth )( , half life can be found by 

solving for when half the original amount remains – by solving tbaa )(
2

1
 , or more 

simply  tb
2

1
 .  Notice how the initial amount is irrelevant when solving for half life 

 
 
Example 1 

Bismuth-210 is an isotope that decays by about 13% each day.  What is the half-life of 
Bismuth-210? 
 
We were not given a starting quantity, so we could either make up a value or use an 
unknown constant to represent the starting amount.  To show that starting quantity does 
not affect the result, let us denote the initial quantity by the constant a.   Then the decay 
of Bismuth-210 can be described by the equation dadQ )87.0()(  . 
 
To find the half-life, we want to determine when the remaining quantity is half the 
original:  ½a.  Solving, 

daa )87.0(
2

1
  Dividing by a, 

d87.0
2

1
   Take the log of both sides 

 

 d87.0log
2

1
log 








 Use the exponent property of logs 

 

 87.0log
2

1
log d








 Divide to solve for d 
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  977.4
87.0log

2

1
log










d  days 

 
This tells us that the half-life of Bismuth-210 is approximately 5 days. 

 
 
Example 2 

Cesium-137 has a half-life of about 30 years.  If you begin with 200mg of cesium-137, 
how much will remain after 30 years?  60 years?  90 years? 
 
Since the half-life is 30 years, after 30 years, half the original amount, 100mg, will 
remain. 
 
After 60 years, another 30 years have passed, so during that second 30 years, another 
half of the substance will decay, leaving 50mg.   
 
After 90 years, another 30 years have passed, so another half of the substance will 
decay, leaving 25mg.  

 
 
Example 3 

Cesium-137 has a half-life of about 30 years.  Find the annual decay rate. 
 
Since we are looking for an annual growth rate, we will use an equation of the form 

tratQ )1()(  .  We know that after 30 years, half the original amount will remain.  
Using this information 

30)1(
2

1
raa   Dividing by a 

30)1(
2

1
r   Taking the 30th root of both sides 

r 1
2

1
30   Subtracting one from both sides, 

02284.01
2

1
30 r  

 
This tells us cesium-137 is decaying at an annual rate of 2.284% per year. 

 
 
Try it Now  

Chlorine-36 is eliminated from the body with a biological half-life of 10 days3.  Find the 
daily decay rate. 

                                                 
3 http://www.ead.anl.gov/pub/doc/chlorine.pdf 
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Example 4 
Carbon-14 is a radioactive isotope that is present in organic materials, and is commonly 
used for dating historical artifacts.   Carbon-14 has a half-life of 5730 years.  If a bone 
fragment is found that contains 20% of its original carbon-14, how old is the bone? 
 
To find how old the bone is, we first will need to find an equation for the decay of the 
carbon-14.  We could either use a continuous or annual decay formula – we will use the 
continuous decay formula since it is more common in scientific texts.  The half life tells 
us that after 5730 years, half the original substance remains.  Solving for the rate, 
 

5730

2

1 raea    Dividing by a 

5730

2

1 re   Taking the natural log of both sides 

 5730ln
2

1
ln re








 Use the inverse property of logs on the right side 

r5730
2

1
ln 








 Divide by 5730 

000121.0
5730

2

1
ln










r  

 
Now we know the decay will follow the equation taetQ 000121.0)(  .   To find how old 
the bone fragment is that contains 20% of the original amount, we solve for t so that 
Q(t) = 0.20a. 
 

taea 000121.020.0   
te 000121.020.0   

 te 000121.0ln)20.0ln(   
t000121.0)20.0ln(   

13301
000121.0

)20.0ln(



t  years 

 
The bone fragment is about 13301 years old. 

 
 
Try it Now 

2. In example 2 we learned that Cesium-137 has a half-life of about 30 years.  If you 
begin with 200mg of cesium-137, will it take more or less than 230 years until only 1 
milligram remains? 
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Doubling Time 
For decaying quantities, we asked how long it takes for half the substance to decay.  For 
growing quantities we might ask how long it takes for the quantity to double. 
 
 
Doubling Time 

The doubling time of a growing quantity is the time it takes for the quantity to double. 
 
 
Given the basic exponential growth equation tabth )( , doubling time can be found by 

solving for when the original quantity has doubled - by solving xbaa )(2  , or more 

simply  xb2 .  Again notice how the initial amount is irrelevant when solving for 
doubling time. 
 
 
Example 5 

Cancerous cells can grow exponentially.  If a cancerous growth contained 300 cells last 
month and 360 cells this month, how long will it take for the number of cancerous cells 
to double? 
 
Defining t to be time in months, with t = 0 corresponding to this month, we are given 
two pieces of data:  this month, (0, 360), and last month, (-1, 300). 
 
From this data, we can find an equation for the growth.  Using the form tabtC )( , we 

know immediately a = 360, giving tbtC 360)(  .  Substituting in (-1, 300), 

2.1
300

360

360
300

360300 1





 

b

b

b

 

This gives us the equation ttC )2.1(360)(   
 
To find the doubling time, we look for the time until we have twice the original amount, 
so when C(t) = 2a. 
 

taa )2.1(2   
t)2.1(2   

   t2.1log2log   

   2.1log2log t  
 
  802.3

2.1log

2log
t  years. 

It will take about 3.8 years for the number of cancerous cells to double. 
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Example 6 

A new social networking website has been growing exponentially, with the number of 
new members doubling every 5 months.  If they currently have 120 thousand users and 
this trend continues, how many users will the site have in 1 year? 
 
We can use the doubling time to find an equation for the growth of the site, and then use 
that equation to answer the question.  While we could use an arbitrary a as we have 
before for the initial amount, in this case, we know the initial amount was 120 thousand. 
 
If we use a continuous growth equation, it would look like rtetN 120)(  , measured in 
thousands of users after t months.  Based on the doubling time, there would be 240 
thousand users after 5 months.  This allows us to solve for the continuous growth rate: 

5120240 re  
52 re  

r52ln   

1386.0
5

2ln
r  

 
Now that we have an equation, tetN 1386.0120)(  , we can predict the number of users 
after 12 months: 

140.633120)12( )12(1386.0  eN  thousand users. 
 
So after 1 year, we would expect the site to have around 633,140 users. 

 
 
Try it Now 

3.  If tuition is increasing by 6.6% each year, how many years will it take to tuition to 
double?  

 
 
Newton’s Law of Cooling 
When a hot object is left in surrounding air that is lower temperature, the object’s 
temperature will decrease exponentially, leveling off towards the surrounding air 
temperature.  Since the graph levels off at the surrounding air temperature, the equation 
must have a horizontal asymptote at this value, meaning the equation for a decaying 
exponential must have been shifted up. 
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Newton’s Law of Cooling 
The temperature of an object, T, in surrounding air with temperature Ts will behave 
according to the formula 

s
kt TaetT )(  

Where  
t is time 
a is a constant determined by the initial temperature of the object 
k is a constant, the continuous rate of cooling of the object 

 
 
While an equation of the form s

t TabtT )(  could be used, the continuous form is 

more common. 
 
 
Example 7 

A cheesecake is taken out of the oven with an ideal internal temperature of 165 degrees 
Fahrenheit, and is placed into a 35 degree refrigerator.  After 10 minutes, the 
cheesecake has cooled to 150 degrees.  If you must wait until the cheesecake has cooled 
to 70 degrees before you eat it, how long will you have to wait? 
 
Since the surrounding air temperature in the refrigerator is 35 degrees, the cheesecake’s 
temperature will decay exponentially towards 35, following the equation  

35)(  ktaetT  
 
We know the initial temperature was 165, so 165)0( T .  Substituting in these values, 

130

35165

35165 0






a

a

aek

 

 
We were given another pair of data, 150)10( T , which we can use to solve for k 

35130150 10  ke  

0123.0
10
130

115
ln

10
130

115
ln

130

115

130115

10

10
























k

k

e

e

k

k

 

 
Together this gives us the equation for cooling: 35130)( 0123.0   tetT  
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Now we can solve for the time it will take for the temperature to cool to 70 degrees. 
3513070 0123.0   te  

te 0123.013035   
te 0123.0

130

35   

t0123.0
130

35
ln 








 

68.106
0123.0
130

35
ln












t  

 
It will take about 107 minutes, or a little over an hour and half, for the cheesecake to 
cool enough to be eaten. 

 
 
Try it Now 

4.  A thermos of water at 40 degrees Fahrenheit is placed into a 70 degree room.  One 
hour later the temperature has risen to 45 degrees.  How long will it take for the 
temperature to rise to 60 degrees? 

 
 
Logarithmic Scales 
For quantities that vary greatly in magnitude, a standard scale of measurement is not 
always effective, and utilizing logarithms can make the values more manageable.  For 
example, if the distances from the sun to the major bodies in our solar system are listed, 
you see they vary greatly. 
 

Planet Distance (millions of km)
Mercury 58 
Venus 108 
Earth 150 
Mars 228 
Jupiter 779 
Saturn 1430 
Uranus 2880 
Neptune 4500 

 
Placed on a linear scale – one with equally spaced values – these values get bunched up.   
 
 
 
 
 
 
 0 500 1000 1500 2000 2500 3000 3500 4000 4500 

Mercury 
Venus 
Earth 
Mars 

Jupiter Saturn Uranus Neptune 

distance 
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However, by taking the logarithm of these values makes the values more manageable.  
Placing these values on a number line by their log values makes the relative distances 
more apparent.   
 

Planet Distance (millions of km) log(distance)
Mercury 58 1.76 
Venus 108 2.03 
Earth 150 2.18 
Mars 228 2.36 
Jupiter 779 2.89 
Saturn 1430 3.16 
Uranus 2880 3.46 
Neptune 4500 3.65 

 

 
 
Sometimes a log scale will show the logarithm of values, but more commonly the values 
are listed, sometimes as powers of 10 as in the scale here 
 

 
 
Example 8 

Estimate the value of point P on the log scale above 
 
The point P appears to be half way between -2 and -1 in log value, so if V is the value of 
this point, 

5.1)log( V   Rewriting in exponential form, 

0316.010 5.1  V  
 
 
 
 
 
 
 

102 103 104 105 106 101100 10-1 10-2 107 

A BP C D 

Mercury Venus 
Neptune 

1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5

Earth 
Mars

3.75

Jupiter Saturn Uranus

4 

=10000 =1000=100 

log(distance)
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Example 9 
Place the number 6000 on a logarithmic scale. 
 
Since 8.3)6000log(  , this point would belong on the log scale about here: 
 

 
 
 
Try it Now 

5.  Plot the data in the table below on a logarithmic scale4 

 
 
 
Notice that on a log scale from above, the visual distance on the scale between points A 
and B and between C and D is the same.  When looking at the values these points 
correspond to, notice B is ten times the value of A, and D is ten times the value of C.  A 
visual linear difference between points corresponds to a relative (ratio) change between 
the corresponding values. 
 
Logarithms are useful for showing these relative changes.  For example, comparing 
$1,000,000 to $10,000, the first is 100 times larger than the second. 

210100
000,10

000,000,1
  

Likewise, comparing $1000 to $10, the first is 100 times larger than the second. 
210100

10

000,1
  

 
When one quantity is ten times larger than another, we say it is one order of magnitude 
larger.  In both these cases, the first number was two orders of magnitude larger than the 
second.    

                                                 
4 From http://www.epd.gov.hk/epd/noise_education/web/ENG_EPD_HTML/m1/intro_5.html, retrieved 
Oct 2, 2010 

102 103 104 105 106101 100 10-1 10-2 107 

6000

Source of Sound/Noise 
Approximate Sound Pressure 
in µPa (micro Pascals) 

Launching of the Space Shuttle 2,000,000,000 
Full Symphony Orchestra 2,000,000 
Diesel Freight Train at High Speed at 25 m 200,000 
Normal Conversation 20,000 
Soft Whispering at 2 m in Library 2,000 
Unoccupied Broadcast Studio  200 
Softest Sound a human can hear 20 
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Notice that the order of magnitude can be found as the common logarithm of the ratio of 
the quantities.  On the log scale above, B is one order of magnitude larger than A, and D 
is one order of magnitude larger than C. 
 
 
Orders of Magnitude 

Given two values A and B, to determine how many orders of magnitude B is greater 
than A,  

Difference in orders of magnitude = 







B

A
log  

 
 
Example 10 

On the log scale above, how many orders of magnitude larger is C than B.   
 
The value B corresponds to 100102   
The value C corresponds to 000,100105   
 

The relative change is 3
2

5

10
10

10
1000

100

000,100
 .  The log of this value is 3.  C is 

three orders of magnitude greater than B, which can be seen on the log scale by the 
visual difference between the points on the scale. 

 
 
Try it Now 

6.  Using the table from Try it Now #5, what is the difference of order of magnitude 
between the softest sound a human can hear and the launching of the space shuttle.   

 
 
An example of a logarithmic scale is the Moment Magnitude Scale (MMS) used for 
earthquakes.  This scale is commonly and mistakenly called the Richter Scale, which was 
a very similar scale succeeded by the MMS. 
 
 
Moment Magnitude Scale 

For an earthquake with seismic moment S, a measurement of earth movement, the 
MMS value, or magnitude of the earthquake, is 
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Where S0 is a baseline measure for the seismic moment.  16
0 10S  
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Example 11 
If one earthquake has a MMS magnitude of 6.0, and another has a magnitude of 8.0, 
how much more powerful – more earth movement – does the second earthquake have? 
 
Since the first earthquake has magnitude 6.0, we can find the amount of earth 
movement.  The value of S0 is not particularly relevant, so we will not replace it with its 
value. 
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Doing the same with the second earthquake with a magnitude of 8.0, 
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From this, we can see that this second value’s earth movement is 1000 times as large as 
the first earthquake. 

 
 
Example 12 

One earthquake has magnitude of 3.0.  If a second earthquake has twice as much earth 
movement as the first earthquake, find the magnitude of the second quake. 
 
Since the first quake has magnitude 3.0, 
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Since the second earthquake has twice as much earth movement, for the second quake, 

0
5.4102 SS   

 
Finding the magnitude, 








 


0

0
5.4102

log
3

2

S

S
M  

  201.3102log
3

2 5.4 M  

 
The second earthquake with twice as much earth movement will have a magnitude of 
about 3.2. 

 
 
In fact, using log properties, we could show that whenever the earth movement doubles, 
the magnitude will increase by about 0.201: 
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This illustrates the most important feature of a log scale: that multiplying the quantity 
being considered will add to the scale value, and vice versa. 
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Important Topics of this Section 
Radioactive decay 
Half life 
Doubling time 
Newton’s law of cooling 
Logarithmic Scales 
Orders of Magnitude 
Moment Magnitude scale 

 
 
Try it Now Answers 

1. 067.01
2

1
10 r  or 6.7% is the daily rate of decay. 

2. Less than 230 years, 229.3157 to be exact 
3. 10.845 years or approximately 11 years tuition will have doubled 
4. 6.026 hours 
5.  

 

6. 8
1

9

10
102

102


x

x
  The sound pressure in µPa created by launching the space shuttle is 8 

orders of magnitude greater than the sound pressure in µPa created by the softest sound 
a human ear can hear. 

 

105 106 107 108 109104 103 102 101 1010 

Softest 
Sound 

Broadcast 
room 

Soft 
Whisper 

Conversation

Train
Symphony Space 

Shuttle 
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Section 4.6 Exercises 
 
1. You go to the doctor and he gives you 13 milligrams of radioactive dye. After 12 

minutes, 4.75 milligrams of dye remain in your system. To leave the doctor's office, 
you must pass through a radiation detector without sounding the alarm. If the detector 
will sound the alarm if more than 2 milligrams of the dye are in your system, how 
long will your visit to the doctor take, assuming you were given the dye as soon as 
you arrived? 
 

2. You take 200 milligrams of a headache medicine, and after 4 hours, 120 milligrams 
remain in your system.  If the effects of the medicine wear off when less than 80 
milligrams remain, when will you need to take a second dose? 
 

3. The half-life of Radium-226 is 1590 years.  If a sample contains 200 mg, how many 
milligrams will remain after 1000 years? 
 

4. The half-life of Fermium-253 is 3 days.  If a sample contains 100 mg, how many 
milligrams will remain after 1 week? 
 

5. The half-life of Erbium-165 is 10.4 hours.  After 24 hours a sample has been reduced 
to a mass of 2 mg.  What was the initial mass of the sample, and how much will 
remain after 3 days? 
 

6. The half-life of Nobelium-259 is 58 minutes.  After 3 hours a sample has been 
reduced to a mass of 10 mg.  What was the initial mass of the sample, and how much 
will remain after 8 hours? 
 

7. A scientist begins with 250 grams of a radioactive substance.  After 225 minutes, the 
sample has decayed to 32 grams.  Find the half-life of this substance.  
 

8. A scientist begins with 20 grams of a radioactive substance.  After 7 days, the sample 
has decayed to 17 grams.  Find the half-life of this substance.  
 

9. A wooden artifact from an archeological dig contains 60 percent of the carbon-14 that 
is present in living trees.  How long ago was the artifact made? (the half-life of 
carbon-14 is 5730 years) 
 

10. A wooden artifact from an archeological dig contains 15 percent of the carbon-14 that 
is present in living trees.  How long ago was the artifact made? (the half-life of 
carbon-14 is 5730 years) 
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11. A bacteria culture initially contains 1500 bacteria and doubles every half hour.  Find 
the size of the population after:  a) 2 hours,  b) 100 minutes 
 

12. A bacteria culture initially contains 2000 bacteria and doubles every half hour.  Find 
the size of the population after:  a) 3 hours,  b) 80 minutes 
 

13. The count of bacteria in a culture was 800 after 10 minutes and 1800 after 40 
minutes.   

a. What was the initial size of the culture?   
b. Find the doubling period.   
c. Find the population after 105 minutes. 
d. When will the population reach 11000? 

 
14. The count of bacteria in a culture was 600 after 20 minutes and 2000 after 35 

minutes.   
a. What was the initial size of the culture?   
b. Find the doubling period.   
c. Find the population after 170 minutes. 
d. When will the population reach 12000? 

 
15. Find the time required for an investment to double in value if invested in an account 

paying 3% compounded quarterly. 
 

16. Find the time required for an investment to double in value if invested in an account 
paying 4% compounded monthly 
 

17. The number of crystals that have formed after t hours is given by   0.01320 tn t e .  

How long does it take the number of crystals to double?  
 

18. The number of building permits in Pasco t years after 1992 roughly followed the 

equation   0.143400 tn t e .  What is the doubling time? 

 
19. A turkey is pulled from the oven when the internal temperature is 165° Fahrenheit, 

and is allowed to cool in a 75° room.  If the temperature of the turkey is 145° after 
half an hour, 

a. What will the temperature be after 50 minutes? 
b. How long will it take the turkey to cool to 110°? 
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20. A cup of coffee is poured at 190° Fahrenheit, and is allowed to cool in a 70° room.  If 
the temperature of the coffee is 170° after half an hour, 

a. What will the temperature be after 70 minutes? 
b. How long will it take the coffee to cool to 120°? 

 
21. The population of fish in a farm-stocked lake after t years could be modeled by the 

equation   0.6

1000

1 9 t
P t

e


.  

a. Sketch a graph of this equation 
b. What is the initial population of fish? 
c. What will the population be after 2 years? 
d. How long will it take for the population to reach 900? 

 
22. The number of people in a town that have heard rumor after t days can be modeled by 

the equation   0.7

500

1 49 t
N t

e


.  

a. Sketch a graph of this equation 
b. How many people started the rumor? 
c. How many people have heard the rumor after 3 days?? 
d. How long will it take 300 people to have heard the rumor? 

 
Find the value of the number shown on each logarithmic scale 

23.  24.  

25.  26.  

 
Plot each set of approximate values on a logarithmic scale 
27. Intensity of sounds: Whisper: 10 210  /W m , Vacuum: 4 210 /W m , Jet: 2 210  /W m  

 

28. Mass: Amoeba: 510 g , Human: 510 g , Statue of Liberty: 810 g  

 
29. The 1906 San Francisco earthquake had a magnitude of 7.9 on the MMS scale. At the 

same time there was an earthquake with magnitude 4.7 that caused only minor 
damage. How many times more intense was the San Francisco earthquake than the 
second one? 
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30. The 1906 San Francisco earthquake had a magnitude of 7.9 on the MMS scale. At the 
same time there was an earthquake with magnitude 6.5 that caused less damage. How 
many times more intense was the San Francisco earthquake than the second one? 
 

31. One earthquake has magnitude 3.9. If a second earthquake has 750 times as much 
energy as the first, find the magnitude of the second quake. 
 

32. One earthquake has magnitude 4.8. If a second earthquake has 1200 times as much 
energy as the first, find the magnitude of the second quake. 
 

33. A colony of yeast cells is estimated to contain 106 cells at time t = 0. After collecting 
experimental data in the lab, you decide that the total population of cells at time t 

hours is given by the function   6 0.49510510 tf t e    [UW] 

a. How many cells are present after one hour? 
b. How long does it take of the population to double?. 
c. Cherie, another member of your lab, looks at your notebook and says: ...that 

formula is wrong, my calculations predict the formula for the number of yeast 

cells is given by the function.    0.693147610 2.042727  
t

f t  . Should you be 

worried by Cherie’s remark? 
d. Anja, a third member of your lab working with the same yeast cells, took 

these two measurements: 67.246 10 cells after 4 hours; 616.504 10  cells 
after 6 hours. Should you be worried by Anja’s results? If Anja’s 
measurements are correct, does your model over estimate or under estimate 
the number of yeast cells at time t? 
 

34. As light from the surface penetrates water, its intensity is diminished. In the clear 
waters of the Caribbean, the intensity is decreased by 15 percent for every 3 meters of 
depth. Thus, the intensity will have the form of a general exponential function.  [UW] 

a. If the intensity of light at the water’s surface is 0I , find a formula for ( )I d , the 

intensity of light at a depth of d meters. Your formula should depend on 0I and 

d. 
b. At what depth will the light intensity be decreased to 1% of its surface 

intensity? 
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35. Myoglobin and hemoglobin are oxygen carrying molecules in the human body. 
Hemoglobin is found inside red blood cells, which flow from the lungs to the muscles 
through the bloodstream. Myoglobin is found in muscle cells. The function 

 
1

p
Y M p

p
 


 calculates the fraction of myoglobin saturated with oxygen at a 

given pressure p torrs. For example, at a pressure of 1 torr, M(1) = 0.5, which means 
half of the myoglobin (i.e. 50%) is oxygen saturated. (Note: More precisely, you need 
to use something called the “partial pressure”, but the distinction is not important for 

this problem.) Likewise, the function  
2.8

2.8 2.826

p
Y H p

p
 


 calculates the fraction 

of hemoglobin saturated with oxygen at a given pressure p.   [UW] 
a. The graphs of ( )M p  and ( )H p  are 

given here on the domain  
0 ≤ p ≤ 100; which is which? 

b. If the pressure in the lungs is 100 
torrs, what is the level of oxygen 
saturation of the hemoglobin in the 
lungs? 
 

c. The pressure in an active muscle is 20 torrs. What is the level of oxygen 
saturation of myoglobin in an active muscle? What is the level of hemoglobin 
in an active muscle? 

d. Define the efficiency of oxygen transport at a given pressure p to be 
( )  ( )M p H p . What is the oxygen transport efficiency at 20 torrs? At 40 

torrs? At 60 torrs? Sketch the graph of ( )  ( )M p H p ; are there conditions 

under which transport efficiency is maximized (explain)? 
 

36. The length of some fish are modeled by a von Bertalanffy growth function. For 

Pacific halibut, this function has the form    0.18200 1 0.957 tL t e   where ( )L t  is 

the length (in centimeters) of a fish t years old.  [UW] 
a. What is the length of a new-born halibut at birth? 
b. Use the formula to estimate the length of a 6–year–old halibut. 
c. At what age would you expect the halibut to be 120 cm long? 
d. What is the practical (physical) significance of the number 200 in the formula 

for ( )L t ? 
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37. A cancerous cell lacks normal biological growth regulation and can divide 
continuously. Suppose a single mouse skin cell is cancerous and its mitotic cell cycle 
(the time for the cell to divide once) is 20 hours. The number of cells at time t grows 
according to an exponential model.  [UW] 

a. Find a formula ( )C t  for the number of cancerous skin cells after t hours. 

b. Assume a typical mouse skin cell is spherical of radius 50×10−4 cm. Find the 
combined volume of all cancerous skin cells after t hours. When will the 
volume of cancerous cells be 1 cm3? 

 
38. A ship embarked on a long voyage. At the start of the voyage, there were 500 ants in 

the cargo hold of the ship. One week into the voyage, there were 800 ants. Suppose 
the population of ants is an exponential function of time. [UW] 

a. How long did it take the population to double? 
b. How long did it take the population to triple? 
c. When were there be 10,000 ants on board? 
d. There also was an exponentially-growing population of anteaters on board. At 

the start of the voyage there were 17 anteaters, and the population of anteaters 
doubled every 2.8 weeks. How long into the voyage were there 200 ants per 
anteater? 
 

39. The populations of termites and spiders in a certain house are growing exponentially. 
The house contains 100 termites the day you move in. After 4 days, the house 
contains 200 termites. Three days after moving in, there are two times as many 
termites as spiders. Eight days after moving in, there were four times as many 
termites as spiders.  How long (in days) does it take the population of spiders to 
triple?  [UW] 
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Section 4.7 Fitting Exponentials to Data 
 
In the previous section, we saw numbers lines using logarithmic scales.  It is also 
common to see two dimensional graphs with one or both axes represented on a 
logarithmic scale. 
 
One common use of a logarithmic scale on the vertical axis is in graphing quantities that 
are changing exponentially, since it helps reveal relative differences.  This is commonly 
used in stock charts, since values historically have grown exponentially over time.   Both 
stock charts below show the Dow Jones Industrial Average, from 1928 to 2010. 

 
 

 
 
 
Both charts have a linear horizontal scale, but the first graph has a linear vertical scale, 
while the second has a logarithmic vertical scale.  The first scale is the one we are more 
used to, and shows what appears to be a strong exponential trend, at least up until the 
year 2000.   
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Example 1 
There were stock market drops in 1929 and 2008.  Which was larger? 
 
In the first graph, the stock market drop around 2008 looks very large, and in terms of 
dollar values, it was indeed a large drop.  However the second graph shows relative 
changes, and the drop in 2009 seems less major on this graph, and in fact the drop 
starting in 1929 was, percentage-wise, much more significant.   
 
Specifically, in 2008, the Dow value dropped from about 14,000 to 8,000, a drop of 
6,000.  This is obviously a large value drop, and accounts to about a 43% drop.  In 
1929, the Dow value dropped from a high of around 380 to a low of 42 by July of 1932.  
While value-wise this drop of 338 is smaller than the 2008 drop, but this corresponds to 
a 89% drop, a much larger relative drop than in 2008.  The logarithmic scale shows 
these relative changes. 

 
 
The second graph above, in which one axis uses a linear scale and the other axis uses a 
logarithmic scale, is an example of a semi-log graph.   
 
 
Semi-log and Log-log Graphs 

A semi-log graph is a graph with one axis using a linear scale and one axis using a 
logarithmic scale. 
A log-log graph is a graph with both axes using logarithmic scales. 

 
 
Example 2 

Plot 5 points from the equation xxf )2(3)(   on a semi-log graph with a logarithmic 
scale on the vertical axis. 
 
To do this, we need to find 5 points on the graph, then calculate the logarithm of the 
output value.  Arbitrarily choosing 5 input values, 
 

 
 
 
 

x f(x) log(f(x)) 
-3 

8

3
)2(3 3 

 -0.426 
-1 

2

3
)2(3 1 

 0.176 
0 3)2(3 0   0.477 
2 12)2(3 2   1.079 
5 96)2(3 5   1.982 
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Plotting these values on a semi-log graph, 

-1

0

1

2

3

-4 -3 -2 -1 0 1 2 3 4 5 6

 
 
 
Notice that on this semi-log scale, values from the exponential function appear linear.  
We can show this is expected by utilizing logarithmic properties.  For the function 

xabxf )( , finding log(f(x)) gives 

   xabxf log)(log    Utilizing the sum property of logs, 

     xbaxf loglog)(log   Now utilizing the exponent property, 

     bxaxf loglog)(log   
 
 
This relationship is linear, with log(a) as the vertical intercept, and log(b) as the slope.  
This relationship can also be utilized in reverse. 
 
 
Example 3 

An exponential graph is plotted on a semi-log graph below.  Find an equation for the 
exponential function g(x) that generated this graph. 

-3

-2

-1

0

1

2

3

4

5

-4 -3 -2 -1 0 1 2 3 4

 
The graph is linear, with vertical intercept at (0,1).  Looking at the change between the 

points (0,1) and (4,4), we can determine the slope of the line is 
4

3
.  Since the output is 

log(g(x)), this leads to the equation   xxg
4

3
1)(log  .   

 

x 

log(f(x)) 

x 

log(g(x)) 
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We can solve this formula for g(x) by rewriting as an exponential and simplifying: 

  xxg
4

3
1)(log    Rewriting as an exponential, 

x
xg 4

3
1

10)(


   Breaking this apart using exponent rules, 

x
xg 4

3
1 1010)(    Using exponent rules to group the second factor, 

x

xg 







 4

3
1 1010)(   Evaluating the powers of 10, 

 xxg 623.510)(   
 
 
Try it Now 

1. An exponential graph is plotted on a semi-log graph below.  Find an equation for the 
exponential function g(x) that generated this graph. 

-1

0

1

2

3

4

5

-4 -3 -2 -1 0 1 2 3 4

 
 
 
Fitting Exponential Functions to Data 
Some technology options provide dedicated functions for finding exponential functions 
that fit data, but many only provide functions for fitting linear functions to data.  The 
semi-log scale provides us with a method to fit an exponential function to data by 
building upon the techniques we have for fitting linear functions to data.   
 
 
To fit an exponential function to a set of data using linearization 

1. Find the log of the data output values 
2. Find the linear equation that fits the (input, log(output)) pairs.  This equation will be 

of the form log(f(x)) = b + mx 
3. Solve this equation for the exponential function f(x) 

 
 
 
 
 

x 

log(g(x)) 
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Example 4 
The table below shows the cost in dollars per megabyte of storage space on computer 
hard drives from 1980 to 20045, and the data is shown on a standard graph to the right, 
with the input changed to years after 1980 

 
 
This data appears to be decreasing exponentially.  To find an equation for this decay, 
we would start by finding the log of the costs.  

 
 
As expected, the graph of the log of costs appears fairly linear, suggesting the original 
data will be fit reasonably well with an exponential equation.  Using technology, we can 
find an equation to fit the log(Cost) values.  Using t as years after 1980, regression gives 
the equation: 

ttC 231.0794.2))(log(   
 
Solving for C(t), 

ttC 231.0794.210)(   
ttC 231.0794.2 1010)(   

 ttC 231.0794.2 1010)(   

 ttC 5877.0622)(    
 
This equation suggests that the cost per megabyte for storage on computer hard drives is 
decreasing by about 41% each year. 
 

                                                 
5 Selected values from http://www.swivel.com/workbooks/26190-Cost-Per-Megabyte-of-Hard-Drive-
Space, retrieved Aug 26, 2010 

Year Cost per MB 
1980 192.31 
1984 87.86 
1988 15.98 
1992 4 
1996 0.173 
2000 0.006849 
2004 0.001149 

Year Cost per MB log(Cost) 
1980 192.31 2.284002 
1984 87.86 1.943791 
1988 15.98 1.203577 
1992 4 0.60206 
1996 0.173 -0.76195 
2000 0.006849 -2.16437 
2004 0.001149 -2.93952 
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Using this function, we could predict the cost of storage in the future.  Predicting the 
cost in the year 2020 (t = 40): 

  000000364.05877.0622)40( 40 C dollars per megabyte, a really small number.  
That is equivalent to $0.36 per terabyte of hard drive storage. 
 
Comparing the values predicted by this model to the actual data, we see the model 
matches the original data in order of magnitude, but the specific values appear quite 
different.  This is, unfortunately, the best exponential that can fit the data.  It is possible 
that a different model would fit the data better, or there could just be a wide enough 
variability in the data that no relatively simple model would fit the data any better. 
 

 
 
 
Try it Now 

2. The table below shows the value V, in billions of dollars, of US imports from China 
t years after 2000.   

 
This data appears to be growing exponentially.  Linearize this data and build a model to 
predict how many billions of dollars of imports we could expect in 2011. 

 
 
Important Topics of this Section 

Semi-log graph 
Log-log graph 
Linearizing exponential functions 
Fitting an exponential equation to data 

 
 
Try it Now Answers 

1. xxf )3162.0(100)(   

2. ttV )2078.1(545.90)(  .  Predicting in 2011, 45.722)11( V billion dollars

Year 
Actual Cost 
per MB 

Cost predicted 
by model 

1980 192.31 622.3 
1984 87.86 74.3 
1988 15.98 8.9 
1992 4 1.1 
1996 0.173 0.13 
2000 0.006849 0.015 
2004 0.001149 0.0018 

year 2000 2001 2002 2003 2004 2005 
t 0 1 2 3 4 5 
V 100 102.3 125.2 152.4 196.7 243.5 
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Section 4.7 Exercises 
 
Graph each function on a semi-log scale, the find a formula for the linearized function in the 

form   log f x mx b   

1.    4 1.3
x

f x      2.    2 1.5
x

f x     

3.    10 0.2
x

f x      4.    30 0.7
x

f x   

 
The graph below is on a semi-log scale, as indicated.  Find an equation for the exponential 
function ( )y x . 

5.    6.  
 

 7.   8.  
 
Use regression to find an exponential equation that best fits the data given. 
 
9. x 1 2 3 4 5 6 

y 1125 1495 2310 3294 4650 6361
 

10. x 1 2 3 4 5 6 
y 643 829 920 1073 1330 1631

 

11. x 1 2 3 4 5 6 
y 555 383 307 210 158 122
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12. x 1 2 3 4 5 6 
y 699 701 695 668 683 712

 

 
 
13. Total expenditures (in billions of dollars) in the US for nursing home care are shown below.  

Use regression to find an exponential equation that models the data.  What does the model 
predict expenditures will be in 2015? 

Year 1990 1995 2000 2003 2005 2008 
Expenditure 53 74 95 110 121 138 

 
 
14. Light intensity as it passes through decreases exponentially with depth.  The data below 

shows the light intensity (in lumens) at various depths.  Use regression to find an equation 
that models the data.  What does the model predict the intensity will be at 25 feet? 

Depth (ft) 3 6 9 12 15 18 
Lumen  11.5 8.6 6.7 5.2 3.8 2.9 

 
 
15. The average price of electricity (in cents per kilowatt hour) from 1990-2008 is given below.  

Determine if a linear or exponential model better fits the data, and use the better model to 
predict the price of electricity in 2014. 

Year 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 
Cost  7.83 8.21 8.38 8.36 8.26 8.24 8.44 8.95 10.40 11.26 

 
 
16. The average cost of a loaf of white bread from 1986-2008 is given below. Determine if a 

linear or exponential model better fits the data, and use the better model to predict the price 
of a loaf of bread in 2016. 

Year 1986 1988 1990 1995 1997 2000 2002 2004 2006 2008 
Cost  0.57 0.66 0.70 0.84 0.88 0.99 1.03 0.97 1.14 1.42 
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Solutions to Selected Exercises 

Chapter 1 

Section 1.1 

1. a.  40 13f     

    b. 2 Tons of garbage per week is produced by a city with a population of 5,000. 
3. a. In 1995 there are 30 ducks in the lake  
    b. In 2000 there are 40 ducks in the late 
5. a ,b, d, e   7. a, b   9. a, b, d 
11. b    13. b, c, e, f  15.    1 1,   3 1f f   

17.    2 4,    3 2g g       19.    3 53,   2 1f f   

   2f     1f     0f    1f    2f  

21. 8 6 4 2 0 
23.  49 18 34 4 21 
25.  4 -1 0 1 -4 
27. 4 4.414 4.732 5 5.236 
29. -4 -6 -6 -4 0 
31.  5 DNE -3 -1 -1/3 
33.  1/4 1/2 1 2 4 
 

35. a. -6  b.-16    37. a. 5  b. 
5

3
  

39. a. iii  b. viii c. I d. ii e. vi f. iv g. v  h. vii 
41. a. iv b. ii c. v d. I e. vi f. iii 

43. 36)9()3( 22  yx  

45. ሺaሻ  ሺbሻ  

                        

47a.  t  b. a  c. r  d. L: (c, t)  and K: (a, p) 
 
 
 
 
 

he
ig

ht
  o

f h
ea

d 

time

he
ig

ht
 

age 

307



520 
 

 

Section 1.2 

1. D: [-5, 3)     R: [0,2]  3. D: 2 8t    R:  6 8g t   

5. D: [0,4]  R: [-3, 0]  7. ),2[    9. ]3,(             

11.    ,6 ) 6,(     13. 





   ,

2

1
 ) 

2

1
,(    

15.    4, 4   4,      17.      ,2 2,11 ) 11,(  

 
  1f    0f   2f   4f  

19.  -4 6 20 34 
21. -1 -2 7 5 
23.  -5 3 3 16 
 

25.  












   

 42 4

212

1 62

xif

xif

xif

xf   27.   2

3          0

        0

if x
f x

x if x


  

 

29.  













52                    2

21            1

13          32

xif

xifx

xifx

xf   

31.  33.   

35.  
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Section 1.3 

1. a) 6 million dollars per year   b) 2 million dollars per year    

3. 
3

1

14

54





    5. 6 

7. 27     9. 
27

352
 

11. 4b+4    13. 3 

15. 
16913

1




h
   17. 2399 hh   

19. hx 24   

21.  Increasing:  2,5.1 .  Decreasing:     ,25.1,  

23. Increasing:    4,31,  .  Decreasing:     ,43,1  

25.  Increasing, concave up  27.  Decreasing, concave down 

29. Decreasing, concave up  31. Increasing, concave down 

33. Concave up  1, .  Concave down  ,1 .  Inflection point at (1, 2) 

35. Concave down     ,33,  

37. Local minimum at (3, -22).  Inflection at (2, -11). 

Increasing on  ,3 .  Decreasing  3,  

Concave up     ,20, .  Concave down  2,0  

 
39.  Local minimum at (-2, -2) 

Decreasing  2,3   

Increasing   ,2  

Concave up   ,3  

 
 
 
41. Local minimums at (-3.152, -47.626)  

    and (2.041, -32.041) 
Local maximum at (-0.389, 5.979) 
Inflection points at (-2, -24) and (1, -15) 

Increasing     ,041.2389.0,152.3  

Decreasing    041.2,389.0152.3,   

Concave up     ,12,  

Concave down  1,2  
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Section 1.4 

1. 36))0(( gf .  57))0(( fg  

3. 4))0(( gf .  4))0(( fg  

5. 4 7. 9 9. 4 11. 7 13. 0 15. 4 17. 3 19. 2  

21.   
7

x
f g x        7 36g f x x   

23.    3 xxgf       2 3g f x x   

25.    5 1f g x x        5 1g f x x   

27.      4

6 6f g h x x    

29a.    0, 2 2,   b.      ,22,   c.  ,0  

31. b     33a.     
3

3 10 20

4

t
r V t




  b. 208.94 

35.     22, g x x f x x     37.    3
, 5f x g x x

x
    

39.    3 , 2f x x g x x    , or     2, 3  xxgxxf  

41a.          2f f x a ax b b a x ab b            

     b.  
16

8
6 


 xxg  or  

61

8
6 


 xxg  

43a.   

2

2

70
60

10
60

s

C f s
s

 
 
 
   
 

  b.     
 

2

2

70 60

10 60

h
C g h

h



  

     c.   
2

2

5280 70

3600 10

m
v C m

m

 
   

 

Section 1.5 

1. Horizontal shift right 49 units  3. Horizontal shift left 3 units 
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5. Vertical shift up 5 units   7. Vertical shift down 2 units 

9. Horizontal shift right 2 units, Vertical shift up 3 units 

11.   12  12  xxf   13.   4
3

1
 43 




x
xf  

15.        1 ,      1g x f x h x f x     

17.   19.  

21.       23.  

 

25. 3 2y x      27. 3 1y x     29. y x    

   

31.  

33a.   6 xf x       b.   22 3 6 3xf x        

35.  2
1 2y x       37. 1y x    

39a. Even b. Neither c. Odd 

41. Reflect f(x) about the x-axis  

43. Vertically stretch y values by 4 
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45. Horizontally compress x values by 1/5  

47. Horizontally stretch x values by 3 

49. Reflect f(x) about the y-axis and vertically stretch y values by 3 

51.  4 4f x x    

53.  
 2

1 1
2 3 3

3 3 2
f x

x
   


 

55.       152152 2  xxf  

57. Horizontal shift left 1 unit, vertical stretch y values by 4, vertical shift down 5 units    

  becomes   

59. Horizontal shift right 4 units, vertical stretch y values by 2, reflect over x axis, 
vertically shift up 3 units. 

 becomes       

61. Vertically compress y values by ½  

 becomes  
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63. Horizontally stretch x values by 3, vertical shift down 3 units 

   becomes    

65. Reflected over the y axis, horizontally shift right 4 units     4a x x    

  becomes  

67. This function is increasing on ),1(   and decreasing on )1,(   

69. This function is decreasing on )4,(  

71. This function is concave down on ),3(  and concave up on )3,(   

73. This function is concave up everywhere 

75.  xf     77.  xf3    79.  xf 2  

81. 







xf
2

1
2    83.   22 xf    85.   31  xf  

87.  2
2 2 3y x      89.  

3
1

1 2
2

y x
    
 

 91.   122  xy  

93. 
 2

1
3

2
y

x


 


  95. 2 1 3y x      97.   12

2

1
3  xy  

99a. : 3.5 6Domain x    d. : 9 7Range y    
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Section 1.6 

1. 6  3. -4  5. ½    

7a. 3  b. 2  c. 2  d. 3 

9a. 0  b. 7  c. 1  d. 3 

11.    

 x  1 4 7 12 16 

xf (1 ) 3 6 9 13 14 

 

13.  1 3f x x     15.  1 2f x x      17.  1 7

11

x
f x 

  

19. Restricted domain  17, 7x f x x     

21. Restricted domain  10,  5x f x x    

 23a.     3
3 5 5f g x x x     b.    xxxfg  3 3 55  

     c. This means that they are inverse functions (of each other) 

 

Chapter 2 

Section 2.1 

1.   1700 45000P t t    3.   10 2D t t    5.   nnM 24     

7. Increasing    9. Decreasing   11. Decreasing 
13. Increasing    15. Decreasing   17. 3   

19. 
1

3
     21. 

4

5
    23. 

2

3
 

25. - 0.05  mph   (or 0.05 miles per hour toward her home)  
27. Population is decreasing by 400 people per year 
29. Monthly charge in dollars has an initial base charge of $24, and increases by $0.10 
for each minute talked 
31. Terry started at an elevation of 3,000 ft and is descending by 70ft per second. 

33. 1
5

3
 xy    35. 3 2y x     37. 

1 11

3 3
y x    
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39. 1.5 3 y x      41. 
2

1
3

y x     43. 2 3y x    

45.   0.004 34P n n    

47.  The 1st ,3rd & 4th tables are linear: respectively   
 53)(. 1  xxg        3. 55)(  xxf          4. 23)(  xxk  

49a. 
5 160

9 9
C F     b. 

9
32

5
F C    c. F 4.9  

 

Section 2.2 

1. E     3. D    5. B 

7.   9.   

11.   13.   

17.    19.  
 

21.  

23. a.    3
2 4

4
g x x    b. ¾   c. -5/2 
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25. 3y      

27. 3x    
 Vertical Intercept Horizontal Intercept 
29.  (0,2) (2,0) 
31.  (0,-5) (5/3, 0) 
33.  (0,4) (-10,0) 
 
35.  Line 1:   10m     Line 2:  10m       Parallel 
37.  Line 1:  2 m     Line 2:  1m    Neither 

39.  Line 1:  
2

 
3

m     Line 2:  
3

2
m    Perpendicular 

41. 25  xy   43. 
1

1
2

y t      45. (-1,1) 

47. (1.2, 10)   49. Plan B saves money if the miles are 
1

111
9

  

Section 2.3 

1a. 696 people  b. 4 years   c. 174 people per year 

  d. 305 people  e.    305 174P t t    f. 2219 people. 

3a.   0.35 30C x x   

  b. The flat monthly fee is $10 and there is an additional $0.15 fee for each additional 
minute used  
  c. $113.05  

5a.   190 4170P t t   b. 6640 moose 

7a.   16 2.1R t t    b. 5.5 billion cubic feet c. During the year 2017 

9. More than 133 minutes   11. More than  $42,857.14  worth of jewelry 

13. 20.012 square units   15. 6 square units 

17. 
2

2

b
A

m
   

19a. Hawaii   b. $80,640   c. During the year 1933 
21. 26.225 miles 
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Section 2.4 

1.  
http://www.mathcracker.com/scatter_plot.php 

3. 1.971 3.519,   0.967y x r    5. 0.901 26.04,   0.968y x r      

7. 17.483 17 situps    9. D   11. A 

13. Yes, trend appears linear because  r =0.994 and will exceed 35% near the end of the 
year 2019. 
 

Section 2.5 

1. 12
2

1
  xy    3.  3 3 3y x     

5.  7.  9.  

11. 
9 13

     
5 5

x or x     13. 
1 15

     
2 2

x or x   

15. 
5 1

     
3 3

x or x     

 Horizontal Intercepts Vertical Intercept 
17. (-6, 0 )  and (4, 0) (0, -8) 
19. none (0, -7) 
 
21.  11 1x     or )1,11(  

23.  5 ,  1x x     or ),5[]1,(   

25. 
13 5

3 3
x     or )

3

5
,

3

13
(   
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Chapter 3 

Section 3.1 

1. As  )(,   xfx  As  )(,   xfx  

3. As  )(,   xfx   As    xfx ,    

5. As    xfx ,    As    xfx ,    

7. As    xfx ,    As  )(,  xfx  
9. 7th Degree, Leading coefficient 4 
11. 2nd Degree, Leading coefficient -1 
13. 4th Degree, Leading coefficient -2 
15. 3rd Degree, Leading coefficient 6 
17. As    xfx ,    As    xfx ,    
19. As  )(,   xfx  As  )(,   xfx  
21. intercepts: 5, turning points: 4   23. 3   
25. 5   27. 3  29. 5 
31. Horizontal Intercepts (1,0), (-2, 0), (3, 0)        Vertical Intercept (0, 12) 
33. Horizontal Intercepts (1/3, 0) (-1/2, 0)            Vertical Intercept (0, 2) 

 
Section 3.2 

1.     32 2  xxf   3.     722 2  xxf  5.    21
3 1

2
f x x    

 
 Vertex Vertical Intercept Horizontal Intercepts 
7.    2.5, 0.5    (0,12)  (-2, 0)         (-3, 0) 

9.    2.5, 8.5    (0,4) (0.438, 0)     (4.562,0) 

11.   0.75,1.25    (0,-1) (0.191, 0)     (1.309, 0) 

 

13.    2
6 4f x x    15.     1822 2  xxf  17. b = 32 and c = -25 

19.     13
3

2
 xxxf      21.     3

2 5
5

f x x x    

23.    21
4

4
f x x        25.    21

3 2
9

f x x     

27a. 234m  b. 2909.561 ft  c. 47.735 seconds 
29a. 3 ft  b. 111 ft  c. 72.497 ft 
31. 24.91 in by 24.91 in 

33. 125 ft  by 
1

83  
3

ft  

35. 24.6344 cm 
37. $10.70 
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Section 3.3 

C(t) C, 
intercepts 

t, intercepts 

1.  (0,48) (4,0), (-1,0), (6,0) 
3. (0,0) (0,0), (2,0), (-1,0) 
5.  (0,0) (0,0), (1,0), (3,0) 

 
7. (-1.646, 0) (3.646, 0) (5,0) 
9.    As      thttht ,           ,    

11.  As      tpttpt ,           ,    

13.  15.  

17.  
19. (3, )      21.    , 2 1,3    

23. [3.5,6]      25.    ,1 4,   

27.  3,      29.    , 4 4, 2 (2, )      

31.    2
2 1 3

3
y x x x       33.    33)1(

3

1 22  xxxy  

35.    2 3
15 1 3y x x       37.    1

2 1 3
2

y x x x     

39. )2()1( 2  xxy    41.     1
3 2 2 4

24
y x x x x              

43.    2324
24

1
 xxxy   45.    22 32

12

1
 xxy    

47.    31
3 2 1

6
y x x x      49.      21

3 1 2 4
16

y x x x x       

51. Base 2.58,  Height 3.336 
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Section 3.4 

1. D   3. A 
  Vertical 

Asymptotes 
Horizontal 
Asymptote 

Vertical  y-
Intercept 

Horizontal x-
intercept 

5.  4x     2y    (0,-3/4)  (3/2, 0) 
7.  2x    0y    (0,1) DNE 
9.  

3

1
1 ,4x   

1y    (0, 5/16) (-1/3, 0),  (5,0) 

11.  1x   , hole at 
1x   

1y    (0,3) (-3, 0) 

13.  4x    none     
y=2x (oblique) 

(0, ¼) (-1, 0), (1/2, 0) 

15.  4  ,0x   0y    DNE (-2, 0), (2/3, 0) 
17. 4  ,2x   1y    (0, -15/16) (1, 0), (-3, 0), (5, 0) 
  

5.  7.   

9.  11.   

13.   15.  
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17.  
 

19. 
  

  
50 2 1
 

5 5

x x
y

x x

 


 
   21. 

  
  

7 4 6

4 5

x x
y

x x

 


 
   

23. 
 
 

2
1 2

2 1

x
y

x





    25. 

 
  

4 3

3 4

x
y

x x




 
    

27. 
 

  2

27 2

3 3

x
y

x x




 
                       29. 

  
 

1 3 2

3 1

x x
y

x

 



 

31. 
 

  

2

2

6 1

3 2

x
y

x x




 
   33. 

  
  
2 3

3 4

x x
y

x x


 

 
   

35. 
 

  

3

2

2 1

1 2

x
y

x x




 
   37. 

  
  14

24





xx

xx
y  

39. a. 
n

nC



20

4
)(   b. %33.13)10( C   c. 80 mL  d. as 0,  Cn  

 

Section 3.5 

1. Domain  4,      Inverse  1 4f x x    

3. Domain  ,0      Inverse  1 12f x x     

5. Domain  ,      Inverse   1 3
1

3

x
f x 

  

7.    2

1 9
1

4

x
f x 

      9.  
3

1 9

2

x
f x    

 
 

11.  1 2 8x
f x

x
 

      13.  1 3 7

1

x
f x

x
 




 

15.  
x

x
xf

43

451




      17. 65.574 mph 

19. 34.073 mph     21. 14.142 feet 
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Chapter 4 

Section 4.1 

1. Linear   3. Exponential    5. Neither 

7.    11,000 1.085
t

P t    9. 47622 Fox 

11. $17561.70   13.  6 5
x

y      15.  2000 0.1
x

y   

17.  3 2
x

y      19. 

3

5 51 1

6 6

x

y


       
   

 =  2.93 0.699
x
 21.  1

2
8

x
y   

23.34.32 mg    25. 1.39%; $155,368.09    27. $4,813.55  
29. Annual $7353.84             Quarterly $7,469.63   Monthly $7,496.71  
     Continuously $7,510.44  
31. 3.03%    33. 7.4 years  

35a.     1.113 1.046
t

w t   b. $1.11 c. Below what the model predicts $5.70  

Section 4.2 

1. B  3.  A   5. E   7. D   9. C 

11.  13.  15.  
 
17. 4 4xy      19. 24xy      21. 4xy    

23. As      x f x  .  As     1 x f x    

25. As       2x f x    As      x f x   

27. As      2x f x   As    xfx      

29. 1)2(412 2   xxy   31. 3)2(2   xy     

33.   732  xy    35. 4
2

1
2 








x

y  

 

Section 4.3 

1. 4m q     3. ca b     5.10t v  

7. ne w    9. 4log ( )y x    11. dkc )(log  

13. log( )b a    15.  ln h k     17. 9 

19. 1/8    21. 1000   23. 2e  
25. 2    27. -3    29. ½ 
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31. 4    33. -3    35. -2 

37. -1.398   39. 2.708   41. 
 
  6397.1
5log

14log
    

43. 
 

1
log

15
1.392

log 7

 
 
     45. 

 ln 17
0.567

5
   47. 

 
 

078.2
4

5
3log

38log




 

49. 
 

 
log 5

54.449
log 1.03

  51.   335.8
04.1log3

3

8
log










 53. 

1
ln

5
13.412

0.12

 
 
  


  

55. 

5
log

8
0.678

1
log

2

 
 
  
 
 
 

   57.   0.0943300 tf t e   59.   0.0392210 tf t e  

61.    150 1.0618
t

f t   63.    50 0.98807
t

f t   65. During the year 2013  

67. During the year 2074  69. 34 hours    71. 13.532 years 
 

Section 4.4 

1.  3log 4  3.  7log3  5.  5log3  7.  2log7  9.  96log x  

11.  7ln 2x    13.   32log 1x x    15. 










y

xz 3

log  

17.       15log 13log 19logx y z    19.      2ln 4ln 5lna b c    

21.  3
log 2log( )

2
x y    23.       1

ln ln ln 1
2

y y y    

25.    yx log
3

14
log

3

8
  

27. 0.717x     29. 395.6x   31. 17.329t   

33. 
2

7
x     35. 0.123x     37. 4.642x   

39. 30.158x    41. 2.889x   .   43. 6.873x  or 873.0x  

45. 
12

1.091
11

x     47. 10x   

 

Section 4.5 

1. Domain: : 5x   V. A. @ 5x   
3. Domain: 3x   V.A. @ 3x   

5. Domain: 
1

3
x    V.A. @ 

1

3
x    
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7. Domain: 0x  V.A. @ 0x   

9.   11.    

13.   15.  

17.     1log
2log

1
 xy   19. 

   3
log 4

log 3
y x     

21. 
   3

log 2
log 4

y x    23. 
    2

log 5
log 5

y x     

 

Section 4.6 

1.    13 0.9195
t

f t  .     2 mg will remain after 22.3098 minutes 

3.    200 0.999564
t

f t  .     1000 129.3311f   mg 

5. r = -0.06448.   Initial mass: 9.9018 mg.  After 3 days: 0.01648 mg 

7.    250 0.9909
t

f t  .   Half-life = 75.8653 minutes 

9.    0.999879
t

f t a .   60% (0.60a) would remain after 4222.813 years 

11.    1500 1.02337
t

P t   (t in minutes).  After 2 hours = 24000.  After 100 minutes = 

15119 

13. a) 610.5143 (about 611)   b) 25.6427 minutes    c) 10431.21    d) 106.9642 minutes 

15. 23.1914 years 

17. 53.319 hours 

19.    90 0.99166 75
t

T t   .   a) 134.212 deg   b) 112.743 minutes 
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21. a)   b) 100  c) 269.487  d) 7.324 years 

23.  log 0.5x   .  x = 0.3162  25.  log 1.5x  .   x = 31.623 

27.  

29.  63095.7 times more intense 31.  MMS magnitude 5.817 

33. a) about 1640671   b) 1.4 hours  c) No, because   495105.0693147.0  042727.2 e   

d) Anja’s data predicts a continuous growth rate of 0.4116, which is much smaller 

than the rate 0.495105 you calculated.  Our model would overestimate the number of 

cells. 

35. a) The curve that increases rapidly at first is M(p) 

b) H(100) = 0.9775 

c) Myoglobin: M(20) = 0.9524.  Hemoglobin: H(20) = 0.3242 

d) At 20 torrs: 0.6282.  At 40 torrs: 0.2060.  At 60 torrs: 0.0714 

 Efficiency seems to be maximized at about 8 torr 

37. a)   1.03526tC t  , or   0.03466tC t e  

b) Volume of one cell:  34 74
50 10 5.236 10

3
      cm3, so will need about 

61.9099 10  cells for a volume of 1cm3.   61.9099 10C t    after 417.3 hours 

39. 31.699 days 

10-6 10-5 10-4 10-3 10-210-710-8 10-9 10-10 10-1 

Whisper 
Vacuum Jet

100 101 102
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Section 4.7 

1.      4log3.1log)(log  xxf     3.     12.0log)(log  xxf  

     .  

5. x
xx

eeey )6487.1(368.02

1
1

1
2

1

 
 

7. xxxy )1.0(01.0101010 122    

9.  776.682 1.426
x

y    11. xy )738.0(92.731  

13. Expenditures are approximately $205  

15.  7.599 1.016   0.83064
x

y r  ,   0.1493 7.4893,  0.81713y x r   .  Using the 

better function, we predict electricity will be 11.157 cents per kwh 
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Index 
 
Absolute Value Functions, 146 

Graphing, 147 
Solving, 148 
Solving Inequalities, 149 

Ambiguous Case, 454 
Amplitude, 357, 361 
Angle, 307 

Coterminal Angles, 308 
Degree, 307 
Radian, 310 
Reference Angles, 327 
Standard Position, 307 

Angular Velocity, 315 
Annual Percentage Rate (APR), 222 
Annual Percentage Yield (APY), 224 
Arclength, 309 
Arcsine, Arccosine and Arctangent, 380 
Area of a Sector, 314 
Average Rate of Change, 34 
Change of Base, 246, 253 
Circles, 298, 470 

Area of a Sector, 314 
Equation of a Circle, 298 
Points on a Circle, 299, 322 
Polar Coordinates, 470 

Coefficients, 158 
Cofunction Identities, 345 
Common Log, 244 
Complex Conjugate, 482 
Complex Number, 480 
Complex Plane, 481 
Component Form, 494 
Composition of Functions, 49 

Formulas, 51 
Tables and Graphs, 50 

Compound Interest, 222 
Concavity, 41 
Continuous Growth, 225 
Correlation Coefficient, 141, 142 
Cosecant, 333 
Cosecant Function 

Domain, 372 
Range, 372 

Cosine, 321, 343, 356 
Cotangent, 333 
Cotangent Function 

Domain, 373 
Period, 373 
Range, 373 

Coterminal Angles, 308 
Damped Harmonic Motion, 445 
Decreasing, 38 
Degree, 158, 307 
Difference of Logs Property, 253 
Domain, 21 
Double Angle Identities, 431 
Double Zero, 178 
Doubling Time, 273 
Euler’s Formula, 484 
Even Functions, 71 
Exponential Functions, 215 

Finding Equations, 219 
Fitting Exponential Functions to Data, 

292 
Graphs of Exponential Functions, 232 
Solving Exponential Equations, 247 
Transformations of Exponential 

Graphs, 235 
Exponential Growth or Decay Function, 

216 
Exponential Property, 253 
Extrapolation, 139 
Extrema, 38, 182 
Function, 1 

Absolute Value Functions, 146 
Composition of Functions, 49 
Domain and Range, 21 
Exponential Functions, 215 
Formulas as Functions, 7 
Function Notation, 3 
Graphs as Functions, 5 
Horizontal Line Test, 7 
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Inverse of a Function, 90 
Linear Functions, 99, 101 
Logarithmic Functions, 242 
One-to-One Function, 2 
Parametric Functions, 504 
Periodic Functions, 353 
Piecewise Function, 28 
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Preface

Thank you for your interest in our book, but more importantly, thank you for taking the time to
read the Preface. I always read the Prefaces of the textbooks which I use in my classes because
I believe it is in the Preface where I begin to understand the authors - who they are, what their
motivation for writing the book was, and what they hope the reader will get out of reading the
text. Pedagogical issues such as content organization and how professors and students should best
use a book can usually be gleaned out of its Table of Contents, but the reasons behind the choices
authors make should be shared in the Preface. Also, I feel that the Preface of a textbook should
demonstrate the authors’ love of their discipline and passion for teaching, so that I come away
believing that they really want to help students and not just make money. Thus, I thank my fellow
Preface-readers again for giving me the opportunity to share with you the need and vision which
guided the creation of this book and passion which both Carl and I hold for Mathematics and the
teaching of it.

Carl and I are natives of Northeast Ohio. We met in graduate school at Kent State University
in 1997. I finished my Ph.D in Pure Mathematics in August 1998 and started teaching at Lorain
County Community College in Elyria, Ohio just two days after graduation. Carl earned his Ph.D in
Pure Mathematics in August 2000 and started teaching at Lakeland Community College in Kirtland,
Ohio that same month. Our schools are fairly similar in size and mission and each serves a similar
population of students. The students range in age from about 16 (Ohio has a Post-Secondary
Enrollment Option program which allows high school students to take college courses for free while
still in high school.) to over 65. Many of the “non-traditional” students are returning to school in
order to change careers. A majority of the students at both schools receive some sort of financial
aid, be it scholarships from the schools’ foundations, state-funded grants or federal financial aid
like student loans, and many of them have lives busied by family and job demands. Some will
be taking their Associate degrees and entering (or re-entering) the workforce while others will be
continuing on to a four-year college or university. Despite their many differences, our students
share one common attribute: they do not want to spend $200 on a College Algebra book.

The challenge of reducing the cost of textbooks is one that many states, including Ohio, are taking
quite seriously. Indeed, state-level leaders have started to work with faculty from several of the
colleges and universities in Ohio and with the major publishers as well. That process will take
considerable time so Carl and I came up with a plan of our own. We decided that the best
way to help our students right now was to write our own College Algebra book and give it away
electronically for free. We were granted sabbaticals from our respective institutions for the Spring
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x Preface

semester of 2009 and actually began writing the textbook on December 16, 2008. Using an open-
source text editor called TexNicCenter and an open-source distribution of LaTeX called MikTex
2.7, Carl and I wrote and edited all of the text, exercises and answers and created all of the graphs
(using Metapost within LaTeX) for Version 0.9 in about eight months. (We choose to create a
text in only black and white to keep printing costs to a minimum for those students who prefer
a printed edition. This somewhat Spartan page layout stands in sharp relief to the explosion of
colors found in most other College Algebra texts, but neither Carl nor I believe the four-color
print adds anything of value.) I used the book in three sections of College Algebra at Lorain
County Community College in the Fall of 2009 and Carl’s colleague, Dr. Bill Previts, taught a
section of College Algebra at Lakeland with the book that semester as well. Students had the
option of downloading the book as a .pdf file from our website www.stitz-zeager.com or buying a
low-cost printed version from our colleges’ respective bookstores. (By giving this book away for
free electronically, we end the cycle of new editions appearing every 18 months to curtail the used
book market.) During Thanksgiving break in November 2009, many additional exercises written
by Dr. Previts were added and the typographical errors found by our students and others were
corrected. On December 10, 2009, Version

√
2 was released. The book remains free for download at

our website and by using Lulu.com as an on-demand printing service, our bookstores are now able
to provide a printed edition for just under $19. Neither Carl nor I have, or will ever, receive any
royalties from the printed editions. As a contribution back to the open-source community, all of
the LaTeX files used to compile the book are available for free under a Creative Commons License
on our website as well. That way, anyone who would like to rearrange or edit the content for their
classes can do so as long as it remains free.

The only disadvantage to not working for a publisher is that we don’t have a paid editorial staff.
What we have instead, beyond ourselves, is friends, colleagues and unknown people in the open-
source community who alert us to errors they find as they read the textbook. What we gain in not
having to report to a publisher so dramatically outweighs the lack of the paid staff that we have
turned down every offer to publish our book. (As of the writing of this Preface, we’ve had three
offers.) By maintaining this book by ourselves, Carl and I retain all creative control and keep the
book our own. We control the organization, depth and rigor of the content which means we can resist
the pressure to diminish the rigor and homogenize the content so as to appeal to a mass market.
A casual glance through the Table of Contents of most of the major publishers’ College Algebra
books reveals nearly isomorphic content in both order and depth. Our Table of Contents shows a
different approach, one that might be labeled “Functions First.” To truly use The Rule of Four,
that is, in order to discuss each new concept algebraically, graphically, numerically and verbally, it
seems completely obvious to us that one would need to introduce functions first. (Take a moment
and compare our ordering to the classic “equations first, then the Cartesian Plane and THEN
functions” approach seen in most of the major players.) We then introduce a class of functions
and discuss the equations, inequalities (with a heavy emphasis on sign diagrams) and applications
which involve functions in that class. The material is presented at a level that definitely prepares a
student for Calculus while giving them relevant Mathematics which can be used in other classes as
well. Graphing calculators are used sparingly and only as a tool to enhance the Mathematics, not
to replace it. The answers to nearly all of the computational homework exercises are given in the
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text and we have gone to great lengths to write some very thought provoking discussion questions
whose answers are not given. One will notice that our exercise sets are much shorter than the
traditional sets of nearly 100 “drill and kill” questions which build skill devoid of understanding.
Our experience has been that students can do about 15-20 homework exercises a night so we very
carefully chose smaller sets of questions which cover all of the necessary skills and get the students
thinking more deeply about the Mathematics involved.

Critics of the Open Educational Resource movement might quip that “open-source is where bad
content goes to die,” to which I say this: take a serious look at what we offer our students. Look
through a few sections to see if what we’ve written is bad content in your opinion. I see this open-
source book not as something which is “free and worth every penny”, but rather, as a high quality
alternative to the business as usual of the textbook industry and I hope that you agree. If you have
any comments, questions or concerns please feel free to contact me at jeff@stitz-zeager.com or Carl
at carl@stitz-zeager.com.

Jeff Zeager
Lorain County Community College
January 25, 2010
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Chapter 7

Hooked on Conics

7.1 Introduction to Conics

In this chapter, we study the Conic Sections - literally ‘sections of a cone’. Imagine a double-
napped cone as seen below being ‘sliced’ by a plane.

If we slice the cone with a horizontal plane the resulting curve is a circle.
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496 Hooked on Conics

Tilting the plane ever so slightly produces an ellipse.

If the plane cuts parallel to the cone, we get a parabola.

If we slice the cone with a vertical plane, we get a hyperbola.

For a wonderful animation describing the conics as intersections of planes and cones, see Dr. Louis
Talman’s Mathematics Animated Website.
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7.1 Introduction to Conics 497

If the slicing plane contains the vertex of the cone, we get the so-called ‘degenerate’ conics: a point,
a line, or two intersecting lines.

We will focus the discussion on the non-degenerate cases: circles, parabolas, ellipses, and hyperbo-
las, in that order. To determine equations which describe these curves, we will make use of their
definitions in terms of distances.
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498 Hooked on Conics

7.2 Circles

Recall from Geometry that a circle can be determined by fixing a point (called the center) and a
positive number (called the radius) as follows.

Definition 7.1. A circle with center (h, k) and radius r > 0 is the set of all points (x, y) in the
plane whose distance to (h, k) is r.

(h, k)

r

(x, y)

From the picture, we see that a point (x, y) is on the circle if and only if its distance to (h, k) is r.
We express this relationship algebraically using the Distance Formula, Equation 1.1, as

r =
√

(x− h)2 + (y − k)2

By squaring both sides of this equation, we get an equivalent equation (since r > 0) which gives us
the standard equation of a circle.

Equation 7.1. The Standard Equation of a Circle: The equation of a circle with center
(h, k) and radius r > 0 is (x− h)2 + (y − k)2 = r2.

Example 7.2.1. Write the standard equation of the circle with center (−2, 3) and radius 5.

Solution. Here, (h, k) = (−2, 3) and r = 5, so we get

(x− (−2))2 + (y − 3)2 = (5)2

(x+ 2)2 + (y − 3)2 = 25

Example 7.2.2. Graph (x+ 2)2 + (y − 1)2 = 4. Find the center and radius.

Solution. From the standard form of a circle, Equation 7.1, we have that x+ 2 is x−h, so h = −2
and y − 1 is y − k so k = 1. This tells us that our center is (−2, 1). Furthermore, r2 = 4, so r = 2.
Thus we have a circle centered at (−2, 1) with a radius of 2. Graphing gives us
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7.2 Circles 499

x

y

−4 −3 −2 −1 1

−1

1

2

3

4

If we were to expand the equation in the previous example and gather up like terms, instead of the
easily recognizable (x+ 2)2 + (y − 1)2 = 4, we’d be contending with x2 + 4x+ y2 − 2y + 1 = 0. If
we’re given such an equation, we can complete the square in each of the variables to see if it fits
the form given in Equation 7.1 by following the steps given below.

To Write the Equation of a Circle in Standard Form

1. Group the same variables together on one side of the equation and position the constant
on the other side.

2. Complete the square on both variables as needed.

3. Divide both sides by the coefficient of the squares. (For circles, they will be the same.)

Example 7.2.3. Complete the square to find the center and radius of 3x2− 6x+ 3y2 + 4y− 4 = 0.

Solution.

3x2 − 6x+ 3y2 + 4y − 4 = 0

3x2 − 6x+ 3y2 + 4y = 4 add 4 to both sides

3
(
x2 − 2x

)
+ 3

(
y2 +

4

3
y

)
= 4 factor out leading coefficients

3
(
x2 − 2x+ 1

)
+ 3

(
y2 +

4

3
y +

4

9

)
= 4 + 3(1) + 3

(
4

9

)
complete the square in x, y

3(x− 1)2 + 3

(
y +

2

3

)2

=
25

3
factor

(x− 1)2 +

(
y +

2

3

)2

=
25

9
divide both sides by 3

From Equation 7.1, we identify x− 1 as x− h, so h = 1, and y+ 2
3 as y− k, so k = −2

3 . Hence, the
center is (h, k) =

(
1,−2

3

)
. Furthermore, we see that r2 = 25

9 so the radius is r = 5
3 .
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500 Hooked on Conics

It is possible to obtain equations like (x− 3)2 + (y+ 1)2 = 0 or (x− 3)2 + (y+ 1)2 = −1, neither of
which describes a circle. (Do you see why not?) The reader is encouraged to think about what, if
any, points lie on the graphs of these two equations. The next example uses the Midpoint Formula,
Equation 1.2, in conjunction with the ideas presented so far in this section.

Example 7.2.4. Write the standard equation of the circle which has (−1, 3) and (2, 4) as the
endpoints of a diameter.

Solution. We recall that a diameter of a circle is a line segment containing the center and two
points on the circle. Plotting the given data yields

x

y

(h, k)

r

−2 −1 1 2 3

1

2

3

4

Since the given points are endpoints of a diameter, we know their midpoint (h, k) is the center of
the circle. Equation 1.2 gives us

(h, k) =

(
x1 + x2

2
,
y1 + y2

2

)
=

(
−1 + 2

2
,
3 + 4

2

)
=

(
1

2
,
7

2

)
The diameter of the circle is the distance between the given points, so we know that half of the
distance is the radius. Thus,

r =
1

2

√
(x2 − x1)

2 + (y2 − y1)
2

=
1

2

√
(2− (−1))2 + (4− 3)2

=
1

2

√
32 + 12

=

√
10

2

Finally, since

(√
10

2

)2

=
10

4
, our answer becomes

(
x− 1

2

)2

+

(
y − 7

2

)2

=
10

4
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7.2 Circles 501

We close this section with the most important1 circle in all of mathematics: the Unit Circle.

Definition 7.2. The Unit Circle is the circle centered at (0, 0) with a radius of 1. The
standard equation of the Unit Circle is x2 + y2 = 1.

Example 7.2.5. Find the points on the unit circle with y-coordinate

√
3

2
.

Solution. We replace y with

√
3

2
in the equation x2 + y2 = 1 to get

x2 + y2 = 1

x2 +

(√
3

2

)2

= 1

3

4
+ x2 = 1

x2 =
1

4

x = ±
√

1

4

x = ±1

2

Our final answers are

(
1

2
,

√
3

2

)
and

(
−1

2
,

√
3

2

)
.

1While this may seem like an opinion, it is indeed a fact. See Chapters 10 and 11 for details.
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502 Hooked on Conics

7.2.1 Exercises

In Exercises 1 - 6, find the standard equation of the circle and then graph it.

1. Center (−1,−5), radius 10 2. Center (4,−2), radius 3

3. Center
(
−3, 7

13

)
, radius 1

2 4. Center (5,−9), radius ln(8)

5. Center
(
−e,
√

2
)
, radius π 6. Center (π, e2), radius 3

√
91

In Exercises 7 - 12, complete the square in order to put the equation into standard form. Identify
the center and the radius or explain why the equation does not represent a circle.

7. x2 − 4x+ y2 + 10y = −25 8. −2x2 − 36x− 2y2 − 112 = 0

9. x2 + y2 + 8x− 10y − 1 = 0 10. x2 + y2 + 5x− y − 1 = 0

11. 4x2 + 4y2 − 24y + 36 = 0 12. x2 + x+ y2 − 6
5y = 1

In Exercises 13 - 16, find the standard equation of the circle which satisfies the given criteria.

13. center (3, 5), passes through (−1,−2) 14. center (3, 6), passes through (−1, 4)

15. endpoints of a diameter: (3, 6) and (−1, 4) 16. endpoints of a diameter:
(

1
2 , 4
)
,
(

3
2 ,−1

)
17. The Giant Wheel at Cedar Point is a circle with diameter 128 feet which sits on an 8 foot

tall platform making its overall height is 136 feet.2 Find an equation for the wheel assuming
that its center lies on the y-axis.

18. Verify that the following points lie on the Unit Circle: (±1, 0), (0,±1),
(
±
√

2
2 ,±

√
2

2

)
,
(
±1

2 ,±
√

3
2

)
and

(
±
√

3
2 ,±

1
2

)
19. Discuss with your classmates how to obtain the standard equation of a circle, Equation 7.1,

from the equation of the Unit Circle, x2 + y2 = 1 using the transformations discussed in
Section 1.7. (Thus every circle is just a few transformations away from the Unit Circle.)

20. Find an equation for the function represented graphically by the top half of the Unit Circle.
Explain how the transformations is Section 1.7 can be used to produce a function whose graph
is either the top or bottom of an arbitrary circle.

21. Find a one-to-one function whose graph is half of a circle. (Hint: Think piecewise.)

2Source: Cedar Point’s webpage.
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7.2 Circles 503

7.2.2 Answers

1. (x+ 1)2 + (y + 5)2 = 100

x

y

−5

−11 −1 9

−15

5

2. (x− 4)2 + (y + 2)2 = 9

x

y

1 4 7

−5

−2

1

3. (x+ 3)2 +
(
y − 7

13

)2
= 1

4

x

y

− 7
2
−3 − 5

2

1
26

7
13

27
26

4. (x− 5)2 + (y + 9)2 = (ln(8))2

x
y

5− ln(8) 5 5 + ln(8)

−9− ln(8)

−9

−9 + ln(8)

5. (x+ e)2 +
(
y −
√

2
)2

= π2

x

y

−e− π −e −e + π

√
2− π

√
2

√
2 + π

6. (x− π)2 +
(
y − e2

)2
= 91

2
3

x

y

π − 3√91
π

π + 3√91

e2 − 3√91

e2

e2 + 3√91
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504 Hooked on Conics

7. (x− 2)2 + (y + 5)2 = 4
Center (2,−5), radius r = 2

8. (x+ 9)2 + y2 = 25
Center (−9, 0), radius r = 5

9. (x+ 4)2 + (y − 5)2 = 42
Center (−4, 5), radius r =

√
42

10.
(
x+ 5

2

)2
+
(
y − 1

2

)2
= 30

4

Center
(
−5

2 ,
1
2

)
, radius r =

√
30
2

11. x2 + (y − 3)2 = 0
This is not a circle.

12.
(
x+ 1

2

)2
+
(
y − 3

5

)2
= 161

100

Center
(
−1

2 ,
3
5

)
, radius r =

√
161
10

13. (x− 3)2 + (y − 5)2 = 65 14. (x− 3)2 + (y − 6)2 = 20

15. (x− 1)2 + (y − 5)2 = 5 16. (x− 1)2 +
(
y − 3

2

)2
= 13

2

17. x2 + (y − 72)2 = 4096
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7.3 Parabolas 505

7.3 Parabolas

We have already learned that the graph of a quadratic function f(x) = ax2 + bx + c (a 6= 0) is
called a parabola. To our surprise and delight, we may also define parabolas in terms of distance.

Definition 7.3. Let F be a point in the plane and D be a line not containing F . A parabola is
the set of all points equidistant from F and D. The point F is called the focus of the parabola
and the line D is called the directrix of the parabola.

Schematically, we have the following.

F

D

V

Each dashed line from the point F to a point on the curve has the same length as the dashed line
from the point on the curve to the line D. The point suggestively labeled V is, as you should
expect, the vertex. The vertex is the point on the parabola closest to the focus.

We want to use only the distance definition of parabola to derive the equation of a parabola and,
if all is right with the universe, we should get an expression much like those studied in Section 2.3.
Let p denote the directed1 distance from the vertex to the focus, which by definition is the same as
the distance from the vertex to the directrix. For simplicity, assume that the vertex is (0, 0) and
that the parabola opens upwards. Hence, the focus is (0, p) and the directrix is the line y = −p.
Our picture becomes

(0, p)

x

y

y = −p

(x, y)

(x,−p)

(0, 0)

From the definition of parabola, we know the distance from (0, p) to (x, y) is the same as the
distance from (x,−p) to (x, y). Using the Distance Formula, Equation 1.1, we get

1We’ll talk more about what ‘directed’ means later.
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506 Hooked on Conics

√
(x− 0)2 + (y − p)2 =

√
(x− x)2 + (y − (−p))2√

x2 + (y − p)2 =
√

(y + p)2

x2 + (y − p)2 = (y + p)2 square both sides

x2 + y2 − 2py + p2 = y2 + 2py + p2 expand quantities

x2 = 4py gather like terms

Solving for y yields y = x2

4p , which is a quadratic function of the form found in Equation 2.4 with

a = 1
4p and vertex (0, 0).

We know from previous experience that if the coefficient of x2 is negative, the parabola opens
downwards. In the equation y = x2

4p this happens when p < 0. In our formulation, we say that p is
a ‘directed distance’ from the vertex to the focus: if p > 0, the focus is above the vertex; if p < 0,
the focus is below the vertex. The focal length of a parabola is |p|.

If we choose to place the vertex at an arbitrary point (h, k), we arrive at the following formula
using either transformations from Section 1.7 or re-deriving the formula from Definition 7.3.

Equation 7.2. The Standard Equation of a Verticala Parabola: The equation of a
(vertical) parabola with vertex (h, k) and focal length |p| is

(x− h)2 = 4p(y − k)

If p > 0, the parabola opens upwards; if p < 0, it opens downwards.

aThat is, a parabola which opens either upwards or downwards.

Notice that in the standard equation of the parabola above, only one of the variables, x, is squared.
This is a quick way to distinguish an equation of a parabola from that of a circle because in the
equation of a circle, both variables are squared.

Example 7.3.1. Graph (x+ 1)2 = −8(y − 3). Find the vertex, focus, and directrix.

Solution. We recognize this as the form given in Equation 7.2. Here, x − h is x + 1 so h = −1,
and y − k is y − 3 so k = 3. Hence, the vertex is (−1, 3). We also see that 4p = −8 so p = −2.
Since p < 0, the focus will be below the vertex and the parabola will open downwards.

x

y

−6 −5 −4 −3 −2 −1 1 2 3 4

1

2

3

4

5
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7.3 Parabolas 507

The distance from the vertex to the focus is |p| = 2, which means the focus is 2 units below the
vertex. From (−1, 3), we move down 2 units and find the focus at (−1, 1). The directrix, then, is
2 units above the vertex, so it is the line y = 5.

Of all of the information requested in the previous example, only the vertex is part of the graph
of the parabola. So in order to get a sense of the actual shape of the graph, we need some more
information. While we could plot a few points randomly, a more useful measure of how wide a
parabola opens is the length of the parabola’s latus rectum.2 The latus rectum of a parabola
is the line segment parallel to the directrix which contains the focus. The endpoints of the latus
rectum are, then, two points on ‘opposite’ sides of the parabola. Graphically, we have the following.

F

the latus rectum

D

V

It turns out3 that the length of the latus rectum, called the focal diameter of the parabola is |4p|,
which, in light of Equation 7.2, is easy to find. In our last example, for instance, when graphing
(x + 1)2 = −8(y − 3), we can use the fact that the focal diameter is | − 8| = 8, which means the
parabola is 8 units wide at the focus, to help generate a more accurate graph by plotting points 4
units to the left and right of the focus.

Example 7.3.2. Find the standard form of the parabola with focus (2, 1) and directrix y = −4.

Solution. Sketching the data yields,

x

y

The vertex lies on this vertical line

midway between the focus and the directrix

−1 1 2 3

−3

−2

−1

1

2No, I’m not making this up.
3Consider this an exercise to show what follows.
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508 Hooked on Conics

From the diagram, we see the parabola opens upwards. (Take a moment to think about it if you
don’t see that immediately.) Hence, the vertex lies below the focus and has an x-coordinate of 2.
To find the y-coordinate, we note that the distance from the focus to the directrix is 1− (−4) = 5,
which means the vertex lies 5

2 units (halfway) below the focus. Starting at (2, 1) and moving down
5/2 units leaves us at (2,−3/2), which is our vertex. Since the parabola opens upwards, we know
p is positive. Thus p = 5/2. Plugging all of this data into Equation 7.2 give us

(x− 2)2 = 4

(
5

2

)(
y −

(
−3

2

))
(x− 2)2 = 10

(
y +

3

2

)

If we interchange the roles of x and y, we can produce ‘horizontal’ parabolas: parabolas which open
to the left or to the right. The directrices4 of such animals would be vertical lines and the focus
would either lie to the left or to the right of the vertex, as seen below.

F

D

V

Equation 7.3. The Standard Equation of a Horizontal Parabola: The equation of a
(horizontal) parabola with vertex (h, k) and focal length |p| is

(y − k)2 = 4p(x− h)

If p > 0, the parabola opens to the right; if p < 0, it opens to the left.

4plural of ‘directrix’
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7.3 Parabolas 509

Example 7.3.3. Graph (y − 2)2 = 12(x+ 1). Find the vertex, focus, and directrix.

Solution. We recognize this as the form given in Equation 7.3. Here, x − h is x + 1 so h = −1,
and y − k is y − 2 so k = 2. Hence, the vertex is (−1, 2). We also see that 4p = 12 so p = 3.
Since p > 0, the focus will be the right of the vertex and the parabola will open to the right. The
distance from the vertex to the focus is |p| = 3, which means the focus is 3 units to the right. If
we start at (−1, 2) and move right 3 units, we arrive at the focus (2, 2). The directrix, then, is 3
units to the left of the vertex and if we move left 3 units from (−1, 2), we’d be on the vertical line
x = −4. Since the focal diameter is |4p| = 12, the parabola is 12 units wide at the focus, and thus
there are points 6 units above and below the focus on the parabola.

x

y

−5 −4 −3 −2 −1 1 2 3

−4

−3

−2

−1

1

2

3

4

5

6

7

8

As with circles, not all parabolas will come to us in the forms in Equations 7.2 or 7.3. If we
encounter an equation with two variables in which exactly one variable is squared, we can attempt
to put the equation into a standard form using the following steps.

To Write the Equation of a Parabola in Standard Form

1. Group the variable which is squared on one side of the equation and position the non-
squared variable and the constant on the other side.

2. Complete the square if necessary and divide by the coefficient of the perfect square.

3. Factor out the coefficient of the non-squared variable from it and the constant.

Example 7.3.4. Consider the equation y2 + 4y + 8x = 4. Put this equation into standard form
and graph the parabola. Find the vertex, focus, and directrix.

Solution. We need a perfect square (in this case, using y) on the left-hand side of the equation
and factor out the coefficient of the non-squared variable (in this case, the x) on the other.
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510 Hooked on Conics

y2 + 4y + 8x = 4

y2 + 4y = −8x+ 4

y2 + 4y + 4 = −8x+ 4 + 4 complete the square in y only

(y + 2)2 = −8x+ 8 factor

(y + 2)2 = −8(x− 1)

Now that the equation is in the form given in Equation 7.3, we see that x−h is x−1 so h = 1, and
y − k is y + 2 so k = −2. Hence, the vertex is (1,−2). We also see that 4p = −8 so that p = −2.
Since p < 0, the focus will be the left of the vertex and the parabola will open to the left. The
distance from the vertex to the focus is |p| = 2, which means the focus is 2 units to the left of 1, so
if we start at (1,−2) and move left 2 units, we arrive at the focus (−1,−2). The directrix, then, is
2 units to the right of the vertex, so if we move right 2 units from (1,−2), we’d be on the vertical
line x = 3. Since the focal diameter is |4p| is 8, the parabola is 8 units wide at the focus, so there
are points 4 units above and below the focus on the parabola.

x

y

−2 −1 1 2

−6

−5

−4

−3

−2

−1

1

2

In studying quadratic functions, we have seen parabolas used to model physical phenomena such as
the trajectories of projectiles. Other applications of the parabola concern its ‘reflective property’
which necessitates knowing about the focus of a parabola. For example, many satellite dishes are
formed in the shape of a paraboloid of revolution as depicted below.
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7.3 Parabolas 511

Every cross section through the vertex of the paraboloid is a parabola with the same focus. To see
why this is important, imagine the dashed lines below as electromagnetic waves heading towards
a parabolic dish. It turns out that the waves reflect off the parabola and concentrate at the focus
which then becomes the optimal place for the receiver. If, on the other hand, we imagine the dashed
lines as emanating from the focus, we see that the waves are reflected off the parabola in a coherent
fashion as in the case in a flashlight. Here, the bulb is placed at the focus and the light rays are
reflected off a parabolic mirror to give directional light.

F

Example 7.3.5. A satellite dish is to be constructed in the shape of a paraboloid of revolution.
If the receiver placed at the focus is located 2 ft above the vertex of the dish, and the dish is to be
12 feet wide, how deep will the dish be?

Solution. One way to approach this problem is to determine the equation of the parabola suggested
to us by this data. For simplicity, we’ll assume the vertex is (0, 0) and the parabola opens upwards.
Our standard form for such a parabola is x2 = 4py. Since the focus is 2 units above the vertex, we
know p = 2, so we have x2 = 8y. Visually,

?

(6, y)

y

x

12 units wide

−6 6

2

Since the parabola is 12 feet wide, we know the edge is 6 feet from the vertex. To find the depth,
we are looking for the y value when x = 6. Substituting x = 6 into the equation of the parabola
yields 62 = 8y or y = 36

8 = 9
2 = 4.5. Hence, the dish will be 4.5 feet deep.
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512 Hooked on Conics

7.3.1 Exercises

In Exercises 1 - 8, sketch the graph of the given parabola. Find the vertex, focus and directrix.
Include the endpoints of the latus rectum in your sketch.

1. (x− 3)2 = −16y 2.
(
x+ 7

3

)2
= 2

(
y + 5

2

)
3. (y − 2)2 = −12(x+ 3) 4. (y + 4)2 = 4x

5. (x− 1)2 = 4(y + 3) 6. (x+ 2)2 = −20(y − 5)

7. (y − 4)2 = 18(x− 2) 8.
(
y + 3

2

)2
= −7

(
x+ 9

2

)
In Exercises 9 - 14, put the equation into standard form and identify the vertex, focus and directrix.

9. y2 − 10y − 27x+ 133 = 0 10. 25x2 + 20x+ 5y − 1 = 0

11. x2 + 2x− 8y + 49 = 0 12. 2y2 + 4y + x− 8 = 0

13. x2 − 10x+ 12y + 1 = 0 14. 3y2 − 27y + 4x+ 211
4 = 0

In Exercises 15 - 18, find an equation for the parabola which fits the given criteria.

15. Vertex (7, 0), focus (0, 0) 16. Focus (10, 1), directrix x = 5

17. Vertex (−8,−9); (0, 0) and (−16, 0) are
points on the curve

18. The endpoints of latus rectum are (−2,−7)
and (4,−7)

19. The mirror in Carl’s flashlight is a paraboloid of revolution. If the mirror is 5 centimeters in
diameter and 2.5 centimeters deep, where should the light bulb be placed so it is at the focus
of the mirror?

20. A parabolic Wi-Fi antenna is constructed by taking a flat sheet of metal and bending it into
a parabolic shape.5 If the cross section of the antenna is a parabola which is 45 centimeters
wide and 25 centimeters deep, where should the receiver be placed to maximize reception?

21. A parabolic arch is constructed which is 6 feet wide at the base and 9 feet tall in the middle.
Find the height of the arch exactly 1 foot in from the base of the arch.

22. A popular novelty item is the ‘mirage bowl.’ Follow this link to see another startling appli-
cation of the reflective property of the parabola.

23. With the help of your classmates, research spinning liquid mirrors. To get you started, check
out this website.

5This shape is called a ‘parabolic cylinder.’
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7.3.2 Answers

1. (x− 3)2 = −16y

Vertex (3, 0)

Focus (3,−4)

Directrix y = 4

Endpoints of latus rectum (−5,−4), (11,−4)
x

y

−5−4−3−2−1 1 2 3 4 5 6 7 8 9 10 11

−4

−3

−2

−1

1

2

3

4

2.
(
x+ 7

3

)2
= 2

(
y + 5

2

)
Vertex

(
− 7

3 ,−
5
2

)
Focus

(
− 7

3 ,−2
)

Directrix y = −3

Endpoints of latus rectum
(
− 10

3 ,−2
)
,
(
− 4

3 ,−2
)

x

y

−5 −4 −3 −2 −1

−3

−2

−1

1

2

3. (y − 2)2 = −12(x+ 3)

Vertex (−3, 2)

Focus (−6, 2)

Directrix x = 0

Endpoints of latus rectum (−6, 8), (−6,−4)

x

y

−7−6−5−4−3−2−1

−4

−3

−2

−1

1

2

3

4

5

6

7

8
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4. (y + 4)2 = 4x

Vertex (0,−4)

Focus (1,−4)

Directrix x = −1

Endpoints of latus rectum (1,−2), (1,−6)

x

y

−1 1 2 3 4

−8

−7

−6

−5

−4

−3

−2

−1

5. (x− 1)2 = 4(y + 3)

Vertex (1,−3)

Focus (1,−2)

Directrix y = −4

Endpoints of latus rectum (3,−2), (−1,−2)

x

y

−3 −2 −1 1 2 3 4

−4

−3

−2

−1

6. (x+ 2)2 = −20(y − 5)

Vertex (−2, 5)

Focus (−2, 0)

Directrix y = 10

Endpoints of latus rectum (−12, 0), (8, 0)

x

y

−12 −10 −8 −6 −4 −2 2 4 6 8

1

2

3

4

5

6

7

8

9

10

7. (y − 4)2 = 18(x− 2)

Vertex (2, 4)

Focus
(
13
2 , 4

)
Directrix x = − 5

2

Endpoints of latus rectum
(
13
2 ,−5

)
,
(
13
2 , 13

)

x

y

−1 1 2 3 4 5 6 7

−5

−3

−1

1

3

5

7

9

11

13
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8.
(
y + 3

2

)2
= −7

(
x+ 9

2

)
Vertex

(
− 9

2 ,−
3
2

)
Focus

(
− 25

4 ,−
3
2

)
Directrix x = − 11

4

Endpoints of latus rectum
(
− 25

4 , 2
)
,
(
− 25

4 ,−5
) x

y

−5 −4 −3 −2 −1

−5

−4

−3

−2

−1

1

2

9. (y − 5)2 = 27(x− 4)
Vertex (4, 5)
Focus

(
43
4 , 5

)
Directrix x = −11

4

10.
(
x+ 2

5

)2
= −1

5(y − 1)
Vertex

(
−2

5 , 1
)

Focus
(
−2

5 ,
19
20

)
Directrix y = 21

20

11. (x+ 1)2 = 8(y − 6)
Vertex (−1, 6)
Focus (−1, 8)
Directrix y = 4

12. (y + 1)2 = −1
2(x− 10)

Vertex (10,−1)
Focus

(
79
8 ,−1

)
Directrix x = 81

8

13. (x− 5)2 = −12(y − 2)
Vertex (5, 2)
Focus (5,−1)
Directrix y = 5

14.
(
y − 9

2

)2
= −4

3(x− 2)
Vertex

(
2, 9

2

)
Focus

(
5
3 ,

9
2

)
Directrix x = 7

3

15. y2 = −28(x− 7) 16. (y − 1)2 = 10
(
x− 15

2

)
17. (x+ 8)2 = 64

9 (y + 9) 18. (x− 1)2 = 6
(
y + 17

2

)
or

(x− 1)2 = −6
(
y + 11

2

)
19. The bulb should be placed 0.625 centimeters above the vertex of the mirror. (As verified by

Carl himself!)

20. The receiver should be placed 5.0625 centimeters from the vertex of the cross section of the
antenna.

21. The arch can be modeled by x2 = −(y − 9) or y = 9− x2. One foot in from the base of the
arch corresponds to either x = ±2, so the height is y = 9− (±2)2 = 5 feet.
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7.4 Ellipses

In the definition of a circle, Definition 7.1, we fixed a point called the center and considered all
of the points which were a fixed distance r from that one point. For our next conic section, the
ellipse, we fix two distinct points and a distance d to use in our definition.

Definition 7.4. Given two distinct points F1 and F2 in the plane and a fixed distance d, an
ellipse is the set of all points (x, y) in the plane such that the sum of each of the distances from
F1 and F2 to (x, y) is d. The points F1 and F2 are called the focia of the ellipse.

athe plural of ‘focus’

(x, y)

d1 d2

F1 F2

d1 + d2 = d for all (x, y) on the ellipse

We may imagine taking a length of string and anchoring it to two points on a piece of paper. The
curve traced out by taking a pencil and moving it so the string is always taut is an ellipse.

The center of the ellipse is the midpoint of the line segment connecting the two foci. The major
axis of the ellipse is the line segment connecting two opposite ends of the ellipse which also contains
the center and foci. The minor axis of the ellipse is the line segment connecting two opposite
ends of the ellipse which contains the center but is perpendicular to the major axis. The vertices
of an ellipse are the points of the ellipse which lie on the major axis. Notice that the center is also
the midpoint of the major axis, hence it is the midpoint of the vertices. In pictures we have,
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7.4 Ellipses 517

F1 F2

V2V1

C

Major Axis

M
in

o
r

A
x
is

An ellipse with center C; foci F1, F2; and vertices V1, V2

Note that the major axis is the longer of the two axes through the center, and likewise, the minor
axis is the shorter of the two. In order to derive the standard equation of an ellipse, we assume that
the ellipse has its center at (0, 0), its major axis along the x-axis, and has foci (c, 0) and (−c, 0)
and vertices (−a, 0) and (a, 0). We will label the y-intercepts of the ellipse as (0, b) and (0,−b) (We
assume a, b, and c are all positive numbers.) Schematically,

(−c, 0) (c, 0)(−a, 0) (a, 0)

(0, b)

(0,−b)

(x, y)

x

y

Note that since (a, 0) is on the ellipse, it must satisfy the conditions of Definition 7.4. That is, the
distance from (−c, 0) to (a, 0) plus the distance from (c, 0) to (a, 0) must equal the fixed distance
d. Since all of these points lie on the x-axis, we get

distance from (−c, 0) to (a, 0) + distance from (c, 0) to (a, 0) = d

(a+ c) + (a− c) = d

2a = d
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518 Hooked on Conics

In other words, the fixed distance d mentioned in the definition of the ellipse is none other than
the length of the major axis. We now use that fact (0, b) is on the ellipse, along with the fact that
d = 2a to get

distance from (−c, 0) to (0, b) + distance from (c, 0) to (0, b) = 2a√
(0− (−c))2 + (b− 0)2 +

√
(0− c)2 + (b− 0)2 = 2a√
b2 + c2 +

√
b2 + c2 = 2a

2
√
b2 + c2 = 2a√
b2 + c2 = a

From this, we get a2 = b2 + c2, or b2 = a2 − c2, which will prove useful later. Now consider a point
(x, y) on the ellipse. Applying Definition 7.4, we get

distance from (−c, 0) to (x, y) + distance from (c, 0) to (x, y) = 2a√
(x− (−c))2 + (y − 0)2 +

√
(x− c)2 + (y − 0)2 = 2a√

(x+ c)2 + y2 +
√

(x− c)2 + y2 = 2a

In order to make sense of this situation, we need to make good use of Intermediate Algebra.√
(x+ c)2 + y2 +

√
(x− c)2 + y2 = 2a√
(x+ c)2 + y2 = 2a−

√
(x− c)2 + y2(√

(x+ c)2 + y2
)2

=
(

2a−
√

(x− c)2 + y2
)2

(x+ c)2 + y2 = 4a2 − 4a
√

(x− c)2 + y2 + (x− c)2 + y2

4a
√

(x− c)2 + y2 = 4a2 + (x− c)2 − (x+ c)2

4a
√

(x− c)2 + y2 = 4a2 − 4cx

a
√

(x− c)2 + y2 = a2 − cx(
a
√

(x− c)2 + y2
)2

=
(
a2 − cx

)2
a2
(
(x− c)2 + y2

)
= a4 − 2a2cx+ c2x2

a2x2 − 2a2cx+ a2c2 + a2y2 = a4 − 2a2cx+ c2x2

a2x2 − c2x2 + a2y2 = a4 − a2c2(
a2 − c2

)
x2 + a2y2 = a2

(
a2 − c2

)
We are nearly finished. Recall that b2 = a2 − c2 so that(

a2 − c2
)
x2 + a2y2 = a2

(
a2 − c2

)
b2x2 + a2y2 = a2b2

x2

a2
+
y2

b2
= 1
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7.4 Ellipses 519

This equation is for an ellipse centered at the origin. To get the formula for the ellipse centered at
(h, k), we could use the transformations from Section 1.7 or re-derive the equation using Definition
7.4 and the distance formula to obtain the formula below.

Equation 7.4. The Standard Equation of an Ellipse: For positive unequal numbers a and
b, the equation of an ellipse with center (h, k) is

(x− h)2

a2
+

(y − k)2

b2
= 1

Some remarks about Equation 7.4 are in order. First note that the values a and b determine
how far in the x and y directions, respectively, one counts from the center to arrive at points on
the ellipse. Also take note that if a > b, then we have an ellipse whose major axis is horizontal,
and hence, the foci lie to the left and right of the center. In this case, as we’ve seen in the
derivation, the distance from the center to the focus, c, can be found by c =

√
a2 − b2. If b > a,

the roles of the major and minor axes are reversed, and the foci lie above and below the center.
In this case, c =

√
b2 − a2. In either case, c is the distance from the center to each focus, and

c =
√

bigger denominator− smaller denominator. Finally, it is worth mentioning that if we take
the standard equation of a circle, Equation 7.1, and divide both sides by r2, we get

Equation 7.5. The Alternate Standard Equation of a Circle: The equation of a circle
with center (h, k) and radius r > 0 is

(x− h)2

r2
+

(y − k)2

r2
= 1

Notice the similarity between Equation 7.4 and Equation 7.5. Both equations involve a sum of
squares equal to 1; the difference is that with a circle, the denominators are the same, and with an
ellipse, they are different. If we take a transformational approach, we can consider both Equations
7.4 and 7.5 as shifts and stretches of the Unit Circle x2 + y2 = 1 in Definition 7.2. Replacing x
with (x− h) and y with (y− k) causes the usual horizontal and vertical shifts. Replacing x with x

a
and y with y

b causes the usual vertical and horizontal stretches. In other words, it is perfectly fine
to think of an ellipse as the deformation of a circle in which the circle is stretched farther in one
direction than the other.1

Example 7.4.1. Graph (x+1)2

9 + (y−2)2

25 = 1. Find the center, the lines which contain the major
and minor axes, the vertices, the endpoints of the minor axis, and the foci.

Solution. We see that this equation is in the standard form of Equation 7.4. Here x− h is x+ 1
so h = −1, and y−k is y−2 so k = 2. Hence, our ellipse is centered at (−1, 2). We see that a2 = 9
so a = 3, and b2 = 25 so b = 5. This means that we move 3 units left and right from the center
and 5 units up and down from the center to arrive at points on the ellipse. As an aid to sketching,
we draw a rectangle matching this description, called a guide rectangle, and sketch the ellipse
inside this rectangle as seen below on the left.

1This was foreshadowed in Exercise 19 in Section 7.2.

363



520 Hooked on Conics

x

y

−4 −3 −2 −1 1 2

−3

−2

−1

1

2

3

4

5

6

7

x

y

−4 −3 −2 −1 1 2

−3

−2

−1

1

2

3

4

5

6

7

Since we moved farther in the y direction than in the x direction, the major axis will lie along
the vertical line x = −1, which means the minor axis lies along the horizontal line, y = 2. The
vertices are the points on the ellipse which lie along the major axis so in this case, they are the
points (−1, 7) and (−1,−3), and the endpoints of the minor axis are (−4, 2) and (2, 2). (Notice
these points are the four points we used to draw the guide rectangle.) To find the foci, we find
c =
√

25− 9 =
√

16 = 4, which means the foci lie 4 units from the center. Since the major axis is
vertical, the foci lie 4 units above and below the center, at (−1,−2) and (−1, 6). Plotting all this
information gives the graph seen above on the right.

Example 7.4.2. Find the equation of the ellipse with foci (2, 1) and (4, 1) and vertex (0, 1).

Solution. Plotting the data given to us, we have

x

y

1 2 3 4 5

1

From this sketch, we know that the major axis is horizontal, meaning a > b. Since the center is the
midpoint of the foci, we know it is (3, 1). Since one vertex is (0, 1) we have that a = 3, so a2 = 9.
All that remains is to find b2. Since the foci are 1 unit away from the center, we know c = 1. Since
a > b, we have c =

√
a2 − b2, or 1 =

√
9− b2, so b2 = 8. Substituting all of our findings into the

equation (x−h)2

a2 + (y−k)2

b2
= 1, we get our final answer to be (x−3)2

9 + (y−1)2

8 = 1.
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As with circles and parabolas, an equation may be given which is an ellipse, but isn’t in the standard
form of Equation 7.4. In those cases, as with circles and parabolas before, we will need to massage
the given equation into the standard form.

To Write the Equation of an Ellipse in Standard Form

1. Group the same variables together on one side of the equation and position the constant
on the other side.

2. Complete the square in both variables as needed.

3. Divide both sides by the constant term so that the constant on the other side of the
equation becomes 1.

Example 7.4.3. Graph x2 + 4y2− 2x+ 24y+ 33 = 0. Find the center, the lines which contain the
major and minor axes, the vertices, the endpoints of the minor axis, and the foci.

Solution. Since we have a sum of squares and the squared terms have unequal coefficients, it’s a
good bet we have an ellipse on our hands.2 We need to complete both squares, and then divide, if
necessary, to get the right-hand side equal to 1.

x2 + 4y2 − 2x+ 24y + 33 = 0

x2 − 2x+ 4y2 + 24y = −33

x2 − 2x+ 4
(
y2 + 6y

)
= −33(

x2 − 2x+ 1
)

+ 4
(
y2 + 6y + 9

)
= −33 + 1 + 4(9)

(x− 1)2 + 4(y + 3)2 = 4

(x− 1)2 + 4(y + 3)2

4
=

4

4

(x− 1)2

4
+ (y + 3)2 = 1

(x− 1)2

4
+

(y + 3)2

1
= 1

Now that this equation is in the standard form of Equation 7.4, we see that x−h is x− 1 so h = 1,
and y−k is y+ 3 so k = −3. Hence, our ellipse is centered at (1,−3). We see that a2 = 4 so a = 2,
and b2 = 1 so b = 1. This means we move 2 units left and right from the center and 1 unit up and
down from the center to arrive at points on the ellipse. Since we moved farther in the x direction
than in the y direction, the major axis will lie along the horizontal line y = −3, which means the
minor axis lies along the vertical line x = 1. The vertices are the points on the ellipse which lie
along the major axis so in this case, they are the points (−1,−3) and (3,−3), and the endpoints
of the minor axis are (1,−2) and (1,−4). To find the foci, we find c =

√
4− 1 =

√
3, which means

2The equation of a parabola has only one squared variable and the equation of a circle has two squared variables
with identical coefficients.
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the foci lie
√

3 units from the center. Since the major axis is horizontal, the foci lie
√

3 units to the
left and right of the center, at (1−

√
3,−3) and (1 +

√
3,−3). Plotting all of this information gives

x

y

−1 1 2 3 4

−4

−3

−2

−1

As you come across ellipses in the homework exercises and in the wild, you’ll notice they come in
all shapes in sizes. Compare the two ellipses below.

Certainly, one ellipse is more round than the other. This notion of ‘roundness’ is quantified below.

Definition 7.5. The eccentricity of an ellipse, denoted e, is the following ratio:

e =
distance from the center to a focus

distance from the center to a vertex

In an ellipse, the foci are closer to the center than the vertices, so 0 < e < 1. The ellipse above on
the left has eccentricity e ≈ 0.98; for the ellipse above on the right, e ≈ 0.66. In general, the closer
the eccentricity is to 0, the more ‘circular’ the ellipse; the closer the eccentricity is to 1, the more
‘eccentric’ the ellipse.

Example 7.4.4. Find the equation of the ellipse whose vertices are (±5, 0) with eccentricity e = 1
4 .

Solution. As before, we plot the data given to us

x

y
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From this sketch, we know that the major axis is horizontal, meaning a > b. With the vertices
located at (±5, 0), we get a = 5 so a2 = 25. We also know that the center is (0, 0) because the
center is the midpoint of the vertices. All that remains is to find b2. To that end, we use the fact
that the eccentricity e = 1

4 which means

e =
distance from the center to a focus

distance from the center to a vertex
=
c

a
=
c

5
=

1

4

from which we get c = 5
4 . To get b2, we use the fact that c =

√
a2 − b2, so 5

4 =
√

25− b2 from which

we get b2 = 375
16 . Substituting all of our findings into the equation (x−h)2

a2 + (y−k)2

b2
= 1, yields our

final answer x2

25 + 16y2

375 = 1.

As with parabolas, ellipses have a reflective property. If we imagine the dashed lines below repre-
senting sound waves, then the waves emanating from one focus reflect off the top of the ellipse and
head towards the other focus.

F1 F2

Such geometry is exploited in the construction of so-called ‘Whispering Galleries’. If a person
whispers at one focus, a person standing at the other focus will hear the first person as if they were
standing right next to them. We explore the Whispering Galleries in our last example.

Example 7.4.5. Jamie and Jason want to exchange secrets (terrible secrets) from across a crowded
whispering gallery. Recall that a whispering gallery is a room which, in cross section, is half of an
ellipse. If the room is 40 feet high at the center and 100 feet wide at the floor, how far from the
outer wall should each of them stand so that they will be positioned at the foci of the ellipse?

Solution. Graphing the data yields
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x

y

100 units wide

40 units tall

It’s most convenient to imagine this ellipse centered at (0, 0). Since the ellipse is 100 units wide

and 40 units tall, we get a = 50 and b = 40. Hence, our ellipse has the equation x2

502 + y2

402 = 1.

We’re looking for the foci, and we get c =
√

502 − 402 =
√

900 = 30, so that the foci are 30 units
from the center. That means they are 50 − 30 = 20 units from the vertices. Hence, Jason and
Jamie should stand 20 feet from opposite ends of the gallery.
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7.4.1 Exercises

In Exercises 1 - 8, graph the ellipse. Find the center, the lines which contain the major and minor
axes, the vertices, the endpoints of the minor axis, the foci and the eccentricity.

1.
x2

169
+
y2

25
= 1 2.

x2

9
+
y2

25
= 1

3.
(x− 2)2

4
+

(y + 3)2

9
= 1 4.

(x+ 5)2

16
+

(y − 4)2

1
= 1

5.
(x− 1)2

10
+

(y − 3)2

11
= 1 6.

(x− 1)2

9
+

(y + 3)2

4
= 1

7.
(x+ 2)2

16
+

(y − 5)2

20
= 1 8.

(x− 4)2

8
+

(y − 2)2

18
= 1

In Exercises 9 - 14, put the equation in standard form. Find the center, the lines which contain the
major and minor axes, the vertices, the endpoints of the minor axis, the foci and the eccentricity.

9. 9x2 + 25y2 − 54x− 50y − 119 = 0 10. 12x2 + 3y2 − 30y + 39 = 0

11. 5x2 + 18y2 − 30x+ 72y + 27 = 0 12. x2 − 2x+ 2y2 − 12y + 3 = 0

13. 9x2 + 4y2 − 4y − 8 = 0 14. 6x2 + 5y2 − 24x+ 20y + 14 = 0

In Exercises 15 - 20, find the standard form of the equation of the ellipse which has the given
properties.

15. Center (3, 7), Vertex (3, 2), Focus (3, 3)

16. Foci (0,±5), Vertices (0,±8).

17. Foci (±3, 0), length of the Minor Axis 10

18. Vertices (3, 2), (13, 2); Endpoints of the Minor Axis (8, 4), (8, 0)

19. Center (5, 2), Vertex (0, 2), eccentricity 1
2

20. All points on the ellipse are in Quadrant IV except (0,−9) and (8, 0). (One might also say
that the ellipse is “tangent to the axes” at those two points.)

21. Repeat Example 7.4.5 for a whispering gallery 200 feet wide and 75 feet tall.

22. An elliptical arch is constructed which is 6 feet wide at the base and 9 feet tall in the middle.
Find the height of the arch exactly 1 foot in from the base of the arch. Compare your result
with your answer to Exercise 21 in Section 7.3.
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23. The Earth’s orbit around the sun is an ellipse with the sun at one focus and eccentricity
e ≈ 0.0167. The length of the semimajor axis (that is, half of the major axis) is defined
to be 1 astronomical unit (AU). The vertices of the elliptical orbit are given special names:
‘aphelion’ is the vertex farthest from the sun, and ‘perihelion’ is the vertex closest to the sun.
Find the distance in AU between the sun and aphelion and the distance in AU between the
sun and perihelion.

24. The graph of an ellipse clearly fails the Vertical Line Test, Theorem 1.1, so the equation of
an ellipse does not define y as a function of x. However, much like with circles and horizontal
parabolas, we can split an ellipse into a top half and a bottom half, each of which would
indeed represent y as a function of x. With the help of your classmates, use your calculator
to graph the ellipses given in Exercises 1 - 8 above. What difficulties arise when you plot
them on the calculator?

25. Some famous examples of whispering galleries include St. Paul’s Cathedral in London, Eng-
land, National Statuary Hall in Washington, D.C., and The Cincinnati Museum Center. With
the help of your classmates, research these whispering galleries. How does the whispering ef-
fect compare and contrast with the scenario in Example 7.4.5?

26. With the help of your classmates, research “extracorporeal shock-wave lithotripsy”. It uses
the reflective property of the ellipsoid to dissolve kidney stones.
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7.4.2 Answers

1.
x2

169
+
y2

25
= 1

Center (0, 0)
Major axis along y = 0
Minor axis along x = 0
Vertices (13, 0), (−13, 0)
Endpoints of Minor Axis (0,−5), (0, 5)
Foci (12, 0), (−12, 0)
e = 12

13

x

y

−13 −1 1 13

−5

−4

−3

−2

−1

1

2

3

4

5

2.
x2

9
+
y2

25
= 1

Center (0, 0)
Major axis along x = 0
Minor axis along y = 0
Vertices (0, 5), (0,−5)
Endpoints of Minor Axis (−3, 0), (3, 0)
Foci (0,−4), (0, 4)
e = 4

5

x

y

−3−2−1 1 2 3

−5

−4

−3

−2

−1

1

2

3

4

5

3.
(x− 2)2

4
+

(y + 3)2

9
= 1

Center (2,−3)
Major axis along x = 2
Minor axis along y = −3
Vertices (2, 0), (2,−6)
Endpoints of Minor Axis (0,−3), (4,−3)
Foci (2,−3 +

√
5), (2,−3−

√
5)

e =
√

5
3

x

y

1 2 3 4

−6

−5

−4

−3

−2

−1

4.
(x+ 5)2

16
+

(y − 4)2

1
= 1

Center (−5, 4)
Major axis along y = 4
Minor axis along x = −5
Vertices (−9, 4), (−1, 4)
Endpoints of Minor Axis (−5, 3), (−5, 5)
Foci (−5 +

√
15, 4), (−5−

√
15, 4)

e =
√

15
4 x

y

−9 −8 −7 −6 −5 −4 −3 −2 −1

1

2

3

4

5
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5.
(x− 1)2

10
+

(y − 3)2

11
= 1

Center (1, 3)
Major axis along x = 1
Minor axis along y = 3
Vertices (1, 3 +

√
11), (1, 3−

√
11)

Endpoints of the Minor Axis
(1−

√
10, 3), (1 +

√
10, 3)

Foci (1, 2), (1, 4)

e =
√

11
11

x

y

−2 −1 1 2 3 4

1

2

3

4

5

6

6.
(x− 1)2

9
+

(y + 3)2

4
= 1

Center (1,−3)
Major axis along y = −3
Minor axis along x = 1
Vertices (4,−3), (−2,−3)
Endpoints of the Minor Axis (1,−1), (1,−5)
Foci (1 +

√
5,−3), (1−

√
5,−3)

e =
√

5
3

x

y

−2 −1 1 2 3 4

−5

−4

−3

−2

−1

7.
(x+ 2)2

16
+

(y − 5)2

20
= 1

Center (−2, 5)
Major axis along x = −2
Minor axis along y = 5
Vertices (−2, 5 + 2

√
5), (−2, 5− 2

√
5)

Endpoints of the Minor Axis (−6, 5), (2, 5)
Foci (−2, 7), (−2, 3)

e =
√

5
5

x

y

−6 −5 −4 −3 −2 −1 1 2

1

2

3

4

5

6

7

8

9

10
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8.
(x− 4)2

8
+

(y − 2)2

18
= 1

Center (4, 2)
Major axis along x = 4
Minor axis along y = 2
Vertices (4, 2 + 3

√
2), (4, 2− 3

√
2)

Endpoints of the Minor Axis
(4− 2

√
2, 2), (4 + 2

√
2, 2)

Foci (4, 2 +
√

10), (4, 2−
√

10)

e =
√

5
3

x

y

1 2 3 4 5 6 7

−3

−2

−1

1

2

3

4

5

6

7

9.
(x− 3)2

25
+

(y − 1)2

9
= 1

Center (3, 1)
Major Axis along y = 1
Minor Axis along x = 3
Vertices (8, 1), (−2, 1)
Endpoints of Minor Axis (3, 4), (3,−2)
Foci (7, 1), (−1, 1)
e = 4

5

10.
x2

3
+

(y − 5)2

12
= 1

Center (0, 5)
Major axis along x = 0
Minor axis along y = 5
Vertices (0, 5− 2

√
3), (0, 5 + 2

√
3)

Endpoints of Minor Axis (−
√

3, 5), (
√

3, 5)
Foci (0, 2), (0, 8)

e =
√

3
2

11.
(x− 3)2

18
+

(y + 2)2

5
= 1

Center (3,−2)
Major axis along y = −2
Minor axis along x = 3
Vertices (3− 3

√
2,−2), (3 + 3

√
2,−2)

Endpoints of Minor Axis (3,−2 +
√

5),
(3,−2−

√
5)

Foci (3−
√

13,−2), (3 +
√

13,−2)

e =
√

26
6

12.
(x− 1)2

16
+

(y − 3)2

8
= 1

Center (1, 3)
Major Axis along y = 3
Minor Axis along x = 1
Vertices (5, 3), (−3, 3)
Endpoints of Minor Axis (1, 3 + 2

√
2),

(1, 3− 2
√

2)
Foci (1 + 2

√
2, 3), (1− 2

√
2, 3)

e =
√

2
2
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13.
x2

1
+

4
(
y − 1

2

)2
9

= 1

Center
(
0, 1

2

)
Major Axis along x = 0 (the y-axis)
Minor Axis along y = 1

2
Vertices (0, 2), (0,−1)
Endpoints of Minor Axis

(
−1, 1

2

)
,
(
1, 1

2

)
Foci

(
0, 1+

√
5

2

)
,
(

0, 1−
√

5
2

)
e =

√
5

3

14.
(x− 2)2

5
+

(y + 2)2

6
= 1

Center (2,−2)
Major Axis along x = 2
Minor Axis along y = −2
Vertices

(
2,−2 +

√
6
)
, (2,−2−

√
6)

Endpoints of Minor Axis
(
2−
√

5,−2
)
,(

2 +
√

5,−2
)

Foci (2,−1), (2,−3)

e =
√

6
6

15.
(x− 3)2

9
+

(y − 7)2

25
= 1 16.

x2

39
+
y2

64
= 1

17.
x2

34
+
y2

25
= 1 18.

(x− 8)2

25
+

(y − 2)2

4
= 1

19.
(x− 5)2

25
+

4(y − 2)2

75
= 1 20.

(x− 8)2

64
+

(y + 9)2

81
= 1

21. Jamie and Jason should stand 100− 25
√

7 ≈ 33.86 feet from opposite ends of the gallery.

22. The arch can be modeled by the top half of x
2

9 + y2

81 = 1. One foot in from the base of the arch

corresponds to either x = ±2. Plugging in x = ±2 gives y = ±3
√

5 and since y represents a
height, we choose y = 3

√
5 ≈ 6.71 feet.

23. Distance from the sun to aphelion ≈ 1.0167 AU.
Distance from the sun to perihelion ≈ 0.9833 AU.
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7.5 Hyperbolas 531

7.5 Hyperbolas

In the definition of an ellipse, Definition 7.4, we fixed two points called foci and looked at points
whose distances to the foci always added to a constant distance d. Those prone to syntactical
tinkering may wonder what, if any, curve we’d generate if we replaced added with subtracted.
The answer is a hyperbola.

Definition 7.6. Given two distinct points F1 and F2 in the plane and a fixed distance d, a
hyperbola is the set of all points (x, y) in the plane such that the absolute value of the difference
of each of the distances from F1 and F2 to (x, y) is d. The points F1 and F2 are called the foci
of the hyperbola.

(x1, y1)

(x2, y2)

F1 F2

In the figure above:

the distance from F1 to (x1, y1)− the distance from F2 to (x1, y1) = d

and

the distance from F2 to (x2, y2)− the distance from F1 to (x2, y2) = d

Note that the hyperbola has two parts, called branches. The center of the hyperbola is the
midpoint of the line segment connecting the two foci. The transverse axis of the hyperbola is
the line segment connecting two opposite ends of the hyperbola which also contains the center and
foci. The vertices of a hyperbola are the points of the hyperbola which lie on the transverse axis.
In addition, we will show momentarily that there are lines called asymptotes which the branches
of the hyperbola approach for large x and y values. They serve as guides to the graph. In pictures,
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532 Hooked on Conics

V2V1F1 F2

Transverse Axis

C

A hyperbola with center C; foci F1, F2; and vertices V1, V2 and asymptotes (dashed)

Before we derive the standard equation of the hyperbola, we need to discuss one further parameter,
the conjugate axis of the hyperbola. The conjugate axis of a hyperbola is the line segment
through the center which is perpendicular to the transverse axis and has the same length as the
line segment through a vertex which connects the asymptotes. In pictures we have

V2V1 C

C
o
n

ju
g
a
te

A
x
is

Note that in the diagram, we can construct a rectangle using line segments with lengths equal to
the lengths of the transverse and conjugate axes whose center is the center of the hyperbola and
whose diagonals are contained in the asymptotes. This guide rectangle, much akin to the one
we saw Section 7.4 to help us graph ellipses, will aid us in graphing hyperbolas.

Suppose we wish to derive the equation of a hyperbola. For simplicity, we shall assume that the
center is (0, 0), the vertices are (a, 0) and (−a, 0) and the foci are (c, 0) and (−c, 0). We label the
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7.5 Hyperbolas 533

endpoints of the conjugate axis (0, b) and (0,−b). (Although b does not enter into our derivation,
we will have to justify this choice as you shall see later.) As before, we assume a, b, and c are all
positive numbers. Schematically we have

x

y

(a, 0)(−a, 0)

(0, b)

(0,−b)

(−c, 0) (c, 0)

(x, y)

Since (a, 0) is on the hyperbola, it must satisfy the conditions of Definition 7.6. That is, the distance
from (−c, 0) to (a, 0) minus the distance from (c, 0) to (a, 0) must equal the fixed distance d. Since
all these points lie on the x-axis, we get

distance from (−c, 0) to (a, 0)− distance from (c, 0) to (a, 0) = d

(a+ c)− (c− a) = d

2a = d

In other words, the fixed distance d from the definition of the hyperbola is actually the length of
the transverse axis! (Where have we seen that type of coincidence before?) Now consider a point
(x, y) on the hyperbola. Applying Definition 7.6, we get

distance from (−c, 0) to (x, y)− distance from (c, 0) to (x, y) = 2a√
(x− (−c))2 + (y − 0)2 −

√
(x− c)2 + (y − 0)2 = 2a√

(x+ c)2 + y2 −
√

(x− c)2 + y2 = 2a

Using the same arsenal of Intermediate Algebra weaponry we used in deriving the standard formula
of an ellipse, Equation 7.4, we arrive at the following.1

1It is a good exercise to actually work this out.
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534 Hooked on Conics

(
a2 − c2

)
x2 + a2y2 = a2

(
a2 − c2

)
What remains is to determine the relationship between a, b and c. To that end, we note that since
a and c are both positive numbers with a < c, we get a2 < c2 so that a2− c2 is a negative number.
Hence, c2 − a2 is a positive number. For reasons which will become clear soon, we re-write the
equation by solving for y2/x2 to get(

a2 − c2
)
x2 + a2y2 = a2

(
a2 − c2

)
−
(
c2 − a2

)
x2 + a2y2 = −a2

(
c2 − a2

)
a2y2 =

(
c2 − a2

)
x2 − a2

(
c2 − a2

)
y2

x2
=

(
c2 − a2

)
a2

−
(
c2 − a2

)
x2

As x and y attain very large values, the quantity
(c2−a2)

x2 → 0 so that y2

x2 →
(c2−a2)

a2 . By setting

b2 = c2 − a2 we get y2

x2 → b2

a2 . This shows that y → ± b
ax as |x| grows large. Thus y = ± b

ax are the
asymptotes to the graph as predicted and our choice of labels for the endpoints of the conjugate
axis is justified. In our equation of the hyperbola we can substitute a2 − c2 = −b2 which yields(

a2 − c2
)
x2 + a2y2 = a2

(
a2 − c2

)
−b2x2 + a2y2 = −a2b2

x2

a2
− y2

b2
= 1

The equation above is for a hyperbola whose center is the origin and which opens to the left and
right. If the hyperbola were centered at a point (h, k), we would get the following.

Equation 7.6. The Standard Equation of a Horizontala Hyperbola For positive numbers
a and b, the equation of a horizontal hyperbola with center (h, k) is

(x− h)2

a2
− (y − k)2

b2
= 1

aThat is, a hyperbola whose branches open to the left and right

If the roles of x and y were interchanged, then the hyperbola’s branches would open upwards and
downwards and we would get a ‘vertical’ hyperbola.

Equation 7.7. The Standard Equation of a Vertical Hyperbola For positive numbers a
and b, the equation of a vertical hyperbola with center (h, k) is:

(y − k)2

b2
− (x− h)2

a2
= 1

The values of a and b determine how far in the x and y directions, respectively, one counts from the
center to determine the rectangle through which the asymptotes pass. In both cases, the distance
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7.5 Hyperbolas 535

from the center to the foci, c, as seen in the derivation, can be found by the formula c =
√
a2 + b2.

Lastly, note that we can quickly distinguish the equation of a hyperbola from that of a circle or
ellipse because the hyperbola formula involves a difference of squares where the circle and ellipse
formulas both involve the sum of squares.

Example 7.5.1. Graph the equation (x−2)2

4 − y2

25 = 1. Find the center, the lines which contain the
transverse and conjugate axes, the vertices, the foci and the equations of the asymptotes.

Solution. We first see that this equation is given to us in the standard form of Equation 7.6. Here
x − h is x − 2 so h = 2, and y − k is y so k = 0. Hence, our hyperbola is centered at (2, 0). We
see that a2 = 4 so a = 2, and b2 = 25 so b = 5. This means we move 2 units to the left and right
of the center and 5 units up and down from the center to arrive at points on the guide rectangle.
The asymptotes pass through the center of the hyperbola as well as the corners of the rectangle.
This yields the following set up.

x

y

−2 −1 1 2 3 4 5 6

−7

−6

−5

−4

−3

−2

−1

1

2

3

4

5

6

7

Since the y2 term is being subtracted from the x2 term, we know that the branches of the hyperbola
open to the left and right. This means that the transverse axis lies along the x-axis. Hence, the
conjugate axis lies along the vertical line x = 2. Since the vertices of the hyperbola are where the
hyperbola intersects the transverse axis, we get that the vertices are 2 units to the left and right of
(2, 0) at (0, 0) and (4, 0). To find the foci, we need c =

√
a2 + b2 =

√
4 + 25 =

√
29. Since the foci

lie on the transverse axis, we move
√

29 units to the left and right of (2, 0) to arrive at (2−
√

29, 0)
(approximately (−3.39, 0)) and (2 +

√
29, 0) (approximately (7.39, 0)). To determine the equations

of the asymptotes, recall that the asymptotes go through the center of the hyperbola, (2, 0), as well
as the corners of guide rectangle, so they have slopes of ± b

a = ±5
2 . Using the point-slope equation
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536 Hooked on Conics

of a line, Equation 2.2, yields y − 0 = ±5
2(x− 2), so we get y = 5

2x− 5 and y = −5
2x+ 5. Putting

it all together, we get

x

y

−3 −2 −1 1 2 3 4 5 6 7

−7

−6

−5

−4

−3

−2

−1

1

2

3

4

5

6

7

Example 7.5.2. Find the equation of the hyperbola with asymptotes y = ±2x and vertices (±5, 0).

Solution. Plotting the data given to us, we have

x

y

−5 5

−5

5

This graph not only tells us that the branches of the hyperbola open to the left and to the right,

it also tells us that the center is (0, 0). Hence, our standard form is x2

a2 − y2

b2
= 1. Since the vertices

are (±5, 0), we have a = 5 so a2 = 25. In order to determine b2, we recall that the slopes of the
asymptotes are ± b

a . Since a = 5 and the slope of the line y = 2x is 2, we have that b
5 = 2, so

b = 10. Hence, b2 = 100 and our final answer is x2

25 −
y2

100 = 1.
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7.5 Hyperbolas 537

As with the other conic sections, an equation whose graph is a hyperbola may not be given in either
of the standard forms. To rectify that, we have the following.

To Write the Equation of a Hyperbola in Standard Form

1. Group the same variables together on one side of the equation and position the constant
on the other side

2. Complete the square in both variables as needed

3. Divide both sides by the constant term so that the constant on the other side of the
equation becomes 1

Example 7.5.3. Consider the equation 9y2−x2− 6x = 10. Put this equation in to standard form
and graph. Find the center, the lines which contain the transverse and conjugate axes, the vertices,
the foci, and the equations of the asymptotes.

Solution. We need only complete the square on x:

9y2 − x2 − 6x = 10

9y2 − 1
(
x2 + 6x

)
= 10

9y2 −
(
x2 + 6x+ 9

)
= 10− 1(9)

9y2 − (x+ 3)2 = 1

y2

1
9

− (x+ 3)2

1
= 1

Now that this equation is in the standard form of Equation 7.7, we see that x−h is x+3 so h = −3,
and y− k is y so k = 0. Hence, our hyperbola is centered at (−3, 0). We find that a2 = 1 so a = 1,
and b2 = 1

9 so b = 1
3 . This means that we move 1 unit to the left and right of the center and 1

3
units up and down from the center to arrive at points on the guide rectangle. Since the x2 term
is being subtracted from the y2 term, we know the branches of the hyperbola open upwards and
downwards. This means the transverse axis lies along the vertical line x = −3 and the conjugate
axis lies along the x-axis. Since the vertices of the hyperbola are where the hyperbola intersects
the transverse axis, we get that the vertices are 1

3 of a unit above and below (−3, 0) at
(
−3, 1

3

)
and(

−3,−1
3

)
. To find the foci, we use

c =
√
a2 + b2 =

√
1

9
+ 1 =

√
10

3

Since the foci lie on the transverse axis, we move
√

10
3 units above and below (−3, 0) to arrive at(

−3,
√

10
3

)
and

(
−3,−

√
10
3

)
. To determine the asymptotes, recall that the asymptotes go through

the center of the hyperbola, (−3, 0), as well as the corners of guide rectangle, so they have slopes
of ± b

a = ±1
3 . Using the point-slope equation of a line, Equation 2.2, we get y = 1

3x + 1 and
y = −1

3x− 1. Putting it all together, we get
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x

y

−6 −1

1

−1

Hyperbolas can be used in so-called ‘trilateration,’ or ‘positioning’ problems. The procedure out-
lined in the next example is the basis of the (now virtually defunct) LOng Range Aid to Navigation
(LORAN for short) system.2

Example 7.5.4. Jeff is stationed 10 miles due west of Carl in an otherwise empty forest in an
attempt to locate an elusive Sasquatch. At the stroke of midnight, Jeff records a Sasquatch call
9 seconds earlier than Carl. If the speed of sound that night is 760 miles per hour, determine a
hyperbolic path along which Sasquatch must be located.

Solution. Since Jeff hears Sasquatch sooner, it is closer to Jeff than it is to Carl. Since the speed of
sound is 760 miles per hour, we can determine how much closer Sasquatch is to Jeff by multiplying

760
miles

hour
× 1 hour

3600 seconds
× 9 seconds = 1.9 miles

This means that Sasquatch is 1.9 miles closer to Jeff than it is to Carl. In other words, Sasquatch
must lie on a path where

(the distance to Carl)− (the distance to Jeff) = 1.9

This is exactly the situation in the definition of a hyperbola, Definition 7.6. In this case, Jeff
and Carl are located at the foci,3 and our fixed distance d is 1.9. For simplicity, we assume the
hyperbola is centered at (0, 0) with its foci at (−5, 0) and (5, 0). Schematically, we have

2GPS now rules the positioning kingdom. Is there still a place for LORAN and other land-based systems? Do
satellites ever malfunction?

3We usually like to be the center of attention, but being the focus of attention works equally well.
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x

y

Jeff Carl
−6 −5 −4 −3 −2 −1 1 2 3 4 5 6

−6

−5

−4
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−1

1

2

3

4

5

6

We are seeking a curve of the form x2

a2 − y2

b2
= 1 in which the distance from the center to each focus

is c = 5. As we saw in the derivation of the standard equation of the hyperbola, Equation 7.6,
d = 2a, so that 2a = 1.9, or a = 0.95 and a2 = 0.9025. All that remains is to find b2. To that end,
we recall that a2 + b2 = c2 so b2 = c2 − a2 = 25 − 0.9025 = 24.0975. Since Sasquatch is closer to

Jeff than it is to Carl, it must be on the western (left hand) branch of x2

0.9025 −
y2

24.0975 = 1.

In our previous example, we did not have enough information to pin down the exact location of
Sasquatch. To accomplish this, we would need a third observer.

Example 7.5.5. By a stroke of luck, Kai was also camping in the woods during the events of the
previous example. He was located 6 miles due north of Jeff and heard the Sasquatch call 18 seconds
after Jeff did. Use this added information to locate Sasquatch.

Solution. Kai and Jeff are now the foci of a second hyperbola where the fixed distance d can be
determined as before

760
miles

hour
× 1 hour

3600 seconds
× 18 seconds = 3.8 miles

Since Jeff was positioned at (−5, 0), we place Kai at (−5, 6). This puts the center of the new
hyperbola at (−5, 3). Plotting Kai’s position and the new center gives us the diagram below on

the left. The second hyperbola is vertical, so it must be of the form (y−3)2

b2
− (x+5)2

a2 = 1. As before,
the distance d is the length of the major axis, which in this case is 2b. We get 2b = 3.8 so that
b = 1.9 and b2 = 3.61. With Kai 6 miles due North of Jeff, we have that the distance from the
center to the focus is c = 3. Since a2 + b2 = c2, we get a2 = c2 − b2 = 9− 3.61 = 5.39. Kai heard
the Sasquatch call after Jeff, so Kai is farther from Sasquatch than Jeff. Thus Sasquatch must lie

on the southern branch of the hyperbola (y−3)2

3.61 −
(x+5)2

5.39 = 1. Looking at the western branch of the
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hyperbola determined by Jeff and Carl along with the southern branch of the hyperbola determined
by Kai and Jeff, we see that there is exactly one point in common, and this is where Sasquatch
must have been when it called.

x

y

Jeff Carl

Kai

−9−8−7−6−5−4−3−2−1 1 2 3 4 5 6

−6
−5

−4
−3

−2

−1

1

2
3

4

5
6

x

y

Jeff Carl

Kai

Sasquatch
−9−8−7−6−5−4−3−2 1 2 3 4 5 6

−6
−5

−4
−3

−2

1

2
3

4

5
6

To determine the coordinates of this point of intersection exactly, we would need techniques for
solving systems of non-linear equations (which we won’t see until Section 8.7), so we use the
calculator4 Doing so, we get Sasquatch is approximately at (−0.9629,−0.8113).

Each of the conic sections we have studied in this chapter result from graphing equations of the
form Ax2 +Cy2 +Dx+Ey+F = 0 for different choices of A, C, D, E, and5 F . While we’ve seen
examples6 demonstrate how to convert an equation from this general form to one of the standard
forms, we close this chapter with some advice about which standard form to choose.7

Strategies for Identifying Conic Sections

Suppose the graph of equation Ax2 +Cy2 +Dx+Ey+F = 0 is a non-degenerate conic section.a

• If just one variable is squared, the graph is a parabola. Put the equation in the form of
Equation 7.2 (if x is squared) or Equation 7.3 (if y is squared).

If both variables are squared, look at the coefficients of x2 and y2, A and B.

• If A = B, the graph is a circle. Put the equation in the form of Equation 7.1.

• If A 6= B but A and B have the same sign, the graph is an ellipse. Put the equation in
the form of Equation 7.4.

• If A and B have the different signs, the graph is a hyperbola. Put the equation in the form
of either Equation 7.6 or Equation 7.7.

aThat is, a parabola, circle, ellipse, or hyperbola – see Section 7.1.

4First solve each hyperbola for y, and choose the correct equation (branch) before proceeding.
5See Section 11.6 to see why we skip B.
6Examples 7.2.3, 7.3.4, 7.4.3, and 7.5.3, in particular.
7We formalize this in Exercise 34.
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7.5 Hyperbolas 541

7.5.1 Exercises

In Exercises 1 - 8, graph the hyperbola. Find the center, the lines which contain the transverse
and conjugate axes, the vertices, the foci and the equations of the asymptotes.

1.
x2

16
− y2

9
= 1 2.

y2

9
− x2

16
= 1

3.
(x− 2)2

4
− (y + 3)2

9
= 1 4.

(y − 3)2

11
− (x− 1)2

10
= 1

5.
(x+ 4)2

16
− (y − 4)2

1
= 1 6.

(x+ 1)2

9
− (y − 3)2

4
= 1

7.
(y + 2)2

16
− (x− 5)2

20
= 1 8.

(x− 4)2

8
− (y − 2)2

18
= 1

In Exercises 9 - 12, put the equation in standard form. Find the center, the lines which contain
the transverse and conjugate axes, the vertices, the foci and the equations of the asymptotes.

9. 12x2 − 3y2 + 30y − 111 = 0 10. 18y2 − 5x2 + 72y + 30x− 63 = 0

11. 9x2 − 25y2 − 54x− 50y − 169 = 0 12. −6x2 + 5y2 − 24x+ 40y + 26 = 0

In Exercises 13 - 18, find the standard form of the equation of the hyperbola which has the given
properties.

13. Center (3, 7), Vertex (3, 3), Focus (3, 2)

14. Vertex (0, 1), Vertex (8, 1), Focus (−3, 1)

15. Foci (0,±8), Vertices (0,±5).

16. Foci (±5, 0), length of the Conjugate Axis 6

17. Vertices (3, 2), (13, 2); Endpoints of the Conjugate Axis (8, 4), (8, 0)

18. Vertex (−10, 5), Asymptotes y = ±1
2(x− 6) + 5

In Exercises 19 - 28, find the standard form of the equation using the guidelines on page 540 and
then graph the conic section.

19. x2 − 2x− 4y − 11 = 0 20. x2 + y2 − 8x+ 4y + 11 = 0

21. 9x2 + 4y2 − 36x+ 24y + 36 = 0 22. 9x2 − 4y2 − 36x− 24y − 36 = 0
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23. y2 + 8y − 4x+ 16 = 0 24. 4x2 + y2 − 8x+ 4 = 0

25. 4x2 + 9y2 − 8x+ 54y + 49 = 0 26. x2 + y2 − 6x+ 4y + 14 = 0

27. 2x2 + 4y2 + 12x− 8y + 25 = 0 28. 4x2 − 5y2 − 40x− 20y + 160 = 0

29. The graph of a vertical or horizontal hyperbola clearly fails the Vertical Line Test, Theorem
1.1, so the equation of a vertical of horizontal hyperbola does not define y as a function of x.8

However, much like with circles, horizontal parabolas and ellipses, we can split a hyperbola
into pieces, each of which would indeed represent y as a function of x. With the help of your
classmates, use your calculator to graph the hyperbolas given in Exercises 1 - 8 above. How
many pieces do you need for a vertical hyperbola? How many for a horizontal hyperbola?

30. The location of an earthquake’s epicenter − the point on the surface of the Earth directly
above where the earthquake actually occurred − can be determined by a process similar to
how we located Sasquatch in Example 7.5.5. (As we said back in Exercise 75 in Section 6.1,
earthquakes are complicated events and it is not our intent to provide a complete discussion of
the science involved in them. Instead, we refer the interested reader to a course in Geology or
the U.S. Geological Survey’s Earthquake Hazards Program found here.) Our technique works
only for relatively small distances because we need to assume that the Earth is flat in order
to use hyperbolas in the plane.9 The P-waves (“P” stands for Primary) of an earthquake
in Sasquatchia travel at 6 kilometers per second.10 Station A records the waves first. Then
Station B, which is 100 kilometers due north of Station A, records the waves 2 seconds later.
Station C, which is 150 kilometers due west of Station A records the waves 3 seconds after
that (a total of 5 seconds after Station A). Where is the epicenter?

31. The notion of eccentricity introduced for ellipses in Definition 7.5 in Section 7.4 is the same
for hyperbolas in that we can define the eccentricity e of a hyperbola as

e =
distance from the center to a focus

distance from the center to a vertex

(a) With the help of your classmates, explain why e > 1 for any hyperbola.

(b) Find the equation of the hyperbola with vertices (±3, 0) and eccentricity e = 2.

(c) With the help of your classmates, find the eccentricity of each of the hyperbolas in
Exercises 1 - 8. What role does eccentricity play in the shape of the graphs?

32. On page 510 in Section 7.3, we discussed paraboloids of revolution when studying the design
of satellite dishes and parabolic mirrors. In much the same way, ‘natural draft’ cooling towers
are often shaped as hyperboloids of revolution. Each vertical cross section of these towers

8We will see later in the text that the graphs of certain rotated hyperbolas pass the Vertical Line Test.
9Back in the Exercises in Section 1.1 you were asked to research people who believe the world is flat. What did

you discover?
10Depending on the composition of the crust at a specific location, P-waves can travel between 5 kps and 8 kps.
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is a hyperbola. Suppose the a natural draft cooling tower has the cross section below. Suppose
the tower is 450 feet wide at the base, 275 feet wide at the top, and 220 feet at its narrowest
point (which occurs 330 feet above the ground.) Determine the height of the tower to the
nearest foot.

450 ft

220 ft

275 ft

330 ft

33. With the help of your classmates, research the Cassegrain Telescope. It uses the reflective
property of the hyperbola as well as that of the parabola to make an ingenious telescope.

34. With the help of your classmates show that if Ax2 + Cy2 + Dx + Ey + F = 0 determines a
non-degenerate conic11 then

• AC < 0 means that the graph is a hyperbola

• AC = 0 means that the graph is a parabola

• AC > 0 means that the graph is an ellipse or circle

NOTE: This result will be generalized in Theorem 11.11 in Section 11.6.1.

11Recall that this means its graph is either a circle, parabola, ellipse or hyperbola.
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7.5.2 Answers

1.
x2

16
− y2

9
= 1

Center (0, 0)
Transverse axis on y = 0
Conjugate axis on x = 0
Vertices (4, 0), (−4, 0)
Foci (5, 0), (−5, 0)
Asymptotes y = ±3

4x

x

y

−6 −5 −4 −3 −2 −1 1 2 3 4 5 6

−6

−5

−4

−3

−2

−1

1

2

3

4

5

6

2.
y2

9
− x2

16
= 1

Center (0, 0)
Transverse axis on x = 0
Conjugate axis on y = 0
Vertices (0, 3), (0,−3)
Foci (0, 5), (0,−5)
Asymptotes y = ±3

4x

x

y

−6 −5 −4 −3 −2 −1 1 2 3 4 5 6

−6

−5

−4

−3

−2

−1

1

2

3

4

5

6

3.
(x− 2)2

4
− (y + 3)2

9
= 1

Center (2,−3)
Transverse axis on y = −3
Conjugate axis on x = 2
Vertices (0,−3), (4,−3)
Foci (2 +

√
13,−3), (2−

√
13,−3)

Asymptotes y = ±3
2(x− 2)− 3

x

y

−3 −2 −1 1 2 3 4 5 6 7

−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

1

2

3

4
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4.
(y − 3)2

11
− (x− 1)2

10
= 1

Center (1, 3)
Transverse axis on x = 1
Conjugate axis on y = 3
Vertices (1, 3 +

√
11), (1, 3−

√
11)

Foci (1, 3 +
√

21), (1, 3−
√

21)

Asymptotes y = ±
√

110
10 (x− 1) + 3

x

y

−5 −4 −3 −2 −1 1 2 3 4 5 6 7

−3

−2

−1

1

2

3

4

5

6

7

8

9

5.
(x+ 4)2

16
− (y − 4)2

1
= 1

Center (−4, 4)
Transverse axis on y = 4
Conjugate axis on x = −4
Vertices (−8, 4), (0, 4)
Foci (−4 +

√
17, 4), (−4−

√
17, 4)

Asymptotes y = ±1
4(x+ 4) + 4

x

y

−11−10−9 −8 −7 −6 −5 −4 −3 −2 −1 1 2 3

1

2

3

4

5

6.
(x+ 1)2

9
− (y − 3)2

4
= 1

Center (−1, 3)
Transverse axis on y = 3
Conjugate axis on x = −1
Vertices (2, 3), (−4, 3)
Foci

(
−1 +

√
13, 3

)
,
(
−1−

√
13, 3

)
Asymptotes y = ±2

3(x+ 1) + 3 x

y

−7 −6 −5 −4 −3 −2 −1 1 2 3 4 5

1

2

3

4

5

7.
(y + 2)2

16
− (x− 5)2

20
= 1

Center (5,−2)
Transverse axis on x = 5
Conjugate axis on y = −2
Vertices (5, 2), (5,−6)
Foci (5, 4) , (5,−8)

Asymptotes y = ±2
√

5
5 (x− 5)− 2

x

y

−1 1 2 3 4 5 6 7 8 9 10 11

−8

−7

−6

−5

−4

−3

−2

−1

1

2

3

4
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8.
(x− 4)2

8
− (y − 2)2

18
= 1

Center (4, 2)
Transverse axis on y = 2
Conjugate axis on x = 4
Vertices

(
4 + 2

√
2, 2
)
,
(
4− 2

√
2, 2
)

Foci
(
4 +
√

26, 2
)
,
(
4−
√

26, 2
)

Asymptotes y = ±3
2(x− 4) + 2 x

y

−2−1 1 2 3 4 5 6 7 8 9 10

-

−2

−1

1

2

3

4

5

6

7

8

9

9.
x2

3
− (y − 5)2

12
= 1

Center (0, 5)
Transverse axis on y = 5
Conjugate axis on x = 0
Vertices (

√
3, 5), (−

√
3, 5)

Foci (
√

15, 5), (−
√

15, 5)
Asymptotes y = ±2x+ 5

10.
(y + 2)2

5
− (x− 3)2

18
= 1

Center (3,−2)
Transverse axis on x = 3
Conjugate axis on y = −2
Vertices (3,−2 +

√
5), (3,−2−

√
5)

Foci (3,−2 +
√

23), (3,−2−
√

23)

Asymptotes y = ±
√

10
6 (x− 3)− 2

11.
(x− 3)2

25
− (y + 1)2

9
= 1

Center (3,−1)
Transverse axis on y = −1
Conjugate axis on x = 3
Vertices (8,−1), (−2,−1)
Foci

(
3 +
√

34,−1
)
,
(
3−
√

34,−1
)

Asymptotes y = ±3
5(x− 3)− 1

12.
(y + 4)2

6
− (x+ 2)2

5
= 1

Center (−2,−4)
Transverse axis on x = −2
Conjugate axis on y = −4
Vertices

(
−2,−4 +

√
6
)
,
(
−2,−4−

√
6
)

Foci
(
−2,−4 +

√
11
)
,
(
−2,−4−

√
11
)

Asymptotes y = ±
√

30
5 (x+ 2)− 4

13.
(y − 7)2

16
− (x− 3)2

9
= 1 14.

(x− 4)2

16
− (y − 1)2

33
= 1

15.
y2

25
− x2

39
= 1 16.

x2

16
− y2

9
= 1

17.
(x− 8)2

25
− (y − 2)2

4
= 1 18.

(x− 6)2

256
− (y − 5)2

64
= 1

390



7.5 Hyperbolas 547

19. (x− 1)2 = 4(y + 3)

x

y

−3 −2 −1 1 2 3 4

−4

−3

−2

−1

20. (x− 4)2 + (y + 2)2 = 9

x

y

1 4 7

−5

−2

1

21.
(x− 2)2

4
+

(y + 3)2

9
= 1

x

y

1 2 3 4

−6

−5

−4

−3

−2

−1

22.
(x− 2)2

4
− (y + 3)2

9
= 1

x

y

−3 −2 −1 1 2 3 4 5 6 7

−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

1

2

3

4

23. (y + 4)2 = 4x

x

y

−1 1 2 3 4

−8

−7

−6

−5

−4

−3

−2

−1

24.
(x− 1)2

1
+
y2

4
= 0

The graph is the point (1, 0) only.
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25.
(x− 1)2

9
+

(y + 3)2

4
= 1

x

y

−2 −1 1 2 3 4

−5

−4

−3

−2

−1

26. (x− 3)2 + (y + 2)2 = −1
There is no graph.

27.
(x+ 3)2

2
+

(y − 1)2

1
= −3

4
There is no graph.

28.
(y + 2)2

16
− (x− 5)2

20
= 1

x

y

−1 1 2 3 4 5 6 7 8 9 10 11

−8

−7

−6

−5

−4

−3

−2

−1

1

2

3

4

30. By placing Station A at (0,−50) and Station B at (0, 50), the two second time difference

yields the hyperbola y2

36 −
x2

2464 = 1 with foci A and B and center (0, 0). Placing Station C
at (−150,−50) and using foci A and C gives us a center of (−75,−50) and the hyperbola
(x+75)2

225 − (y+50)2

5400 = 1. The point of intersection of these two hyperbolas which is closer to A
than B and closer to A than C is (−57.8444,−9.21336) so that is the epicenter.

31. (b)
x2

9
− y2

27
= 1.

32. The tower may be modeled (approximately)12 by x2

12100 −
(y−330)2

34203 = 1. To find the height, we
plug in x = 137.5 which yields y ≈ 191 or y ≈ 469. Since the top of the tower is above the
narrowest point, we get the tower is approximately 469 feet tall.

12The exact value underneath (y − 330)2 is 52707600
1541

in case you need more precision.
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Chapter 8

Systems of Equations and Matrices

8.1 Systems of Linear Equations: Gaussian Elimination

Up until now, when we concerned ourselves with solving different types of equations there was only
one equation to solve at a time. Given an equation f(x) = g(x), we could check our solutions
geometrically by finding where the graphs of y = f(x) and y = g(x) intersect. The x-coordinates
of these intersection points correspond to the solutions to the equation f(x) = g(x), and the y-
coordinates were largely ignored. If we modify the problem and ask for the intersection points of
the graphs of y = f(x) and y = g(x), where both the solution to x and y are of interest, we have
what is known as a system of equations, usually written as{

y = f(x)
y = g(x)

The ‘curly bracket’ notation means we are to find all pairs of points (x, y) which satisfy both
equations. We begin our study of systems of equations by reviewing some basic notions from
Intermediate Algebra.

Definition 8.1. A linear equation in two variables is an equation of the form a1x+a2y = c
where a1, a2 and c are real numbers and at least one of a1 and a2 is nonzero.

For reasons which will become clear later in the section, we are using subscripts in Definition 8.1
to indicate different, but fixed, real numbers and those subscripts have no mathematical meaning
beyond that. For example, 3x− y

2 = 0.1 is a linear equation in two variables with a1 = 3, a2 = −1
2

and c = 0.1. We can also consider x = 5 to be a linear equation in two variables1 by identifying
a1 = 1, a2 = 0, and c = 5. If a1 and a2 are both 0, then depending on c, we get either an
equation which is always true, called an identity, or an equation which is never true, called a
contradiction. (If c = 0, then we get 0 = 0, which is always true. If c 6= 0, then we’d have

0 6= 0, which is never true.) Even though identities and contradictions have a large role to play

1Critics may argue that x = 5 is clearly an equation in one variable. It can also be considered an equation in 117
variables with the coefficients of 116 variables set to 0. As with many conventions in Mathematics, the context will
clarify the situation.
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550 Systems of Equations and Matrices

in the upcoming sections, we do not consider them linear equations. The key to identifying linear
equations is to note that the variables involved are to the first power and that the coefficients of the
variables are numbers. Some examples of equations which are non-linear are x2 +y = 1, xy = 5 and
e2x + ln(y) = 1. We leave it to the reader to explain why these do not satisfy Definition 8.1. From
what we know from Sections 1.2 and 2.1, the graphs of linear equations are lines. If we couple two
or more linear equations together, in effect to find the points of intersection of two or more lines,
we obtain a system of linear equations in two variables. Our first example reviews some of
the basic techniques first learned in Intermediate Algebra.

Example 8.1.1. Solve the following systems of equations. Check your answer algebraically and
graphically.

1.

{
2x− y = 1

y = 3

2.

{
3x+ 4y = −2
−3x− y = 5

3.

{
x
3 −

4y
5 = 7

5
2x
9 + y

3 = 1
2

4.

{
2x− 4y = 6
3x− 6y = 9

5.

{
6x+ 3y = 9
4x+ 2y = 12

6.


x− y = 0
x+ y = 2

−2x+ y = −2

Solution.

1. Our first system is nearly solved for us. The second equation tells us that y = 3. To find the
corresponding value of x, we substitute this value for y into the the first equation to obtain
2x − 3 = 1, so that x = 2. Our solution to the system is (2, 3). To check this algebraically,
we substitute x = 2 and y = 3 into each equation and see that they are satisfied. We see
2(2) − 3 = 1, and 3 = 3, as required. To check our answer graphically, we graph the lines
2x− y = 1 and y = 3 and verify that they intersect at (2, 3).

2. To solve the second system, we use the addition method to eliminate the variable x. We
take the two equations as given and ‘add equals to equals’ to obtain

3x+ 4y = −2

+ (−3x− y = 5)

3y = 3

This gives us y = 1. We now substitute y = 1 into either of the two equations, say −3x−y = 5,
to get −3x− 1 = 5 so that x = −2. Our solution is (−2, 1). Substituting x = −2 and y = 1
into the first equation gives 3(−2) + 4(1) = −2, which is true, and, likewise, when we check
(−2, 1) in the second equation, we get −3(−2)− 1 = 5, which is also true. Geometrically, the
lines 3x+ 4y = −2 and −3x− y = 5 intersect at (−2, 1).
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(2, 3)

x

y

−1 1 2 3 4

1

2

4

2x− y = 1
y = 3

(−2, 1)

x

y

−4 −3 −2 −1

−2

−1

1

2

3x+ 4y = −2
−3x− y = 5

3. The equations in the third system are more approachable if we clear denominators. We
multiply both sides of the first equation by 15 and both sides of the second equation by 18
to obtain the kinder, gentler system{

5x− 12y = 21
4x+ 6y = 9

Adding these two equations directly fails to eliminate either of the variables, but we note
that if we multiply the first equation by 4 and the second by −5, we will be in a position to
eliminate the x term

20x− 48y = 84

+ (−20x− 30y = −45)

−78y = 39

From this we get y = −1
2 . We can temporarily avoid too much unpleasantness by choosing to

substitute y = −1
2 into one of the equivalent equations we found by clearing denominators,

say into 5x − 12y = 21. We get 5x + 6 = 21 which gives x = 3. Our answer is
(
3,−1

2

)
.

At this point, we have no choice − in order to check an answer algebraically, we must see
if the answer satisfies both of the original equations, so we substitute x = 3 and y = −1

2

into both x
3 −

4y
5 = 7

5 and 2x
9 + y

3 = 1
2 . We leave it to the reader to verify that the solution

is correct. Graphing both of the lines involved with considerable care yields an intersection
point of

(
3,−1

2

)
.

4. An eerie calm settles over us as we cautiously approach our fourth system. Do its friendly
integer coefficients belie something more sinister? We note that if we multiply both sides of
the first equation by 3 and the both sides of the second equation by −2, we are ready to
eliminate the x
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6x− 12y = 18

+ (−6x+ 12y = −18)

0 = 0

We eliminated not only the x, but the y as well and we are left with the identity 0 = 0. This
means that these two different linear equations are, in fact, equivalent. In other words, if an
ordered pair (x, y) satisfies the equation 2x − 4y = 6, it automatically satisfies the equation
3x− 6y = 9. One way to describe the solution set to this system is to use the roster method2

and write {(x, y) | 2x − 4y = 6}. While this is correct (and corresponds exactly to what’s
happening graphically, as we shall see shortly), we take this opportunity to introduce the
notion of a parametric solution to a system. Our first step is to solve 2x − 4y = 6
for one of the variables, say y = 1

2x −
3
2 . For each value of x, the formula y = 1

2x −
3
2

determines the corresponding y-value of a solution. Since we have no restriction on x, it is
called a free variable. We let x = t, a so-called ‘parameter’, and get y = 1

2 t −
3
2 . Our

set of solutions can then be described as
{(
t, 1

2 t−
3
2

)
| −∞ < t <∞

}
.3 For specific values

of t, we can generate solutions. For example, t = 0 gives us the solution
(
0,−3

2

)
; t = 117

gives us (117, 57), and while we can readily check each of these particular solutions satisfy
both equations, the question is how do we check our general answer algebraically? Same as
always. We claim that for any real number t, the pair

(
t, 1

2 t−
3
2

)
satisfies both equations.

Substituting x = t and y = 1
2 t −

3
2 into 2x − 4y = 6 gives 2t − 4

(
1
2 t−

3
2

)
= 6. Simplifying,

we get 2t− 2t+ 6 = 6, which is always true. Similarly, when we make these substitutions in
the equation 3x− 6y = 9, we get 3t− 6

(
1
2 t−

3
2

)
= 9 which reduces to 3t− 3t + 9 = 9, so it

checks out, too. Geometrically, 2x− 4y = 6 and 3x− 6y = 9 are the same line, which means
that they intersect at every point on their graphs. The reader is encouraged to think about
how our parametric solution says exactly that.

(
3,− 1

2

) x

y

−1 1 2 4 5 6 7

−4

−3

−2

−1

1

x
3
− 4y

5
= 7

5
2x
9

+ y
3

= 1
2

x

y

1 2 3 4

−1

1

2

2x− 4y = 6
3x− 6y = 9
(Same line.)

2See Section 1.2 for a review of this.
3Note that we could have just as easily chosen to solve 2x− 4y = 6 for x to obtain x = 2y + 3. Letting y be the

parameter t, we have that for any value of t, x = 2t + 3, which gives {(2t + 3, t) | − ∞ < t < ∞}. There is no one
correct way to parameterize the solution set, which is why it is always best to check your answer.
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8.1 Systems of Linear Equations: Gaussian Elimination 553

5. Multiplying both sides of the first equation by 2 and the both sides of the second equation
by −3, we set the stage to eliminate x

12x+ 6y = 18

+ (−12x− 6y = −36)

0 = −18

As in the previous example, both x and y dropped out of the equation, but we are left with
an irrevocable contradiction, 0 = −18. This tells us that it is impossible to find a pair (x, y)
which satisfies both equations; in other words, the system has no solution. Graphically, the
lines 6x+ 3y = 9 and 4x+ 2y = 12 are distinct and parallel, so they do not intersect.

6. We can begin to solve our last system by adding the first two equations

x− y = 0

+ (x+ y = 2)

2x = 2

which gives x = 1. Substituting this into the first equation gives 1 − y = 0 so that y = 1.
We seem to have determined a solution to our system, (1, 1). While this checks in the
first two equations, when we substitute x = 1 and y = 1 into the third equation, we get
−2(1)+(1) = −2 which simplifies to the contradiction −1 = −2. Graphing the lines x−y = 0,
x + y = 2, and −2x + y = −2, we see that the first two lines do, in fact, intersect at (1, 1),
however, all three lines never intersect at the same point simultaneously, which is what is
required if a solution to the system is to be found.

x

y

1 2

−3
−2
−1

1
2
3
4
5
6

6x+ 3y = 9
4x+ 2y = 12

x

y

−1

1

y − x = 0
y + x = 2

−2x+ y = −2

A few remarks about Example 8.1.1 are in order. It is clear that some systems of equations have
solutions, and some do not. Those which have solutions are called consistent, those with no
solution are called inconsistent. We also distinguish the two different types of behavior among
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consistent systems. Those which admit free variables are called dependent; those with no free
variables are called independent.4 Using this new vocabulary, we classify numbers 1, 2 and 3 in
Example 8.1.1 as consistent independent systems, number 4 is consistent dependent, and numbers
5 and 6 are inconsistent.5 The system in 6 above is called overdetermined, since we have more
equations than variables.6 Not surprisingly, a system with more variables than equations is called
underdetermined. While the system in number 6 above is overdetermined and inconsistent,

there exist overdetermined consistent systems (both dependent and independent) and we leave it
to the reader to think about what is happening algebraically and geometrically in these cases.
Likewise, there are both consistent and inconsistent underdetermined systems,7 but a consistent
underdetermined system of linear equations is necessarily dependent.8

In order to move this section beyond a review of Intermediate Algebra, we now define what is meant
by a linear equation in n variables.

Definition 8.2. A linear equation in n variables, x1, x2, . . . , xn is an equation of the form
a1x1 + a2x2 + . . .+ anxn = c where a1, a2, . . . an and c are real numbers and at least one of a1,
a2, . . . , an is nonzero.

Instead of using more familiar variables like x, y, and even z and/or w in Definition 8.2, we use
subscripts to distinguish the different variables. We have no idea how many variables may be
involved, so we use numbers to distinguish them instead of letters. (There is an endless supply of
distinct numbers.) As an example, the linear equation 3x1−x2 = 4 represents the same relationship
between the variables x1 and x2 as the equation 3x − y = 4 does between the variables x and y.
In addition, just as we cannot combine the terms in the expression 3x− y, we cannot combine the
terms in the expression 3x1 − x2. Coupling more than one linear equation in n variables results
in a system of linear equations in n variables. When solving these systems, it becomes
increasingly important to keep track of what operations are performed to which equations and to
develop a strategy based on the kind of manipulations we’ve already employed. To this end, we
first remind ourselves of the maneuvers which can be applied to a system of linear equations that
result in an equivalent system.9

4In the case of systems of linear equations, regardless of the number of equations or variables, consistent inde-
pendent systems have exactly one solution. The reader is encouraged to think about why this is the case for linear
equations in two variables. Hint: think geometrically.

5The adjectives ‘dependent’ and ‘independent’ apply only to consistent systems – they describe the type of solu-
tions. Is there a free variable (dependent) or not (independent)?

6If we think if each variable being an unknown quantity, then ostensibly, to recover two unknown quantities,
we need two pieces of information - i.e., two equations. Having more than two equations suggests we have more
information than necessary to determine the values of the unknowns. While this is not necessarily the case, it does
explain the choice of terminology ‘overdetermined’.

7We need more than two variables to give an example of the latter.
8Again, experience with systems with more variables helps to see this here, as does a solid course in Linear Algebra.
9That is, a system with the same solution set.
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Theorem 8.1. Given a system of equations, the following moves will result in an equivalent
system of equations.

• Interchange the position of any two equations.

• Replace an equation with a nonzero multiple of itself.a

• Replace an equation with itself plus a nonzero multiple of another equation.

aThat is, an equation which results from multiplying both sides of the equation by the same nonzero number.

We have seen plenty of instances of the second and third moves in Theorem 8.1 when we solved
the systems Example 8.1.1. The first move, while it obviously admits an equivalent system, seems
silly. Our perception will change as we consider more equations and more variables in this, and
later sections.

Consider the system of equations


x− 1

3y + 1
2z = 1

y − 1
2z = 4

z = −1

Clearly z = −1, and we substitute this into the second equation y − 1
2(−1) = 4 to obtain y = 7

2 .
Finally, we substitute y = 7

2 and z = −1 into the first equation to get x − 1
3

(
7
2

)
+ 1

2(−1) = 1,
so that x = 8

3 . The reader can verify that these values of x, y and z satisfy all three original
equations. It is tempting for us to write the solution to this system by extending the usual (x, y)
notation to (x, y, z) and list our solution as

(
8
3 ,

7
2 ,−1

)
. The question quickly becomes what does

an ‘ordered triple’ like
(

8
3 ,

7
2 ,−1

)
represent? Just as ordered pairs are used to locate points on the

two-dimensional plane, ordered triples can be used to locate points in space.10 Moreover, just as
equations involving the variables x and y describe graphs of one-dimensional lines and curves in the
two-dimensional plane, equations involving variables x, y, and z describe objects called surfaces
in three-dimensional space. Each of the equations in the above system can be visualized as a plane
situated in three-space. Geometrically, the system is trying to find the intersection, or common
point, of all three planes. If you imagine three sheets of notebook paper each representing a portion
of these planes, you will start to see the complexities involved in how three such planes can intersect.
Below is a sketch of the three planes. It turns out that any two of these planes intersect in a line,11

so our intersection point is where all three of these lines meet.

10You were asked to think about this in Exercise 40 in Section 1.1.
11In fact, these lines are described by the parametric solutions to the systems formed by taking any two of these

equations by themselves.
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Since the geometry for equations involving more than two variables is complicated, we will focus
our efforts on the algebra. Returning to the system

x− 1
3y + 1

2z = 1

y − 1
2z = 4

z = −1

we note the reason it was so easy to solve is that the third equation is solved for z, the second
equation involves only y and z, and since the coefficient of y is 1, it makes it easy to solve for y
using our known value for z. Lastly, the coefficient of x in the first equation is 1 making it easy to
substitute the known values of y and z and then solve for x. We formalize this pattern below for
the most general systems of linear equations. Again, we use subscripted variables to describe the
general case. The variable with the smallest subscript in a given equation is typically called the
leading variable of that equation.

Definition 8.3. A system of linear equations with variables x1, x2, . . .xn is said to be in
triangular form provided all of the following conditions hold:

1. The subscripts of the variables in each equation are always increasing from left to right.

2. The leading variable in each equation has coefficient 1.

3. The subscript on the leading variable in a given equation is greater than the subscript on
the leading variable in the equation above it.

4. Any equation without variablesa cannot be placed above an equation with variables.

anecessarily an identity or contradiction
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In our previous system, if we make the obvious choices x = x1, y = x2, and z = x3, we see that the
system is in triangular form.12 An example of a more complicated system in triangular form is

x1 − 4x3 + x4 − x6 = 6
x2 + 2x3 = 1

x4 + 3x5 − x6 = 8
x5 + 9x6 = 10

Our goal henceforth will be to transform a given system of linear equations into triangular form
using the moves in Theorem 8.1.

Example 8.1.2. Use Theorem 8.1 to put the following systems into triangular form and then solve
the system if possible. Classify each system as consistent independent, consistent dependent, or
inconsistent.

1.


3x− y + z = 3

2x− 4y + 3z = 16
x− y + z = 5

2.


2x+ 3y − z = 1

10x− z = 2
4x− 9y + 2z = 5

3.


3x1 + x2 + x4 = 6
2x1 + x2 − x3 = 4
x2 − 3x3 − 2x4 = 0

Solution.

1. For definitiveness, we label the topmost equation in the system E1, the equation beneath that
E2, and so forth. We now attempt to put the system in triangular form using an algorithm
known as Gaussian Elimination. What this means is that, starting with x, we transform
the system so that conditions 2 and 3 in Definition 8.3 are satisfied. Then we move on to
the next variable, in this case y, and repeat. Since the variables in all of the equations have
a consistent ordering from left to right, our first move is to get an x in E1’s spot with a
coefficient of 1. While there are many ways to do this, the easiest is to apply the first move
listed in Theorem 8.1 and interchange E1 and E3.


(E1) 3x− y + z = 3
(E2) 2x− 4y + 3z = 16
(E3) x− y + z = 5

Switch E1 and E3−−−−−−−−−−−→


(E1) x− y + z = 5
(E2) 2x− 4y + 3z = 16
(E3) 3x− y + z = 3

To satisfy Definition 8.3, we need to eliminate the x’s from E2 and E3. We accomplish this
by replacing each of them with a sum of themselves and a multiple of E1. To eliminate the
x from E2, we need to multiply E1 by −2 then add; to eliminate the x from E3, we need to
multiply E1 by −3 then add. Applying the third move listed in Theorem 8.1 twice, we get


(E1) x− y + z = 5
(E2) 2x− 4y + 3z = 16
(E3) 3x− y + z = 3

Replace E2 with −2E1 + E2−−−−−−−−−−−−−−−−−−→
Replace E3 with −3E1 + E3


(E1) x− y + z = 5
(E2) −2y + z = 6
(E3) 2y − 2z = −12

12If letters are used instead of subscripted variables, Definition 8.3 can be suitably modified using alphabetical
order of the variables instead of numerical order on the subscripts of the variables.
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Now we enforce the conditions stated in Definition 8.3 for the variable y. To that end we
need to get the coefficient of y in E2 equal to 1. We apply the second move listed in Theorem
8.1 and replace E2 with itself times −1

2 .


(E1) x− y + z = 5
(E2) −2y + z = 6
(E3) 2y − 2z = −12

Replace E2 with − 1
2
E2

−−−−−−−−−−−−−−→


(E1) x− y + z = 5
(E2) y − 1

2z = −3
(E3) 2y − 2z = −12

To eliminate the y in E3, we add −2E2 to it.


(E1) x− y + z = 5
(E2) y − 1

2z = −3
(E3) 2y − 2z = −12

Replace E3 with −2E2 + E3−−−−−−−−−−−−−−−−−−→


(E1) x− y + z = 5
(E2) y − 1

2z = −3
(E3) −z = −6

Finally, we apply the second move from Theorem 8.1 one last time and multiply E3 by −1
to satisfy the conditions of Definition 8.3 for the variable z.


(E1) x− y + z = 5
(E2) y − 1

2z = −3
(E3) −z = −6

Replace E3 with −1E3−−−−−−−−−−−−−−→


(E1) x− y + z = 5
(E2) y − 1

2z = −3
(E3) z = 6

Now we proceed to substitute. Plugging in z = 6 into E2 gives y − 3 = −3 so that y = 0.
With y = 0 and z = 6, E1 becomes x − 0 + 6 = 5, or x = −1. Our solution is (−1, 0, 6).
We leave it to the reader to check that substituting the respective values for x, y, and z into
the original system results in three identities. Since we have found a solution, the system is
consistent; since there are no free variables, it is independent.

2. Proceeding as we did in 1, our first step is to get an equation with x in the E1 position with
1 as its coefficient. Since there is no easy fix, we multiply E1 by 1

2 .


(E1) 2x+ 3y − z = 1
(E2) 10x− z = 2
(E3) 4x− 9y + 2z = 5

Replace E1 with 1
2
E1

−−−−−−−−−−−−−→


(E1) x+ 3

2y −
1
2z = 1

2
(E2) 10x− z = 2
(E3) 4x− 9y + 2z = 5

Now it’s time to take care of the x’s in E2 and E3.


(E1) x+ 3

2y −
1
2z = 1

2
(E2) 10x− z = 2
(E3) 4x− 9y + 2z = 5

Replace E2 with −10E1 + E2−−−−−−−−−−−−−−−−−−→
Replace E3 with −4E1 + E3


(E1) x+ 3

2y −
1
2z = 1

2
(E2) −15y + 4z = −3
(E3) −15y + 4z = 3
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Our next step is to get the coefficient of y in E2 equal to 1. To that end, we have


(E1) x+ 3

2y −
1
2z = 1

2

(E2) −15y + 4z = −3

(E3) −15y + 4z = 3

Replace E2 with − 1
15
E2

−−−−−−−−−−−−−−−→


(E1) x+ 3

2y −
1
2z = 1

2

(E2) y − 4
15z = 1

5

(E3) −15y + 4z = 3

Finally, we rid E3 of y.


(E1) x+ 3

2y −
1
2z = 1

2

(E2) y − 4
15z = 1

5

(E3) −15y + 4z = 3

Replace E3 with 15E2 + E3−−−−−−−−−−−−−−−−−→


(E1) x− y + z = 5

(E2) y − 1
2z = −3

(E3) 0 = 6

The last equation, 0 = 6, is a contradiction so the system has no solution. According to
Theorem 8.1, since this system has no solutions, neither does the original, thus we have an
inconsistent system.

3. For our last system, we begin by multiplying E1 by 1
3 to get a coefficient of 1 on x1.


(E1) 3x1 + x2 + x4 = 6
(E2) 2x1 + x2 − x3 = 4
(E3) x2 − 3x3 − 2x4 = 0

Replace E1 with 1
3
E1

−−−−−−−−−−−−−→


(E1) x1 + 1

3x2 + 1
3x4 = 2

(E2) 2x1 + x2 − x3 = 4
(E3) x2 − 3x3 − 2x4 = 0

Next we eliminate x1 from E2


(E1) x1 + 1

3x2 + 1
3x4 = 2

(E2) 2x1 + x2 − x3 = 4

(E3) x2 − 3x3 − 2x4 = 0

Replace E2−−−−−−−−−−→
with −2E1 + E2


(E1) x1 + 1

3x2 + 1
3x4 = 2

(E2) 1
3x2 − x3 − 2

3x4 = 0

(E3) x2 − 3x3 − 2x4 = 0

We switch E2 and E3 to get a coefficient of 1 for x2.


(E1) x1 + 1

3x2 + 1
3x4 = 2

(E2) 1
3x2 − x3 − 2

3x4 = 0

(E3) x2 − 3x3 − 2x4 = 0

Switch E2 and E3−−−−−−−−−−−→


(E1) x1 + 1

3x2 + 1
3x4 = 2

(E2) x2 − 3x3 − 2x4 = 0

(E3) 1
3x2 − x3 − 2

3x4 = 0

Finally, we eliminate x2 in E3.
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(E1) x1 + 1

3x2 + 1
3x4 = 2

(E2) x2 − 3x3 − 2x4 = 0

(E3) 1
3x2 − x3 − 2

3x4 = 0

Replace E3−−−−−−−−−−→
with − 1

3
E2 + E3


(E1) x1 + 1

3x2 + 1
3x4 = 2

(E2) x2 − 3x3 − 2x4 = 0

(E3) 0 = 0

Equation E3 reduces to 0 = 0,which is always true. Since we have no equations with x3

or x4 as leading variables, they are both free, which means we have a consistent dependent
system. We parametrize the solution set by letting x3 = s and x4 = t and obtain from E2
that x2 = 3s + 2t. Substituting this and x4 = t into E1, we have x1 + 1

3 (3s+ 2t) + 1
3 t = 2

which gives x1 = 2−s− t. Our solution is the set {(2−s− t, 2s+3t, s, t) | −∞ < s, t <∞}.13

We leave it to the reader to verify that the substitutions x1 = 2− s− t, x2 = 3s+ 2t, x3 = s
and x4 = t satisfy the equations in the original system.

Like all algorithms, Gaussian Elimination has the advantage of always producing what we need,
but it can also be inefficient at times. For example, when solving 2 above, it is clear after we
eliminated the x’s in the second step to get the system

(E1) x+ 3
2y −

1
2z = 1

2

(E2) −15y + 4z = −3

(E3) −15y + 4z = 3

that equations E2 and E3 when taken together form a contradiction since we have identical left hand
sides and different right hand sides. The algorithm takes two more steps to reach this contradiction.
We also note that substitution in Gaussian Elimination is delayed until all the elimination is done,
thus it gets called back-substitution. This may also be inefficient in many cases. Rest assured,
the technique of substitution as you may have learned it in Intermediate Algebra will once again
take center stage in Section 8.7. Lastly, we note that the system in 3 above is underdetermined,
and as it is consistent, we have free variables in our answer. We close this section with a standard
‘mixture’ type application of systems of linear equations.

Example 8.1.3. Lucas needs to create a 500 milliliters (mL) of a 40% acid solution. He has stock
solutions of 30% and 90% acid as well as all of the distilled water he wants. Set-up and solve a
system of linear equations which determines all of the possible combinations of the stock solutions
and water which would produce the required solution.

Solution. We are after three unknowns, the amount (in mL) of the 30% stock solution (which
we’ll call x), the amount (in mL) of the 90% stock solution (which we’ll call y) and the amount
(in mL) of water (which we’ll call w). We now need to determine some relationships between these
variables. Our goal is to produce 500 milliliters of a 40% acid solution. This product has two
defining characteristics. First, it must be 500 mL; second, it must be 40% acid. We take each

13Here, any choice of s and t will determine a solution which is a point in 4-dimensional space. Yeah, we have
trouble visualizing that, too.
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of these qualities in turn. First, the total volume of 500 mL must be the sum of the contributed
volumes of the two stock solutions and the water. That is

amount of 30% stock solution + amount of 90% stock solution + amount of water = 500 mL

Using our defined variables, this reduces to x+ y +w = 500. Next, we need to make sure the final
solution is 40% acid. Since water contains no acid, the acid will come from the stock solutions only.
We find 40% of 500 mL to be 200 mL which means the final solution must contain 200 mL of acid.
We have

amount of acid in 30% stock solution + amount of acid 90% stock solution = 200 mL

The amount of acid in x mL of 30% stock is 0.30x and the amount of acid in y mL of 90% solution
is 0.90y. We have 0.30x+ 0.90y = 200. Converting to fractions,14 our system of equations becomes{

x+ y + w = 500
3
10x+ 9

10y = 200

We first eliminate the x from the second equation

{
(E1) x+ y + w = 500
(E2) 3

10x+ 9
10y = 200

Replace E2 with − 3
10
E1 + E2

−−−−−−−−−−−−−−−−−−→
{

(E1) x+ y + w = 500
(E2) 3

5y −
3
10w = 50

Next, we get a coefficient of 1 on the leading variable in E2{
(E1) x+ y + w = 500
(E2) 3

5y −
3
10w = 50

Replace E2 with 5
3
E2

−−−−−−−−−−−−−→
{

(E1) x+ y + w = 500
(E2) y − 1

2w = 250
3

Notice that we have no equation to determine w, and as such, w is free. We set w = t and from E2
get y = 1

2 t+ 250
3 . Substituting into E1 gives x+

(
1
2 t+ 250

3

)
+ t = 500 so that x = −3

2 t+ 1250
3 . This

system is consistent, dependent and its solution set is {
(
−3

2 t+ 1250
3 , 1

2 t+ 250
3 , t

)
| − ∞ < t < ∞}.

While this answer checks algebraically, we have neglected to take into account that x, y and w,
being amounts of acid and water, need to be nonnegative. That is, x ≥ 0, y ≥ 0 and w ≥ 0. The
constraint x ≥ 0 gives us −3

2 t+ 1250
3 ≥ 0, or t ≤ 2500

9 . From y ≥ 0, we get 1
2 t+ 250

3 ≥ 0 or t ≥ −500
3 .

The condition z ≥ 0 yields t ≥ 0, and we see that when we take the set theoretic intersection of
these intervals, we get 0 ≤ t ≤ 2500

9 . Our final answer is {
(
−3

2 t+ 1250
3 , 1

2 t+ 250
3 , t

)
| 0 ≤ t ≤ 2500

9 }.
Of what practical use is our answer? Suppose there is only 100 mL of the 90% solution remaining
and it is due to expire. Can we use all of it to make our required solution? We would have y = 100
so that 1

2 t + 250
3 = 100, and we get t = 100

3 . This means the amount of 30% solution required is
x = −3

2 t + 1250
3 = −3

2

(
100
3

)
+ 1250

3 = 1100
3 mL, and for the water, w = t = 100

3 mL. The reader is
invited to check that mixing these three amounts of our constituent solutions produces the required
40% acid mix.

14We do this only because we believe students can use all of the practice with fractions they can get!
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8.1.1 Exercises

(Review Exercises) In Exercises 1 - 8, take a trip down memory lane and solve the given system
using substitution and/or elimination. Classify each system as consistent independent, consistent
dependent, or inconsistent. Check your answers both algebraically and graphically.

1.

{
x+ 2y = 5

x = 6
2.

{
2y − 3x = 1

y = −3

3.

{
x+2y

4 = −5

3x−y
2 = 1

4.

{
2
3x−

1
5y = 3

1
2x+ 3

4y = 1

5.

{
1
2x−

1
3y = −1

2y − 3x = 6
6.

{
x+ 4y = 6

1
12x+ 1

3y = 1
2

7.

{
3y − 3

2x = −15
2

1
2x− y = 3

2

8.

{
5
6x+ 5

3y = −7
3

−10
3 x−

20
3 y = 10

In Exercises 9 - 26, put each system of linear equations into triangular form and solve the system
if possible. Classify each system as consistent independent, consistent dependent, or inconsistent.

9.

{
−5x+ y = 17
x+ y = 5 10.


x+ y + z = 3

2x− y + z = 0
−3x+ 5y + 7z = 7

11.


4x− y + z = 5

2y + 6z = 30
x+ z = 5

12.


4x− y + z = 5

2y + 6z = 30
x+ z = 6

13.

{
x+ y + z = −17
y − 3z = 0 14.


x− 2y + 3z = 7
−3x+ y + 2z = −5

2x+ 2y + z = 3

15.


3x− 2y + z = −5
x+ 3y − z = 12
x+ y + 2z = 0

16.


2x− y + z = −1

4x+ 3y + 5z = 1
5y + 3z = 4

17.


x− y + z = −4

−3x+ 2y + 4z = −5
x− 5y + 2z = −18

18.


2x− 4y + z = −7
x− 2y + 2z = −2
−x+ 4y − 2z = 3

19.


2x− y + z = 1

2x+ 2y − z = 1
3x+ 6y + 4z = 9

20.


x− 3y − 4z = 3
3x+ 4y − z = 13

2x− 19y − 19z = 2
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21.


x+ y + z = 4

2x− 4y − z = −1
x− y = 2

22.


x− y + z = 8

3x+ 3y − 9z = −6
7x− 2y + 5z = 39

23.


2x− 3y + z = −1

4x− 4y + 4z = −13
6x− 5y + 7z = −25

24.


2x1 + x2 − 12x3 − x4 = 16
−x1 + x2 + 12x3 − 4x4 = −5
3x1 + 2x2 − 16x3 − 3x4 = 25

x1 + 2x2 − 5x4 = 11

25.


x1 − x3 = −2

2x2 − x4 = 0
x1 − 2x2 + x3 = 0
−x3 + x4 = 1

26.


x1 − x2 − 5x3 + 3x4 = −1
x1 + x2 + 5x3 − 3x4 = 0

x2 + 5x3 − 3x4 = 1
x1 − 2x2 − 10x3 + 6x4 = −1

27. Find two other forms of the parametric solution to Exercise 11 above by reorganizing the
equations so that x or y can be the free variable.

28. A local buffet charges $7.50 per person for the basic buffet and $9.25 for the deluxe buffet
(which includes crab legs.) If 27 diners went out to eat and the total bill was $227.00 before
taxes, how many chose the basic buffet and how many chose the deluxe buffet?

29. At The Old Home Fill’er Up and Keep on a-Truckin’ Cafe, Mavis mixes two different types
of coffee beans to produce a house blend. The first type costs $3 per pound and the second
costs $8 per pound. How much of each type does Mavis use to make 50 pounds of a blend
which costs $6 per pound?

30. Skippy has a total of $10,000 to split between two investments. One account offers 3% simple
interest, and the other account offers 8% simple interest. For tax reasons, he can only earn
$500 in interest the entire year. How much money should Skippy invest in each account to
earn $500 in interest for the year?

31. A 10% salt solution is to be mixed with pure water to produce 75 gallons of a 3% salt solution.
How much of each are needed?

32. At The Crispy Critter’s Head Shop and Patchouli Emporium along with their dried up weeds,
sunflower seeds and astrological postcards they sell an herbal tea blend. By weight, Type I
herbal tea is 30% peppermint, 40% rose hips and 30% chamomile, Type II has percents 40%,
20% and 40%, respectively, and Type III has percents 35%, 30% and 35%, respectively. How
much of each Type of tea is needed to make 2 pounds of a new blend of tea that is equal
parts peppermint, rose hips and chamomile?

33. Discuss with your classmates how you would approach Exercise 32 above if they needed to
use up a pound of Type I tea to make room on the shelf for a new canister.

34. If you were to try to make 100 mL of a 60% acid solution using stock solutions at 20% and
40%, respectively, what would the triangular form of the resulting system look like? Explain.
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8.1.2 Answers

1. Consistent independent
Solution

(
6,−1

2

) 2. Consistent independent
Solution

(
−7

3 ,−3
)

3. Consistent independent
Solution

(
−16

7 ,−
62
7

) 4. Consistent independent
Solution

(
49
12 ,−

25
18

)
5. Consistent dependent

Solution
(
t, 3

2 t+ 3
)

for all real numbers t

6. Consistent dependent
Solution (6− 4t, t)
for all real numbers t

7. Inconsistent
No solution

8. Inconsistent
No solution

Because triangular form is not unique, we give only one possible answer to that part of the question.
Yours may be different and still be correct.

9.

{
x+ y = 5

y = 7
Consistent independent
Solution (−2, 7)

10.


x− 5

3y −
7
3z = −7

3

y + 5
4z = 2
z = 0

Consistent independent
Solution (1, 2, 0)

11.


x− 1

4y + 1
4z = 5

4

y + 3z = 15
0 = 0

Consistent dependent
Solution (−t+ 5,−3t+ 15, t)
for all real numbers t

12.


x− 1

4y + 1
4z = 5

4

y + 3z = 15
0 = 1

Inconsistent
No solution

13.

{
x+ y + z = −17
y − 3z = 0

Consistent dependent
Solution (−4t− 17, 3t, t)
for all real numbers t

14.


x− 2y + 3z = 7

y − 11
5 z = −16

5
z = 1

Consistent independent
Solution (2,−1, 1)
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15.


x+ y + 2z = 0

y − 3
2z = 6
z = −2

Consistent independent
Solution (1, 3,−2)

16.


x− 1

2y + 1
2z = −1

2

y + 3
5z = 3

5
0 = 1

Inconsistent
no solution

17.


x− y + z = −4
y − 7z = 17

z = −2

Consistent independent
Solution (1, 3,−2)

18.


x− 2y + 2z = −2

y = 1
2

z = 1

Consistent independent
Solution

(
−3, 1

2 , 1
)

19.


x− 1

2y + 1
2z = 1

2

y − 2
3z = 0
z = 1

Consistent independent
Solution

(
1
3 ,

2
3 , 1
)

20.


x− 3y − 4z = 3

y + 11
13z = 4

13
0 = 0

Consistent dependent
Solution

(
19
13 t+ 51

13 ,−
11
13 t+ 4

13 , t
)

for all real numbers t

21.


x+ y + z = 4
y + 1

2z = 3
2

0 = 1

Inconsistent
no solution

22.


x− y + z = 8
y − 2z = −5

z = 1

Consistent independent
Solution (4,−3, 1)

23.


x− 3

2y + 1
2z = −1

2

y + z = −11
2

0 = 0

Consistent dependent
Solution

(
−2t− 35

4 ,−t−
11
2 , t
)

for all real numbers t

24.


x1 + 2

3x2 − 16
3 x3 − x4 = 25

3

x2 + 4x3 − 3x4 = 2
0 = 0
0 = 0

Consistent dependent
Solution (8s− t+ 7,−4s+ 3t+ 2, s, t)
for all real numbers s and t

25.


x1 − x3 = −2

x2 − 1
2x4 = 0

x3 − 1
2x4 = 1

x4 = 4

Consistent independent
Solution (1, 2, 3, 4)
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26.


x1 − x2 − 5x3 + 3x4 = −1

x2 + 5x3 − 3x4 = 1
2

0 = 1
0 = 0

Inconsistent
No solution

27. If x is the free variable then the solution is (t, 3t,−t+ 5) and if y is the free variable then the
solution is

(
1
3 t, t,−

1
3 t+ 5

)
.

28. 13 chose the basic buffet and 14 chose the deluxe buffet.

29. Mavis needs 20 pounds of $3 per pound coffee and 30 pounds of $8 per pound coffee.

30. Skippy needs to invest $6000 in the 3% account and $4000 in the 8% account.

31. 22.5 gallons of the 10% solution and 52.5 gallons of pure water.

32. 4
3 −

1
2 t pounds of Type I, 2

3 −
1
2 t pounds of Type II and t pounds of Type III where 0 ≤ t ≤ 4

3 .
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8.2 Systems of Linear Equations: Augmented Matrices

In Section 8.1 we introduced Gaussian Elimination as a means of transforming a system of linear
equations into triangular form with the ultimate goal of producing an equivalent system of linear
equations which is easier to solve. If we take a step back and study the process, we see that all of
our moves are determined entirely by the coefficients of the variables involved, and not the variables
themselves. Much the same thing happened when we studied long division in Section 3.2. Just as
we developed synthetic division to streamline that process, in this section, we introduce a similar
bookkeeping device to help us solve systems of linear equations. To that end, we define a matrix
as a rectangular array of real numbers. We typically enclose matrices with square brackets, ‘[ ’ and
‘ ]’, and we size matrices by the number of rows and columns they have. For example, the size
(sometimes called the dimension) of [

3 0 −1
2 −5 10

]
is 2 × 3 because it has 2 rows and 3 columns. The individual numbers in a matrix are called its
entries and are usually labeled with double subscripts: the first tells which row the element is in
and the second tells which column it is in. The rows are numbered from top to bottom and the
columns are numbered from left to right. Matrices themselves are usually denoted by uppercase
letters (A, B, C, etc.) while their entries are usually denoted by the corresponding letter. So, for
instance, if we have

A =

[
3 0 −1
2 −5 10

]
then a11 = 3, a12 = 0, a13 = −1, a21 = 2, a22 = −5, and a23 = 10. We shall explore matrices as
mathematical objects with their own algebra in Section 8.3 and introduce them here solely as a
bookkeeping device. Consider the system of linear equations from number 2 in Example 8.1.2

(E1) 2x+ 3y − z = 1
(E2) 10x− z = 2
(E3) 4x− 9y + 2z = 5

We encode this system into a matrix by assigning each equation to a corresponding row. Within
that row, each variable and the constant gets its own column, and to separate the variables on the
left hand side of the equation from the constants on the right hand side, we use a vertical bar, |.
Note that in E2, since y is not present, we record its coefficient as 0. The matrix associated with
this system is

x y z c
(E1)→
(E2)→
(E3)→

 2 3 −1 1
10 0 −1 2
4 −9 2 5
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This matrix is called an augmented matrix because the column containing the constants is
appended to the matrix containing the coefficients.1 To solve this system, we can use the same
kind operations on the rows of the matrix that we performed on the equations of the system. More
specifically, we have the following analog of Theorem 8.1 below.

Theorem 8.2. Row Operations: Given an augmented matrix for a system of linear equations,
the following row operations produce an augmented matrix which corresponds to an equivalent
system of linear equations.

• Interchange any two rows.

• Replace a row with a nonzero multiple of itself.a

• Replace a row with itself plus a nonzero multiple of another row.b

aThat is, the row obtained by multiplying each entry in the row by the same nonzero number.
bWhere we add entries in corresponding columns.

As a demonstration of the moves in Theorem 8.2, we revisit some of the steps that were used in
solving the systems of linear equations in Example 8.1.2 of Section 8.1. The reader is encouraged to
perform the indicated operations on the rows of the augmented matrix to see that the machinations
are identical to what is done to the coefficients of the variables in the equations. We first see a
demonstration of switching two rows using the first step of part 1 in Example 8.1.2.

(E1) 3x− y + z = 3
(E2) 2x− 4y + 3z = 16
(E3) x− y + z = 5

Switch E1 and E3−−−−−−−−−−−→


(E1) x− y + z = 5
(E2) 2x− 4y + 3z = 16
(E3) 3x− y + z = 3 3 −1 1 3

2 −4 3 16
1 −1 1 5

 Switch R1 and R3−−−−−−−−−−−→

 1 −1 1 5
2 −4 3 16
3 −1 1 3


Next, we have a demonstration of replacing a row with a nonzero multiple of itself using the first
step of part 3 in Example 8.1.2.


(E1) 3x1 + x2 + x4 = 6
(E2) 2x1 + x2 − x3 = 4
(E3) x2 − 3x3 − 2x4 = 0

Replace E1 with 1
3
E1

−−−−−−−−−−−−−→


(E1) x1 + 1

3x2 + 1
3x4 = 2

(E2) 2x1 + x2 − x3 = 4
(E3) x2 − 3x3 − 2x4 = 0 3 1 0 1 6

2 1 −1 0 4
0 1 −3 −2 0

 Replace R1 with 1
3
R1

−−−−−−−−−−−−−→

 1 1
3 0 1

3 2
2 1 −1 0 4
0 1 −3 −2 0


Finally, we have an example of replacing a row with itself plus a multiple of another row using the
second step from part 2 in Example 8.1.2.

1We shall study the coefficient and constant matrices separately in Section 8.3.
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(E1) x+ 3

2y −
1
2z = 1

2
(E2) 10x− z = 2
(E3) 4x− 9y + 2z = 5

Replace E2 with −10E1 + E2−−−−−−−−−−−−−−−−−−→
Replace E3 with −4E1 + E3


(E1) x+ 3

2y −
1
2z = 1

2
(E2) −15y + 4z = −3
(E3) −15y + 4z = 3 1 3

2 −1
2

1
2

10 0 −1 2
4 −9 2 5

 Replace R2 with −10R1 +R2−−−−−−−−−−−−−−−−−−→
Replace R3 with −4R1 +R3

 1 3
2 −1

2
1
2

0 −15 4 −3
0 −15 4 3


The matrix equivalent of ‘triangular form’ is row echelon form. The reader is encouraged to
refer to Definition 8.3 for comparison. Note that the analog of ‘leading variable’ of an equation
is ‘leading entry’ of a row. Specifically, the first nonzero entry (if it exists) in a row is called the
leading entry of that row.

Definition 8.4. A matrix is said to be in row echelon form provided all of the following
conditions hold:

1. The first nonzero entry in each row is 1.

2. The leading 1 of a given row must be to the right of the leading 1 of the row above it.

3. Any row of all zeros cannot be placed above a row with nonzero entries.

To solve a system of a linear equations using an augmented matrix, we encode the system into an
augmented matrix and apply Gaussian Elimination to the rows to get the matrix into row-echelon
form. We then decode the matrix and back substitute. The next example illustrates this nicely.

Example 8.2.1. Use an augmented matrix to transform the following system of linear equations
into triangular form. Solve the system.

3x− y + z = 8
x+ 2y − z = 4

2x+ 3y − 4z = 10

Solution. We first encode the system into an augmented matrix.
3x− y + z = 8
x+ 2y − z = 4

2x+ 3y − 4z = 10

Encode into the matrix−−−−−−−−−−−−−−→

 3 −1 1 8
1 2 −1 4
2 3 −4 10


Thinking back to Gaussian Elimination at an equations level, our first order of business is to get x
in E1 with a coefficient of 1. At the matrix level, this means getting a leading 1 in R1. This is in
accordance with the first criteria in Definition 8.4. To that end, we interchange R1 and R2. 3 −1 1 8

1 2 −1 4
2 3 −4 10

 Switch R1 and R2−−−−−−−−−−−→

 1 2 −1 4
3 −1 1 8
2 3 −4 10
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Our next step is to eliminate the x’s from E2 and E3. From a matrix standpoint, this means we
need 0’s below the leading 1 in R1. This guarantees the leading 1 in R2 will be to the right of the
leading 1 in R1 in accordance with the second requirement of Definition 8.4. 1 2 −1 4

3 −1 1 8
2 3 −4 10

 Replace R2 with −3R1 +R2−−−−−−−−−−−−−−−−−→
Replace R3 with −2R1 +R3

 1 2 −1 4
0 −7 4 −4
0 −1 −2 2


Now we repeat the above process for the variable y which means we need to get the leading entry
in R2 to be 1.  1 2 −1 4

0 −7 4 −4
0 −1 −2 2

 Replace R2 with − 1
7
R2

−−−−−−−−−−−−−−→

 1 2 −1 4
0 1 −4

7
4
7

0 −1 −2 2


To guarantee the leading 1 in R3 is to the right of the leading 1 in R2, we get a 0 in the second
column of R3.  1 2 −1 4

0 1 −4
7

4
7

0 −1 −2 2

 Replace R3 with R2 +R3−−−−−−−−−−−−−−−−→

 1 2 −1 4

0 1 −4
7

4
7

0 0 −18
7

18
7


Finally, we get the leading entry in R3 to be 1. 1 2 −1 4

0 1 −4
7

4
7

0 0 −18
7

18
7

 Replace R3 with − 7
18
R3

−−−−−−−−−−−−−−−→

 1 2 −1 4
0 1 −4

7
4
7

0 0 1 −1


Decoding from the matrix gives a system in triangular form 1 2 −1 4

0 1 −4
7

4
7

0 0 1 −1

 Decode from the matrix−−−−−−−−−−−−−−→


x+ 2y − z = 4

y − 4
7z = 4

7
z = −1

We get z = −1, y = 4
7z + 4

7 = 4
7(−1) + 4

7 = 0 and x = −2y + z + 4 = −2(0) + (−1) + 4 = 3 for a
final answer of (3, 0,−1). We leave it to the reader to check.

As part of Gaussian Elimination, we used row operations to obtain 0’s beneath each leading 1 to
put the matrix into row echelon form. If we also require that 0’s are the only numbers above a
leading 1, we have what is known as the reduced row echelon form of the matrix.

Definition 8.5. A matrix is said to be in reduced row echelon form provided both of the
following conditions hold:

1. The matrix is in row echelon form.

2. The leading 1s are the only nonzero entry in their respective columns.
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Of what significance is the reduced row echelon form of a matrix? To illustrate, let’s take the row
echelon form from Example 8.2.1 and perform the necessary steps to put into reduced row echelon
form. We start by using the leading 1 in R3 to zero out the numbers in the rows above it. 1 2 −1 4

0 1 −4
7

4
7

0 0 1 −1

 Replace R1 with R3 +R1−−−−−−−−−−−−−−−−−→
Replace R2 with 4

7
R3 +R2

 1 2 0 3
0 1 0 0
0 0 1 −1


Finally, we take care of the 2 in R1 above the leading 1 in R2. 1 2 0 3

0 1 0 0
0 0 1 −1

 Replace R1 with −2R2 +R1−−−−−−−−−−−−−−−−−→

 1 0 0 3
0 1 0 0
0 0 1 −1


To our surprise and delight, when we decode this matrix, we obtain the solution instantly without
having to deal with any back-substitution at all. 1 0 0 3

0 1 0 0
0 0 1 −1

 Decode from the matrix−−−−−−−−−−−−−−→


x = 3
y = 0
z = −1

Note that in the previous discussion, we could have started with R2 and used it to get a zero above
its leading 1 and then done the same for the leading 1 in R3. By starting with R3, however, we get
more zeros first, and the more zeros there are, the faster the remaining calculations will be.2 It is
also worth noting that while a matrix has several3 row echelon forms, it has only one reduced row
echelon form. The process by which we have put a matrix into reduced row echelon form is called
Gauss-Jordan Elimination.

Example 8.2.2. Solve the following system using an augmented matrix. Use Gauss-Jordan Elim-
ination to put the augmented matrix into reduced row echelon form.

x2 − 3x1 + x4 = 2
2x1 + 4x3 = 5
4x2 − x4 = 3

Solution. We first encode the system into a matrix. (Pay attention to the subscripts!)
x2 − 3x1 + x4 = 2

2x1 + 4x3 = 5
4x2 − x4 = 3

Encode into the matrix−−−−−−−−−−−−−−→

 −3 1 0 1 2
2 0 4 0 5
0 4 0 −1 3


Next, we get a leading 1 in the first column of R1. −3 1 0 1 2

2 0 4 0 5
0 4 0 −1 3

 Replace R1 with − 1
3
R1

−−−−−−−−−−−−−−→

 1 −1
3 0 −1

3 −2
3

2 0 4 0 5
0 4 0 −1 3


2Carl also finds starting with R3 to be more symmetric, in a purely poetic way.
3infinite, in fact
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Now we eliminate the nonzero entry below our leading 1. 1 −1
3 0 −1

3 −2
3

2 0 4 0 5
0 4 0 −1 3

 Replace R2 with −2R1 +R2−−−−−−−−−−−−−−−−−→

 1 −1
3 0 −1

3 −2
3

0 2
3 4 2

3
19
3

0 4 0 −1 3


We proceed to get a leading 1 in R2. 1 −1

3 0 −1
3 −2

3

0 2
3 4 2

3
19
3

0 4 0 −1 3

 Replace R2 with 3
2
R2

−−−−−−−−−−−−−→

 1 −1
3 0 −1

3 −2
3

0 1 6 1 19
2

0 4 0 −1 3


We now zero out the entry below the leading 1 in R2. 1 −1

3 0 −1
3 −2

3

0 1 6 1 19
2

0 4 0 −1 3

 Replace R3 with −4R2 +R3−−−−−−−−−−−−−−−−−→

 1 −1
3 0 −1

3 −2
3

0 1 6 1 19
2

0 0 −24 −5 −35


Next, it’s time for a leading 1 in R3. 1 −1

3 0 −1
3 −2

3

0 1 6 1 19
2

0 0 −24 −5 −35

 Replace R3 with − 1
24
R3

−−−−−−−−−−−−−−−→

 1 −1
3 0 −1

3 −2
3

0 1 6 1 19
2

0 0 1 5
24

35
24


The matrix is now in row echelon form. To get the reduced row echelon form, we start with the
last leading 1 we produced and work to get 0’s above it. 1 −1

3 0 −1
3 −2

3

0 1 6 1 19
2

0 0 1 5
24

35
24

 Replace R2 with −6R3 +R2−−−−−−−−−−−−−−−−−→

 1 −1
3 0 −1

3 −2
3

0 1 0 −1
4

3
4

0 0 1 5
24

35
24


Lastly, we get a 0 above the leading 1 of R2. 1 −1

3 0 −1
3 −2

3

0 1 0 −1
4

3
4

0 0 1 5
24

35
24

 Replace R1 with 1
3
R2 +R1

−−−−−−−−−−−−−−−−−→

 1 0 0 − 5
12 − 5

12

0 1 0 −1
4

3
4

0 0 1 5
24

35
24


At last, we decode to get 1 0 0 − 5

12 − 5
12

0 1 0 −1
4

3
4

0 0 1 5
24

35
24

 Decode from the matrix−−−−−−−−−−−−−−→


x1 − 5

12x4 = − 5
12

x2 − 1
4x4 = 3

4

x3 + 5
24x4 = 35

24

We have that x4 is free and we assign it the parameter t. We obtain x3 = − 5
24 t+ 35

24 , x2 = 1
4 t+ 3

4 ,
and x1 = 5

12 t−
5
12 . Our solution is

{(
5
12 t−

5
12 ,

1
4 t+ 3

4 ,−
5
24 t+ 35

24 , t
)

: −∞ < t <∞
}

and leave it to
the reader to check.

416



8.2 Systems of Linear Equations: Augmented Matrices 573

Like all good algorithms, putting a matrix in row echelon or reduced row echelon form can easily
be programmed into a calculator, and, doubtless, your graphing calculator has such a feature. We
use this in our next example.

Example 8.2.3. Find the quadratic function passing through the points (−1, 3), (2, 4), (5,−2).

Solution. According to Definition 2.5, a quadratic function has the form f(x) = ax2 +bx+c where
a 6= 0. Our goal is to find a, b and c so that the three given points are on the graph of f . If (−1, 3)
is on the graph of f , then f(−1) = 3, or a(−1)2 + b(−1) + c = 3 which reduces to a − b + c = 3,
an honest-to-goodness linear equation with the variables a, b and c. Since the point (2, 4) is also
on the graph of f , then f(2) = 4 which gives us the equation 4a + 2b + c = 4. Lastly, the point
(5,−2) is on the graph of f gives us 25a+ 5b+ c = −2. Putting these together, we obtain a system
of three linear equations. Encoding this into an augmented matrix produces

a− b+ c = 3
4a+ 2b+ c = 4

25a+ 5b+ c = −2

Encode into the matrix−−−−−−−−−−−−−−→

 1 −1 1 3
4 2 1 4

25 5 1 −2


Using a calculator,4 we find a = − 7

18 , b = 13
18 and c = 37

9 . Hence, the one and only quadratic which
fits the bill is f(x) = − 7

18x
2 + 13

18x+ 37
9 . To verify this analytically, we see that f(−1) = 3, f(2) = 4,

and f(5) = −2. We can use the calculator to check our solution as well by plotting the three data
points and the function f .

The graph of f(x) = − 7
18x

2 + 13
18x+ 37

9
with the points (−1, 3), (2, 4) and (5,−2)

4We’ve tortured you enough already with fractions in this exposition!
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8.2.1 Exercises

In Exercises 1 - 6, state whether the given matrix is in reduced row echelon form, row echelon form
only or in neither of those forms.

1.

[
1 0 3
0 1 3

]
2.

 3 −1 1 3
2 −4 3 16
1 −1 1 5

 3.

 1 1 4 3
0 1 3 6
0 0 0 1



4.

 1 0 0 0
0 1 0 0
0 0 0 1

 5.

 1 0 4 3 0
0 1 3 6 0
0 0 0 0 0

 6.

[
1 1 4 3
0 1 3 6

]

In Exercises 7 - 12, the following matrices are in reduced row echelon form. Determine the solution
of the corresponding system of linear equations or state that the system is inconsistent.

7.

[
1 0 −2
0 1 7

]
8.

 1 0 0 −3
0 1 0 20
0 0 1 19

 9.

 1 0 0 3 4
0 1 0 6 −6
0 0 1 0 2



10.

 1 0 0 3 0
0 1 2 6 0
0 0 0 0 1


11.


1 0 −8 1 7
0 1 4 −3 2
0 0 0 0 0
0 0 0 0 0

 12.

 1 0 9 −3
0 1 −4 20
0 0 0 0



In Exercises 13 - 26, solve the following systems of linear equations using the techniques discussed
in this section. Compare and contrast these techniques with those you used to solve the systems
in the Exercises in Section 8.1.

13.

{
−5x+ y = 17
x+ y = 5 14.


x+ y + z = 3

2x− y + z = 0
−3x+ 5y + 7z = 7

15.


4x− y + z = 5

2y + 6z = 30
x+ z = 5

16.


x− 2y + 3z = 7
−3x+ y + 2z = −5

2x+ 2y + z = 3

17.


3x− 2y + z = −5
x+ 3y − z = 12
x+ y + 2z = 0

18.


2x− y + z = −1

4x+ 3y + 5z = 1
5y + 3z = 4

19.


x− y + z = −4

−3x+ 2y + 4z = −5
x− 5y + 2z = −18

20.


2x− 4y + z = −7
x− 2y + 2z = −2
−x+ 4y − 2z = 3
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21.


2x− y + z = 1

2x+ 2y − z = 1
3x+ 6y + 4z = 9

22.


x− 3y − 4z = 3
3x+ 4y − z = 13

2x− 19y − 19z = 2

23.


x+ y + z = 4

2x− 4y − z = −1
x− y = 2

24.


x− y + z = 8

3x+ 3y − 9z = −6
7x− 2y + 5z = 39

25.


2x− 3y + z = −1

4x− 4y + 4z = −13
6x− 5y + 7z = −25

26.


x1 − x3 = −2

2x2 − x4 = 0
x1 − 2x2 + x3 = 0
−x3 + x4 = 1

27. It’s time for another meal at our local buffet. This time, 22 diners (5 of whom were children)
feasted for $162.25, before taxes. If the kids buffet is $4.50, the basic buffet is $7.50, and the
deluxe buffet (with crab legs) is $9.25, find out how many diners chose the deluxe buffet.

28. Carl wants to make a party mix consisting of almonds (which cost $7 per pound), cashews
(which cost $5 per pound), and peanuts (which cost $2 per pound.) If he wants to make a 10
pound mix with a budget of $35, what are the possible combinations almonds, cashews, and
peanuts? (You may find it helpful to review Example 8.1.3 in Section 8.1.)

29. Find the quadratic function passing through the points (−2, 1), (1, 4), (3,−2)

30. At 9 PM, the temperature was 60◦F; at midnight, the temperature was 50◦F; and at 6 AM,
the temperature was 70◦F . Use the technique in Example 8.2.3 to fit a quadratic function
to these data with the temperature, T , measured in degrees Fahrenheit, as the dependent
variable, and the number of hours after 9 PM, t, measured in hours, as the independent
variable. What was the coldest temperature of the night? When did it occur?

31. The price for admission into the Stitz-Zeager Sasquatch Museum and Research Station is $15
for adults and $8 for kids 13 years old and younger. When the Zahlenreich family visits the
museum their bill is $38 and when the Nullsatz family visits their bill is $39. One day both
families went together and took an adult babysitter along to watch the kids and the total
admission charge was $92. Later that summer, the adults from both families went without
the kids and the bill was $45. Is that enough information to determine how many adults
and children are in each family? If not, state whether the resulting system is inconsistent or
consistent dependent. In the latter case, give at least two plausible solutions.

32. Use the technique in Example 8.2.3 to find the line between the points (−3, 4) and (6, 1).
How does your answer compare to the slope-intercept form of the line in Equation 2.3?

33. With the help of your classmates, find at least two different row echelon forms for the matrix[
1 2 3
4 12 8

]
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8.2.2 Answers

1. Reduced row echelon form 2. Neither

3. Row echelon form only 4. Reduced row echelon form

5. Reduced row echelon form 6. Row echelon form only

7. (−2, 7) 8. (−3, 20, 19)

9. (−3t+ 4,−6t− 6, 2, t)
for all real numbers t

10. Inconsistent

11. (8s− t+ 7,−4s+ 3t+ 2, s, t)
for all real numbers s and t

12. (−9t− 3, 4t+ 20, t)
for all real numbers t

13. (−2, 7) 14. (1, 2, 0)

15. (−t+ 5,−3t+ 15, t)
for all real numbers t

16. (2,−1, 1)

17. (1, 3,−2) 18. Inconsistent

19. (1, 3,−2) 20.
(
−3, 1

2 , 1
)

21.
(

1
3 ,

2
3 , 1
)

22.
(

19
13 t+ 51

13 ,−
11
13 t+ 4

13 , t
)

for all real numbers t

23. Inconsistent 24. (4,−3, 1)

25.
(
−2t− 35

4 ,−t−
11
2 , t
)

for all real numbers t
26. (1, 2, 3, 4)

27. This time, 7 diners chose the deluxe buffet.

28. If t represents the amount (in pounds) of peanuts, then we need 1.5t−7.5 pounds of almonds
and 17.5− 2.5t pounds of cashews. Since we can’t have a negative amount of nuts, 5 ≤ t ≤ 7.

29. f(x) = −4
5x

2 + 1
5x+ 23

5

30. T (t) = 20
27 t

2 − 50
9 t+ 60. Lowest temperature of the evening 595

12 ≈ 49.58◦F at 12:45 AM.
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8.2 Systems of Linear Equations: Augmented Matrices 577

31. Let x1 and x2 be the numbers of adults and children, respectively, in the Zahlenreich family
and let x3 and x4 be the numbers of adults and children, respectively, in the Nullsatz family.
The system of equations determined by the given information is

15x1 + 8x2 = 38
15x3 + 8x4 = 39

15x1 + 8x2 + 15x3 + 8x4 = 77
15x1 + 15x3 = 45

We subtracted the cost of the babysitter in E3 so the constant is 77, not 92. This system is
consistent dependent and its solution is

(
8
15 t+ 2

5 ,−t+ 4,− 8
15 t+ 13

5 , t
)
. Our variables repre-

sent numbers of adults and children so they must be whole numbers. Running through the
values t = 0, 1, 2, 3, 4 yields only one solution where all four variables are whole numbers;
t = 3 gives us (2, 1, 1, 3). Thus there are 2 adults and 1 child in the Zahlenreichs and 1 adult
and 3 kids in the Nullsatzs.
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8.3 Matrix Arithmetic

In Section 8.2, we used a special class of matrices, the augmented matrices, to assist us in solving
systems of linear equations. In this section, we study matrices as mathematical objects of their
own accord, temporarily divorced from systems of linear equations. To do so conveniently requires
some more notation. When we write A = [aij ]m×n, we mean A is an m by n matrix1 and aij is the
entry found in the ith row and jth column. Schematically, we have

j counts columns

from left to right

−−−−−−−−−−−−−−−→

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn


y

i counts rows

from top to bottom

With this new notation we can define what it means for two matrices to be equal.

Definition 8.6. Matrix Equality: Two matrices are said to be equal if they are the same size
and their corresponding entries are equal. More specifically, if A = [aij ]m×n and B = [bij ]p×r,
we write A = B provided

1. m = p and n = r

2. aij = bij for all 1 ≤ i ≤ m and all 1 ≤ j ≤ n.

Essentially, two matrices are equal if they are the same size and they have the same numbers in
the same spots.2 For example, the two 2× 3 matrices below are, despite appearances, equal.[

0 −2 9
25 117 −3

]
=

[
ln(1) 3

√
−8 e2 ln(3)

1252/3 32 · 13 log(0.001)

]
Now that we have an agreed upon understanding of what it means for two matrices to equal each
other, we may begin defining arithmetic operations on matrices. Our first operation is addition.

Definition 8.7. Matrix Addition: Given two matrices of the same size, the matrix obtained
by adding the corresponding entries of the two matrices is called the sum of the two matrices.
More specifically, if A = [aij ]m×n and B = [bij ]m×n, we define

A+B = [aij ]m×n + [bij ]m×n = [aij + bij ]m×n

As an example, consider the sum below.

1Recall that means A has m rows and n columns.
2Critics may well ask: Why not leave it at that? Why the need for all the notation in Definition 8.6? It is the

authors’ attempt to expose you to the wonderful world of mathematical precision.
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8.3 Matrix Arithmetic 579

 2 3
4 −1
0 −7

+

 −1 4
−5 −3

8 1

 =

 2 + (−1) 3 + 4
4 + (−5) (−1) + (−3)

0 + 8 (−7) + 1

 =

 1 7
−1 −4

8 −6


It is worth the reader’s time to think what would have happened had we reversed the order of the
summands above. As we would expect, we arrive at the same answer. In general, A+B = B +A
for matrices A and B, provided they are the same size so that the sum is defined in the first place.
This is the commutative property of matrix addition. To see why this is true in general, we
appeal to the definition of matrix addition. Given A = [aij ]m×n and B = [bij ]m×n,

A+B = [aij ]m×n + [bij ]m×n = [aij + bij ]m×n = [bij + aij ]m×n = [bij ]m×n + [aij ]m×n = B +A

where the second equality is the definition of A+ B, the third equality holds by the commutative
law of real number addition, and the fourth equality is the definition of B + A. In other words,
matrix addition is commutative because real number addition is. A similar argument shows the
associative property of matrix addition also holds, inherited in turn from the associative law

of real number addition. Specifically, for matrices A, B, and C of the same size, (A + B) + C =
A+ (B+C). In other words, when adding more than two matrices, it doesn’t matter how they are
grouped. This means that we can write A+B +C without parentheses and there is no ambiguity
as to what this means.3 These properties and more are summarized in the following theorem.

Theorem 8.3. Properties of Matrix Addition

• Commutative Property: For all m× n matrices, A+B = B +A

• Associative Property: For all m× n matrices, (A+B) + C = A+ (B + C)

• Identity Property: If 0m×n is the m × n matrix whose entries are all 0, then 0m×n is
called the m× n additive identity and for all m× n matrices A

A+ 0m×n = 0m×n +A = A

• Inverse Property: For every given m × n matrix A, there is a unique matrix denoted
−A called the additive inverse of A such that

A+ (−A) = (−A) +A = 0m×n

The identity property is easily verified by resorting to the definition of matrix addition; just as the
number 0 is the additive identity for real numbers, the matrix comprised of all 0’s does the same
job for matrices. To establish the inverse property, given a matrix A = [aij ]m×n, we are looking
for a matrix B = [bij ]m×n so that A + B = 0m×n. By the definition of matrix addition, we must

3A technical detail which is sadly lost on most readers.
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580 Systems of Equations and Matrices

have that aij + bij = 0 for all i and j. Solving, we get bij = −aij . Hence, given a matrix A,
its additive inverse, which we call −A, does exist and is unique and, moreover, is given by the
formula: −A = [−aij ]m×n. The long and short of this is: to get the additive inverse of a matrix,
take additive inverses of each of its entries. With the concept of additive inverse well in hand, we
may now discuss what is meant by subtracting matrices. You may remember from arithmetic that
a− b = a+ (−b); that is, subtraction is defined as ‘adding the opposite (inverse).’ We extend this
concept to matrices. For two matrices A and B of the same size, we define A−B = A+ (−B). At
the level of entries, this amounts to

A−B = A+ (−B) = [aij ]m×n + [−bij ]m×n = [aij + (−bij)]m×n = [aij − bij ]m×n
Thus to subtract two matrices of equal size, we subtract their corresponding entries. Surprised?

Our next task is to define what it means to multiply a matrix by a real number. Thinking back to
arithmetic, you may recall that multiplication, at least by a natural number, can be thought of as
‘rapid addition.’ For example, 2 + 2 + 2 = 3 · 2. We know from algebra4 that 3x = x+ x+ x, so it
seems natural that given a matrix A, we define 3A = A+A+A. If A = [aij ]m×n, we have

3A = A+A+A = [aij ]m×n + [aij ]m×n + [aij ]m×n = [aij + aij + aij ]m×n = [3aij ]m×n

In other words, multiplying the matrix in this fashion by 3 is the same as multiplying each entry
by 3. This leads us to the following definition.

Definition 8.8. Scalara Multiplication: We define the product of a real number and a
matrix to be the matrix obtained by multiplying each of its entries by said real number. More
specifically, if k is a real number and A = [aij ]m×n, we define

kA = k [aij ]m×n = [kaij ]m×n

aThe word ‘scalar’ here refers to real numbers. ‘Scalar multiplication’ in this context means we are multiplying
a matrix by a real number (a scalar).

One may well wonder why the word ‘scalar’ is used for ‘real number.’ It has everything to do with
‘scaling’ factors.5 A point P (x, y) in the plane can be represented by its position matrix, P :

(x, y)↔ P =

[
x
y

]
Suppose we take the point (−2, 1) and multiply its position matrix by 3. We have

3P = 3

[
−2

1

]
=

[
3(−2)

3(1)

]
=

[
−6

3

]
which corresponds to the point (−6, 3). We can imagine taking (−2, 1) to (−6, 3) in this fashion as
a dilation by a factor of 3 in both the horizontal and vertical directions. Doing this to all points
(x, y) in the plane, therefore, has the effect of magnifying (scaling) the plane by a factor of 3.

4The Distributive Property, in particular.
5See Section 1.7.
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8.3 Matrix Arithmetic 581

As did matrix addition, scalar multiplication inherits many properties from real number arithmetic.
Below we summarize these properties.

Theorem 8.4. Properties of Scalar Multiplication

• Associative Property: For every m× n matrix A and scalars k and r, (kr)A = k(rA).

• Identity Property: For all m× n matrices A, 1A = A.

• Additive Inverse Property: For all m× n matrices A, −A = (−1)A.

• Distributive Property of Scalar Multiplication over Scalar Addition: For every
m× n matrix A and scalars k and r,

(k + r)A = kA+ rA

• Distributive Property of Scalar Multiplication over Matrix Addition: For all
m× n matrices A and B scalars k,

k(A+B) = kA+ kB

• Zero Product Property: If A is an m× n matrix and k is a scalar, then

kA = 0m×n if and only if k = 0 or A = 0m×n

As with the other results in this section, Theorem 8.4 can be proved using the definitions of scalar
multiplication and matrix addition. For example, to prove that k(A+B) = kA+ kB for a scalar k
and m× n matrices A and B, we start by adding A and B, then multiplying by k and seeing how
that compares with the sum of kA and kB.

k(A+B) = k
(
[aij ]m×n + [bij ]m×n

)
= k [aij + bij ]m×n = [k (aij + bij)]m×n = [kaij + kbij ]m×n

As for kA+ kB, we have

kA+ kB = k [aij ]m×n + k [bij ]m×n = [kaij ]m×n + [kbij ]m×n = [kaij + kbij ]m×n X

which establishes the property. The remaining properties are left to the reader. The properties in
Theorems 8.3 and 8.4 establish an algebraic system that lets us treat matrices and scalars more or
less as we would real numbers and variables, as the next example illustrates.

Example 8.3.1. Solve for the matrix A: 3A−
([

2 −1
3 5

]
+ 5A

)
=

[
−4 2

6 −2

]
+

1

3

[
9 12
−3 39

]
using the definitions and properties of matrix arithmetic.
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582 Systems of Equations and Matrices

Solution.

3A−
([

2 −1
3 5

]
+ 5A

)
=

[
−4 2

6 −2

]
+

1

3

[
9 12
−3 39

]

3A+

{
−
([

2 −1
3 5

]
+ 5A

)}
=

[
−4 2

6 −2

]
+

[ (
1
3

)
(9)

(
1
3

)
(12)(

1
3

)
(−3)

(
1
3

)
(39)

]

3A+ (−1)

([
2 −1
3 5

]
+ 5A

)
=

[
−4 2

6 −2

]
+

[
3 4
−1 13

]
3A+

{
(−1)

[
2 −1
3 5

]
+ (−1)(5A)

}
=

[
−1 6

5 11

]
3A+ (−1)

[
2 −1
3 5

]
+ (−1)(5A) =

[
−1 6

5 11

]
3A+

[
(−1)(2) (−1)(−1)
(−1)(3) (−1)(5)

]
+ ((−1)(5))A =

[
−1 6

5 11

]
3A+

[
−2 1
−3 −5

]
+ (−5)A =

[
−1 6

5 11

]
3A+ (−5)A+

[
−2 1
−3 −5

]
=

[
−1 6

5 11

]
(3 + (−5))A+

[
−2 1
−3 −5

]
+

(
−
[
−2 1
−3 −5

])
=

[
−1 6

5 11

]
+

(
−
[
−2 1
−3 −5

])
(−2)A+ 02×2 =

[
−1 6

5 11

]
−
[
−2 1
−3 −5

]
(−2)A =

[
−1− (−2) 6− 1

5− (−3) 11− (−5)

]
(−2)A =

[
1 5
8 16

]
(
−1

2

)
((−2)A) = −1

2

[
1 5
8 16

]
((
−1

2

)
(−2)

)
A =

[ (
−1

2

)
(1)

(
−1

2

)
(5)(

−1
2

)
(8)

(
−1

2

)
(16)

]

1A =

[
−1

2 −5
2

−4 −16
2

]

A =

[
−1

2 −5
2

−4 −8

]
The reader is encouraged to check our answer in the original equation.
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While the solution to the previous example is written in excruciating detail, in practice many of
the steps above are omitted. We have spelled out each step in this example to encourage the reader
to justify each step using the definitions and properties we have established thus far for matrix
arithmetic. The reader is encouraged to solve the equation in Example 8.3.1 as they would any
other linear equation, for example: 3a− (2 + 5a) = −4 + 1

3(9).

We now turn our attention to matrix multiplication - that is, multiplying a matrix by another
matrix. Based on the ‘no surprises’ trend so far in the section, you may expect that in order to
multiply two matrices, they must be of the same size and you find the product by multiplying the
corresponding entries. While this kind of product is used in other areas of mathematics,6 we define
matrix multiplication to serve us in solving systems of linear equations. To that end, we begin by
defining the product of a row and a column. We motivate the general definition with an example.
Consider the two matrices A and B below.

A =

[
2 0 −1

−10 3 5

]
B =

 3 1 2 −8
4 8 −5 9
5 0 −2 −12


Let R1 denote the first row of A and C1 denote the first column of B. To find the ‘product’ of R1
with C1, denoted R1 ·C1, we first find the product of the first entry in R1 and the first entry in C1.
Next, we add to that the product of the second entry in R1 and the second entry in C1. Finally,
we take that sum and we add to that the product of the last entry in R1 and the last entry in C1.
Using entry notation, R1·C1 = a11b11 +a12b21 +a13b31 = (2)(3)+(0)(4)+(−1)(5) = 6+0+(−5) = 1.
We can visualize this schematically as follows

[
2 0 −1

−10 3 5

] 3 1 2 −8
4 8 −5 9
5 0 −2 −12


−−−−−−−−−→
2 0 −1

3
4
5

y︸ ︷︷ ︸
−−−−−−−−−→
2 0 −1

3

4
5

y︸ ︷︷ ︸
−−−−−−−−−→
2 0 −1

3
4

5

y︸ ︷︷ ︸
a11b11 + a12b21 + a13b31

(2)(3) + (0)(4) + (−1)(5)

To find R2 · C3 where R2 denotes the second row of A and C3 denotes the third column of B, we
proceed similarly. We start with finding the product of the first entry of R2 with the first entry in
C3 then add to it the product of the second entry in R2 with the second entry in C3, and so forth.
Using entry notation, we have R2·C3 = a21b13+a22b23+a23b33 = (−10)(2)+(3)(−5)+(5)(−2) = −45.
Schematically,

[
2 0 −1

−10 3 5

] 3 1 2 −8
4 8 −5 9
5 0 −2 −12


6See this article on the Hadamard Product.
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−−−−−−−−−→
−10 3 5

2
−5
−2

y︸ ︷︷ ︸
−−−−−−−−−→
−10 3 5

2

−5

−2

y︸ ︷︷ ︸
−−−−−−−−−→
−10 3 5

2
−5

−2

y︸ ︷︷ ︸
a21b13 = (−10)(2) = −20 + a22b23 = (3)(−5) = −15 + a23b33 = (5)(−2) = −10

Generalizing this process, we have the following definition.

Definition 8.9. Product of a Row and a Column: Suppose A = [aij ]m×n and B = [bij ]n×r.
Let Ri denote the ith row of A and let Cj denote the jth column of B. The product of Ri
and Cj, denoted Ri · Cj is the real number defined by

Ri · Cj = ai1b1j + ai2b2j + . . . ainbnj

Note that in order to multiply a row by a column, the number of entries in the row must match
the number of entries in the column. We are now in the position to define matrix multiplication.

Definition 8.10. Matrix Multiplication: Suppose A = [aij ]m×n and B = [bij ]n×r. Let Ri
denote the ith row of A and let Cj denote the jth column of B. The product of A and B,
denoted AB, is the matrix defined by

AB = [Ri · Cj]m×r

that is

AB =


R1 · C1 R1 · C2 . . . R1 · Cr
R2 · C1 R2 · C2 . . . R2 · Cr

...
...

...
Rm · C1 Rm · C2 . . . Rm · Cr


There are a number of subtleties in Definition 8.10 which warrant closer inspection. First and
foremost, Definition 8.10 tells us that the ij-entry of a matrix product AB is the ith row of A
times the jth column of B. In order for this to be defined, the number of entries in the rows of A
must match the number of entries in the columns of B. This means that the number of columns
of A must match7 the number of rows of B. In other words, to multiply A times B, the second
dimension of A must match the first dimension of B, which is why in Definition 8.10, Am×n is being
multiplied by a matrix Bn×r. Furthermore, the product matrix AB has as many rows as A and as
many columns of B. As a result, when multiplying a matrix Am×n by a matrix Bn×r, the result is
the matrix ABm×r. Returning to our example matrices below, we see that A is a 2× 3 matrix and
B is a 3× 4 matrix. This means that the product matrix AB is defined and will be a 2× 4 matrix.

A =

[
2 0 −1

−10 3 5

]
B =

 3 1 2 −8
4 8 −5 9
5 0 −2 −12


7The reader is encouraged to think this through carefully.
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Using Ri to denote the ith row of A and Cj to denote the jth column of B, we form AB according
to Definition 8.10.

AB =

[
R1 · C1 R1 · C2 R1 · C3 R1 · C4
R2 · C1 R2 · C2 R2 · C3 R2 · C4

]
=

[
1 2 6 −4
7 14 −45 47

]
Note that the product BA is not defined, since B is a 3× 4 matrix while A is a 2× 3 matrix; B has
more columns than A has rows, and so it is not possible to multiply a row of B by a column of A.
Even when the dimensions of A and B are compatible such that AB and BA are both defined, the
product AB and BA aren’t necessarily equal.8 In other words, AB may not equal BA. Although
there is no commutative property of matrix multiplication in general, several other real number
properties are inherited by matrix multiplication, as illustrated in our next theorem.

Theorem 8.5. Properties of Matrix Multiplication Let A, B and C be matrices such that
all of the matrix products below are defined and let k be a real number.

• Associative Property of Matrix Multiplication: (AB)C = A(BC)

• Associative Property with Scalar Multiplication: k(AB) = (kA)B = A(kB)

• Identity Property: For a natural number k, the k× k identity matrix, denoted Ik, is
defined by Ik = [dij ]k×k where

dij =

{
1, if i = j
0, otherwise

For all m× n matrices, ImA = AIn = A.

• Distributive Property of Matrix Multiplication over Matrix Addition:

A(B ± C) = AB ±AC and (A±B)C = AC ±BC

The one property in Theorem 8.5 which begs further investigation is, without doubt, the multi-
plicative identity. The entries in a matrix where i = j comprise what is called the main diagonal
of the matrix. The identity matrix has 1’s along its main diagonal and 0’s everywhere else. A few
examples of the matrix Ik mentioned in Theorem 8.5 are given below. The reader is encouraged to
see how they match the definition of the identity matrix presented there.

[1]

[
1 0
0 1

]  1 0 0
0 1 0
0 0 1




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


I1 I2 I3 I4

8And may not even have the same dimensions. For example, if A is a 2× 3 matrix and B is a 3× 2 matrix, then
AB is defined and is a 2× 2 matrix while BA is also defined... but is a 3× 3 matrix!
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The identity matrix is an example of what is called a square matrix as it has the same number
of rows as columns. Note that to in order to verify that the identity matrix acts as a multiplicative
identity, some care must be taken depending on the order of the multiplication. For example, take
the matrix 2× 3 matrix A from earlier

A =

[
2 0 −1

−10 3 5

]
In order for the product IkA to be defined, k = 2; similarly, for AIk to be defined, k = 3. We leave
it to the reader to show I2A = A and AI3 = A. In other words,

[
1 0
0 1

] [
2 0 −1

−10 3 5

]
=

[
2 0 −1

−10 3 5

]
and [

2 0 −1
−10 3 5

] 1 0 0
0 1 0
0 0 1

 =

[
2 0 −1

−10 3 5

]

While the proofs of the properties in Theorem 8.5 are computational in nature, the notation becomes
quite involved very quickly, so they are left to a course in Linear Algebra. The following example
provides some practice with matrix multiplication and its properties. As usual, some valuable
lessons are to be learned.

Example 8.3.2.

1. Find AB for A =

[
−23 −1 17

46 2 −34

]
and B =

 −3 2
1 5
−4 3



2. Find C2 − 5C + 10I2 for C =

[
1 −2
3 4

]
3. Suppose M is a 4× 4 matrix. Use Theorem 8.5 to expand (M − 2I4) (M + 3I4).

Solution.

1. We have AB =

[
−23 −1 17

46 2 −34

] −3 2
1 5
−4 3

 =

[
0 0
0 0

]

2. Just as x2 means x times itself, C2 denotes the matrix C times itself. We get
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C2 − 5C + 10I2 =

[
1 −2
3 4

]2

− 5

[
1 −2
3 4

]
+ 10

[
1 0
0 1

]
=

[
1 −2
3 4

] [
1 −2
3 4

]
+

[
−5 10
−15 −20

]
+

[
10 0
0 10

]
=

[
−5 −10
15 10

]
+

[
5 10

−15 −10

]
=

[
0 0
0 0

]
3. We expand (M − 2I4) (M + 3I4) with the same pedantic zeal we showed in Example 8.3.1.

The reader is encouraged to determine which property of matrix arithmetic is used as we
proceed from one step to the next.

(M − 2I4) (M + 3I4) = (M − 2I4)M + (M − 2I4) (3I4)
= MM − (2I4)M +M (3I4)− (2I4) (3I4)
= M2 − 2 (I4M) + 3 (MI4)− 2 (I4 (3I4))
= M2 − 2M + 3M − 2 (3 (I4I4))
= M2 +M − 6I4

Example 8.3.2 illustrates some interesting features of matrix multiplication. First note that in
part 1, neither A nor B is the zero matrix, yet the product AB is the zero matrix. Hence, the
the zero product property enjoyed by real numbers and scalar multiplication does not hold for
matrix multiplication. Parts 2 and 3 introduce us to polynomials involving matrices. The reader is
encouraged to step back and compare our expansion of the matrix product (M − 2I4) (M + 3I4) in
part 3 with the product (x − 2)(x + 3) from real number algebra. The exercises explore this kind
of parallel further.

As we mentioned earlier, a point P (x, y) in the xy-plane can be represented as a 2 × 1 position
matrix. We now show that matrix multiplication can be used to rotate these points, and hence
graphs of equations.

Example 8.3.3. Let R =

[ √
2

2 −
√

2
2√

2
2

√
2

2

]
.

1. Plot P (2,−2), Q(4, 0), S(0, 3), and T (−3,−3) in the plane as well as the points RP , RQ,
RS, and RT . Plot the lines y = x and y = −x as guides. What does R appear to be doing
to these points?

2. If a point P is on the hyperbola x2 − y2 = 4, show that the point RP is on the curve y = 2
x .
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Solution. For P (2,−2), the position matrix is P =

[
2
−2

]
, and

RP =

[ √
2

2 −
√

2
2√

2
2

√
2

2

][
2

−2

]

=

[
2
√

2
0

]

We have that R takes (2,−2) to (2
√

2, 0). Similarly, we find (4, 0) is moved to (2
√

2, 2
√

2), (0, 3)

is moved to
(
−3
√

2
2 , 3

√
2

2

)
, and (−3,−3) is moved to (0,−3

√
2). Plotting these in the coordinate

plane along with the lines y = x and y = −x, we see that the matrix R is rotating these points
counterclockwise by 45◦.

P

RP

Q

RQ
S

RS

T

RT

x

y

−4 −3 −2 −1 1 2 3

−4

−3

−2

−1

1

2

4

For a generic point P (x, y) on the hyperbola x2 − y2 = 4, we have

RP =

[ √
2

2 −
√

2
2√

2
2

√
2

2

][
x

y

]

=

[ √
2

2 x−
√

2
2 y√

2
2 x+

√
2

2 y

]

which means R takes (x, y) to
(√

2
2 x−

√
2

2 y,
√

2
2 x+

√
2

2 y
)

. To show that this point is on the curve

y = 2
x , we replace x with

√
2

2 x−
√

2
2 y and y with

√
2

2 x+
√

2
2 y and simplify.
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y = 2
x√

2
2 x+

√
2

2 y
?
= 2√

2
2
x−
√

2
2
y(√

2
2 x−

√
2

2 y
)(√

2
2 x+

√
2

2 y
)

?
=

(
2

√
2

2 x−
√

2
2 y

)(√
2

2 x−
√

2
2 y
)

(√
2

2 x
)2
−
(√

2
2 y
)2 ?

= 2

x2

2 −
y2

2
?
= 2

x2 − y2 X
= 4

Since (x, y) is on the hyperbola x2 − y2 = 4, we know that this last equation is true. Since all of
our steps are reversible, this last equation is equivalent to our original equation, which establishes
the point is, indeed, on the graph of y = 2

x . This means the graph of y = 2
x is a hyperbola, and it

is none other than the hyperbola x2− y2 = 4 rotated counterclockwise by 45◦.9 Below we have the
graph of x2 − y2 = 4 (solid line) and y = 2

x (dashed line) for comparison.

x

y

−3 −1 1 3 4

−3

−2

−1

1

2

3

4

When we started this section, we mentioned that we would temporarily consider matrices as their
own entities, but that the algebra developed here would ultimately allow us to solve systems of
linear equations. To that end, consider the system

3x− y + z = 8
x+ 2y − z = 4

2x+ 3y − 4z = 10

In Section 8.2, we encoded this system into the augmented matrix 3 −1 1 8
1 2 −1 4
2 3 −4 10


9See Section 7.5 for more details.
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590 Systems of Equations and Matrices

Recall that the entries to the left of the vertical line come from the coefficients of the variables in
the system, while those on the right comprise the associated constants. For that reason, we may
form the coefficient matrix A, the unknowns matrix X and the constant matrix B as below

A =

 3 −1 1
1 2 −1
2 3 −4

 X =

 x
y
z

 B =

 8
4

10


We now consider the matrix equation AX = B.

AX = B 3 −1 1
1 2 −1
2 3 −4

 x
y
z

 =

 8
4

10


 3x− y + z

x+ 2y − z
2x+ 3y − 4z

 =

 8
4

10


We see that finding a solution (x, y, z) to the original system corresponds to finding a solution X
for the matrix equation AX = B. If we think about solving the real number equation ax = b, we
would simply ‘divide’ both sides by a. Is it possible to ‘divide’ both sides of the matrix equation
AX = B by the matrix A? This is the central topic of Section 8.4.
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8.3.1 Exercises

For each pair of matrices A and B in Exercises 1 - 7, find the following, if defined

• 3A • −B • A2

• A− 2B • AB • BA

1. A =

[
2 −3
1 4

]
, B =

[
5 −2
4 8

]
2. A =

[
−1 5
−3 6

]
, B =

[
2 10
−7 1

]
3. A =

[
−1 3

5 2

]
, B =

[
7 0 8
−3 1 4

]
4. A =

[
2 4
6 8

]
, B =

[
−1 3 −5

7 −9 11

]

5. A =

 7
8
9

, B =
[

1 2 3
]

6. A =

 1 −2
−3 4

5 −6

, B =
[
−5 1 8

]

7. A =

 2 −3 5
3 1 −2
−7 1 −1

, B =

 1 2 1
17 33 19
10 19 11


In Exercises 8 - 21, use the matrices

A =

[
1 2
3 4

]
B =

[
0 −3
−5 2

]
C =

[
10 −11

2 0
3
5 5 9

]

D =

 7 −13
−4

3 0
6 8

 E =

 1 2 3
0 4 −9
0 0 −5


to compute the following or state that the indicated operation is undefined.

8. 7B − 4A 9. AB 10. BA

11. E +D 12. ED 13. CD + 2I2A

14. A− 4I2 15. A2 −B2 16. (A+B)(A−B)

17. A2 − 5A− 2I2 18. E2 + 5E − 36I3 19. EDC

20. CDE 21. ABCEDI2

22. Let A =

[
a b c
d e f

]
E1 =

[
0 1
1 0

]
E2 =

[
5 0
0 1

]
E3 =

[
1 −2
0 1

]
Compute E1A, E2A and E3A. What effect did each of the Ei matrices have on the rows of
A? Create E4 so that its effect on A is to multiply the bottom row by −6. How would you
extend this idea to matrices with more than two rows?
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592 Systems of Equations and Matrices

In Exercises 23 - 29, consider the following scenario. In the small village of Pedimaxus in the
country of Sasquatchia, all 150 residents get one of the two local newspapers. Market research
has shown that in any given week, 90% of those who subscribe to the Pedimaxus Tribune want to
keep getting it, but 10% want to switch to the Sasquatchia Picayune. Of those who receive the
Picayune, 80% want to continue with it and 20% want switch to the Tribune. We can express this
situation using matrices. Specifically, let X be the ‘state matrix’ given by

X =

[
T
P

]
where T is the number of people who get the Tribune and P is the number of people who get the
Picayune in a given week. Let Q be the ‘transition matrix’ given by

Q =

[
0.90 0.20
0.10 0.80

]
such that QX will be the state matrix for the next week.

23. Let’s assume that when Pedimaxus was founded, all 150 residents got the Tribune. (Let’s
call this Week 0.) This would mean

X =

[
150

0

]
Since 10% of that 150 want to switch to the Picayune, we should have that for Week 1, 135
people get the Tribune and 15 people get the Picayune. Show that QX in this situation is
indeed

QX =

[
135
15

]
24. Assuming that the percentages stay the same, we can get to the subscription numbers for

Week 2 by computing Q2X. How many people get each paper in Week 2?

25. Explain why the transition matrix does what we want it to do.

26. If the conditions do not change from week to week, then Q remains the same and we have
what’s known as a Stochastic Process10 because Week n’s numbers are found by computing
QnX. Choose a few values of n and, with the help of your classmates and calculator, find out
how many people get each paper for that week. You should start to see a pattern as n→∞.

27. If you didn’t see the pattern, we’ll help you out. Let

Xs =

[
100
50

]
.

Show that QXs = Xs This is called the steady state because the number of people who get
each paper didn’t change for the next week. Show that QnX → Xs as n→∞.

10More specifically, we have a Markov Chain, which is a special type of stochastic process.
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28. Now let

S =

[
2
3

2
3

1
3

1
3

]
Show that Qn → S as n→∞.

29. Show that SY = Xs for any matrix Y of the form

Y =

[
y

150− y

]
This means that no matter how the distribution starts in Pedimaxus, if Q is applied often
enough, we always end up with 100 people getting the Tribune and 50 people getting the
Picayune.

30. Let z = a + bi and w = c + di be arbitrary complex numbers. Associate z and w with the
matrices

Z =

[
a b
−b a

]
and W =

[
c d
−d c

]
Show that complex number addition, subtraction and multiplication are mirrored by the
associated matrix arithmetic. That is, show that Z +W , Z −W and ZW produce matrices
which can be associated with the complex numbers z + w, z − w and zw, respectively.

31. Let

A =

[
1 2
3 4

]
and B =

[
0 −3
−5 2

]
Compare (A+ B)2 to A2 + 2AB + B2. Discuss with your classmates what constraints must
be placed on two arbitrary matrices A and B so that both (A+B)2 and A2 +2AB+B2 exist.
When will (A+B)2 = A2 + 2AB+B2? In general, what is the correct formula for (A+B)2?

In Exercises 32 - 36, consider the following definitions. A square matrix is said to be an upper
triangular matrix if all of its entries below the main diagonal are zero and it is said to be a lower
triangular matrix if all of its entries above the main diagonal are zero. For example,

E =

 1 2 3
0 4 −9
0 0 −5


from Exercises 8 - 21 above is an upper triangular matrix whereas

F =

[
1 0
3 0

]
is a lower triangular matrix. (Zeros are allowed on the main diagonal.) Discuss the following
questions with your classmates.
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594 Systems of Equations and Matrices

32. Give an example of a matrix which is neither upper triangular nor lower triangular.

33. Is the product of two n× n upper triangular matrices always upper triangular?

34. Is the product of two n× n lower triangular matrices always lower triangular?

35. Given the matrix

A =

[
1 2
3 4

]
write A as LU where L is a lower triangular matrix and U is an upper triangular matrix?

36. Are there any matrices which are simultaneously upper and lower triangular?
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8.3.2 Answers

1. For A =

[
2 −3
1 4

]
and B =

[
5 −2
4 8

]

• 3A =

[
6 −9
3 12

]
• −B =

[
−5 2
−4 −8

]
• A2 =

[
1 −18
6 13

]

• A− 2B =

[
−8 1
−7 −12

]
• AB =

[
−2 −28
21 30

]
• BA =

[
8 −23

16 20

]

2. For A =

[
−1 5
−3 6

]
and B =

[
2 10
−7 1

]

• 3A =

[
−3 15
−9 18

]
• −B =

[
−2 −10

7 −1

]
• A2 =

[
−14 25
−15 21

]

• A− 2B =

[
−5 −15
11 4

]
• AB =

[
−37 −5
−48 −24

]
• BA =

[
−32 70

4 −29

]

3. For A =

[
−1 3

5 2

]
and B =

[
7 0 8
−3 1 4

]

• 3A =

[
−3 9
15 6

]
• −B =

[
−7 0 −8

3 −1 −4

]
• A2 =

[
16 3
5 19

]

• A− 2B is not defined • AB =

[
−16 3 4

29 2 48

]
• BA is not defined

4. For A =

[
2 4
6 8

]
and B =

[
−1 3 −5

7 −9 11

]

• 3A =

[
6 12

18 24

]
• −B =

[
1 −3 5
−7 9 −11

]
• A2 =

[
28 40
60 88

]

• A− 2B is not defined • AB =

[
26 −30 34
50 −54 58

]
• BA is not defined
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5. For A =

 7
8
9

 and B =
[

1 2 3
]

• 3A =

 21
24
27

 • −B =
[
−1 −2 −3

]
• A2 is not defined • A− 2B is not defined

• AB =

 7 14 21
8 16 24
9 18 27

 • BA = [50]

6. For A =

 1 −2
−3 4

5 −6

 and B =
[
−5 1 8

]

• 3A =

 3 −6
−9 12
15 −18

 • −B =
[

5 −1 −8
]

• A2 is not defined • A− 2B is not defined

• AB is not defined • BA =
[

32 −34
]

7. For A =

 2 −3 5
3 1 −2
−7 1 −1

 and B =

 1 2 1
17 33 19
10 19 11



• 3A =

 6 −9 15
9 3 −6

−21 3 −3

 • −B =

 −1 −2 −1
−17 −33 −19
−10 −19 −11



• A2 =

 −40 −4 11
23 −10 15
−4 21 −36

 • A− 2B =

 0 −7 3
−31 −65 −40
−27 −37 −23



• AB =

 1 0 0
0 1 0
0 0 1

 • BA =

 1 0 0
0 1 0
0 0 1


8. 7B − 4A =

[
−4 −29
−47 −2

]
9. AB =

[
−10 1
−20 −1

]
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10. BA =

[
−9 −12

1 −2

]
11. E +D is undefined

12. ED =

 67
3 11

−178
3 −72
−30 −40

 13. CD + 2I2A =

[
238
3 −126

863
15

361
5

]

14. A− 4I2 =

[
−3 2

3 0

]
15. A2 −B2 =

[
−8 16
25 3

]

16. (A+B)(A−B) =

[
−7 3
46 2

]
17. A2 − 5A− 2I2 =

[
0 0
0 0

]

18. E2 + 5E − 36I3 =

 −30 20 −15
0 0 −36
0 0 −36

 19. EDC =

 3449
15 −407

6 99

−9548
15 −101

3 −648
−324 −35 −360


20. CDE is undefined 21. ABCEDI2 =

[
−90749

15 −28867
5

−156601
15 −47033

5

]

22. E1A =

[
d e f
a b c

]
E1 interchanged R1 and R2 of A.

E2A =

[
5a 5b 5c
d e f

]
E2 multiplied R1 of A by 5.

E3A =

[
a− 2d b− 2e c− 2f

d e f

]
E3 replaced R1 in A with R1− 2R2.

E4 =

[
1 0
0 −6

]
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8.4 Systems of Linear Equations: Matrix Inverses

We concluded Section 8.3 by showing how we can rewrite a system of linear equations as the matrix
equation AX = B where A and B are known matrices and the solution matrix X of the equation
corresponds to the solution of the system. In this section, we develop the method for solving such
an equation. To that end, consider the system{

2x− 3y = 16
3x+ 4y = 7

To write this as a matrix equation, we follow the procedure outlined on page 590. We find the
coefficient matrix A, the unknowns matrix X and constant matrix B to be

A =

[
2 −3
3 4

]
X =

[
x
y

]
B =

[
16
7

]
In order to motivate how we solve a matrix equation like AX = B, we revisit solving a similar
equation involving real numbers. Consider the equation 3x = 5. To solve, we simply divide both
sides by 3 and obtain x = 5

3 . How can we go about defining an analogous process for matrices?
To answer this question, we solve 3x = 5 again, but this time, we pay attention to the properties
of real numbers being used at each step. Recall that dividing by 3 is the same as multiplying by
1
3 = 3−1, the so-called multiplicative inverse1 of 3.

3x = 5
3−1(3x) = 3−1(5) Multiply by the (multiplicative) inverse of 3(

3−1 · 3
)
x = 3−1(5) Associative property of multiplication

1 · x = 3−1(5) Inverse property
x = 3−1(5) Multiplicative Identity

If we wish to check our answer, we substitute x = 3−1(5) into the original equation

3x
?
= 5

3
(
3−1(5)

) ?
= 5(

3 · 3−1
)

(5)
?
= 5 Associative property of multiplication

1 · 5 ?
= 5 Inverse property

5
X
= 5 Multiplicative Identity

Thinking back to Theorem 8.5, we know that matrix multiplication enjoys both an associative
property and a multiplicative identity. What’s missing from the mix is a multiplicative inverse for
the coefficient matrix A. Assuming we can find such a beast, we can mimic our solution (and check)
to 3x = 5 as follows

1Every nonzero real number a has a multiplicative inverse, denoted a−1, such that a−1 · a = a · a−1 = 1.
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Solving AX = B Checking our answer

AX = B
A−1(AX) = A−1B(
A−1A

)
X = A−1B

I2X = A−1B
X = A−1B

AX
?
= B

A
(
A−1B

) ?
= B(

AA−1
)
B

?
= B

I2B
?
= B

B
X
= B

The matrix A−1 is read ‘A-inverse’ and we will define it formally later in the section. At this stage,
we have no idea if such a matrix A−1 exists, but that won’t deter us from trying to find it.2 We
want A−1 to satisfy two equations, A−1A = I2 and AA−1 = I2, making A−1 necessarily a 2 × 2
matrix.3 Hence, we assume A−1 has the form

A−1 =

[
x1 x2

x3 x4

]
for real numbers x1, x2, x3 and x4. For reasons which will become clear later, we focus our attention
on the equation AA−1 = I2. We have

AA−1 = I2[
2 −3
3 4

] [
x1 x2

x3 x4

]
=

[
1 0
0 1

]
[

2x1 − 3x3 2x2 − 3x4

3x1 + 4x3 3x2 + 4x4

]
=

[
1 0
0 1

]
This gives rise to two more systems of equations

{
2x1 − 3x3 = 1
3x1 + 4x3 = 0

{
2x2 − 3x4 = 0
3x2 + 4x4 = 1

At this point, it may seem absurd to continue with this venture. After all, the intent was to solve
one system of equations, and in doing so, we have produced two more to solve. Remember, the
objective of this discussion is to develop a general method which, when used in the correct scenarios,
allows us to do far more than just solve a system of equations. If we set about to solve these systems
using augmented matrices using the techniques in Section 8.2, we see that not only do both systems
have the same coefficient matrix, this coefficient matrix is none other than the matrix A itself. (We
will come back to this observation in a moment.)

2Much like Carl’s quest to find Sasquatch.
3Since matrix multiplication isn’t necessarily commutative, at this stage, these are two different equations.
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{
2x1 − 3x3 = 1
3x1 + 4x3 = 0

Encode into a matrix−−−−−−−−−−−−−→
[

2 −3 1
3 4 0

]
{

2x2 − 3x4 = 0
3x2 + 4x4 = 1

Encode into a matrix−−−−−−−−−−−−−→
[

2 −3 0
3 4 1

]
To solve these two systems, we use Gauss-Jordan Elimination to put the augmented matrices into
reduced row echelon form. (We leave the details to the reader.) For the first system, we get[

2 −3 1
3 4 0

]
Gauss Jordan Elimination−−−−−−−−−−−−−−−−→

[
1 0 4

17

0 1 − 3
17

]
which gives x1 = 4

17 and x3 = − 3
17 . To solve the second system, we use the exact same row

operations, in the same order, to put its augmented matrix into reduced row echelon form (Think
about why that works.) and we obtain[

2 −3 0
3 4 1

]
Gauss Jordan Elimination−−−−−−−−−−−−−−−−→

[
1 0 3

17

0 1 2
17

]
which means x2 = 3

17 and x4 = 2
17 . Hence,

A−1 =

[
x1 x2

x3 x4

]
=

[
4
17

3
17

− 3
17

2
17

]
We can check to see that A−1 behaves as it should by computing AA−1

AA−1 =

[
2 −3
3 4

] [ 4
17

3
17

− 3
17

2
17

]
=

[
1 0
0 1

]
= I2 X

As an added bonus,

A−1A =

[
4
17

3
17

− 3
17

2
17

] [
2 −3
3 4

]
=

[
1 0
0 1

]
= I2 X

We can now return to the problem at hand. From our discussion at the beginning of the section
on page 599, we know

X = A−1B =

[
4
17

3
17

− 3
17

2
17

] [
16
7

]
=

[
5
−2

]
so that our final solution to the system is (x, y) = (5,−2).

As we mentioned, the point of this exercise was not just to solve the system of linear equations, but
to develop a general method for finding A−1. We now take a step back and analyze the foregoing
discussion in a more general context. In solving for A−1, we used two augmented matrices, both of
which contained the same entries as A
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[
2 −3 1
3 4 0

]
=

[
A

1
0

]
[

2 −3 0
3 4 1

]
=

[
A

0
1

]
We also note that the reduced row echelon forms of these augmented matrices can be written as[

1 0 4
17

0 1 − 3
17

]
=

[
I2

x1

x3

]
[

1 0 3
17

0 1 2
17

]
=

[
I2

x2

x4

]
where we have identified the entries to the left of the vertical bar as the identity I2 and the entries
to the right of the vertical bar as the solutions to our systems. The long and short of the solution
process can be summarized as[

A
1
0

]
Gauss Jordan Elimination−−−−−−−−−−−−−−−−→

[
I2

x1

x3

]
[
A

0
1

]
Gauss Jordan Elimination−−−−−−−−−−−−−−−−→

[
I2

x2

x4

]
Since the row operations for both processes are the same, all of the arithmetic on the left hand side
of the vertical bar is identical in both problems. The only difference between the two processes is
what happens to the constants to the right of the vertical bar. As long as we keep these separated
into columns, we can combine our efforts into one ‘super-sized’ augmented matrix and describe the
above process as [

A
1 0
0 1

]
Gauss Jordan Elimination−−−−−−−−−−−−−−−−→

[
I2

x1 x2

x3 x4

]
We have the identity matrix I2 appearing as the right hand side of the first super-sized augmented
matrix and the left hand side of the second super-sized augmented matrix. To our surprise and
delight, the elements on the right hand side of the second super-sized augmented matrix are none
other than those which comprise A−1. Hence, we have

[
A I2

] Gauss Jordan Elimination−−−−−−−−−−−−−−−−→
[
I2 A−1

]
In other words, the process of finding A−1 for a matrix A can be viewed as performing a series of
row operations which transform A into the identity matrix of the same dimension. We can view
this process as follows. In trying to find A−1, we are trying to ‘undo’ multiplication by the matrix
A. The identity matrix in the super-sized augmented matrix [A|I] keeps a running memory of all
of the moves required to ‘undo’ A. This results in exactly what we want, A−1. We are now ready
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to formalize and generalize the foregoing discussion. We begin with the formal definition of an
invertible matrix.

Definition 8.11. An n×n matrix A is said to be invertible if there exists a matrix A−1, read
‘A inverse’, such that A−1A = AA−1 = In.

Note that, as a consequence of our definition, invertible matrices are square, and as such, the
conditions in Definition 8.11 force the matrix A−1 to be same dimensions as A, that is, n × n.
Since not all matrices are square, not all matrices are invertible. However, just because a matrix is
square doesn’t guarantee it is invertible. (See the exercises.) Our first result summarizes some of
the important characteristics of invertible matrices and their inverses.

Theorem 8.6. Suppose A is an n× n matrix.

1. If A is invertible then A−1 is unique.

2. A is invertible if and only if AX = B has a unique solution for every n× r matrix B.

The proofs of the properties in Theorem 8.6 rely on a healthy mix of definition and matrix arith-
metic. To establish the first property, we assume that A is invertible and suppose the matrices B and
C act as inverses for A. That is, BA = AB = In and CA = AC = In. We need to show that B and
C are, in fact, the same matrix. To see this, we note that B = InB = (CA)B = C(AB) = CIn = C.
Hence, any two matrices that act like A−1 are, in fact, the same matrix.4 To prove the second
property of Theorem 8.6, we note that if A is invertible then the discussion on page 599 shows
the solution to AX = B to be X = A−1B, and since A−1 is unique, so is A−1B. Conversely, if
AX = B has a unique solution for every n × r matrix B, then, in particular, there is a unique
solution X0 to the equation AX = In. The solution matrix X0 is our candidate for A−1. We
have AX0 = In by definition, but we need to also show X0A = In. To that end, we note that
A (X0A) = (AX0)A = InA = A. In other words, the matrix X0A is a solution to the equation
AX = A. Clearly, X = In is also a solution to the equation AX = A, and since we are assuming ev-
ery such equation as a unique solution, we must have X0A = In. Hence, we have X0A = AX0 = In,
so that X0 = A−1 and A is invertible. The foregoing discussion justifies our quest to find A−1 using
our super-sized augmented matrix approach[

A In
] Gauss Jordan Elimination−−−−−−−−−−−−−−−−→

[
In A−1

]
We are, in essence, trying to find the unique solution to the equation AX = In using row operations.

What does all of this mean for a system of linear equations? Theorem 8.6 tells us that if we write
the system in the form AX = B, then if the coefficient matrix A is invertible, there is only one
solution to the system − that is, if A is invertible, the system is consistent and independent.5 We
also know that the process by which we find A−1 is determined completely by A, and not by the

4If this proof sounds familiar, it should. See the discussion following Theorem 5.2 on page 380.
5It can be shown that a matrix is invertible if and only if when it serves as a coefficient matrix for a system of

equations, the system is always consistent independent. It amounts to the second property in Theorem 8.6 where
the matrices B are restricted to being n× 1 matrices. We note that, owing to how matrix multiplication is defined,
being able to find unique solutions to AX = B for n× 1 matrices B gives you the same statement about solving such
equations for n× r matrices − since we can find a unique solution to them one column at a time.
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8.4 Systems of Linear Equations: Matrix Inverses 603

constants in B. This answers the question as to why we would bother doing row operations on
a super-sized augmented matrix to find A−1 instead of an ordinary augmented matrix to solve a
system; by finding A−1 we have done all of the row operations we ever need to do, once and for all,
since we can quickly solve any equation AX = B using one multiplication, A−1B.

Example 8.4.1. Let A =

 3 1 2
0 −1 5
2 1 4


1. Use row operations to find A−1. Check your answer by finding A−1A and AA−1.

2. Use A−1 to solve the following systems of equations

(a)


3x+ y + 2z = 26
−y + 5z = 39

2x+ y + 4z = 117
(b)


3x+ y + 2z = 4
−y + 5z = 2

2x+ y + 4z = 5
(c)


3x+ y + 2z = 1
−y + 5z = 0

2x+ y + 4z = 0

Solution.

1. We begin with a super-sized augmented matrix and proceed with Gauss-Jordan elimination.

 3 1 2 1 0 0
0 −1 5 0 1 0
2 1 4 0 0 1

 Replace R1−−−−−−−→
with 1

3
R1

 1 1
3

2
3

1
3 0 0

0 −1 5 0 1 0
2 1 4 0 0 1


 1 1

3
2
3

1
3 0 0

0 −1 5 0 1 0
2 1 4 0 0 1

 Replace R3 with−−−−−−−−−−→
−2R1 +R3

 1 1
3

2
3

1
3 0 0

0 −1 5 0 1 0
0 1

3
8
3 −2

3 0 1


 1 1

3
2
3

1
3 0 0

0 −1 5 0 1 0
0 1

3
8
3 −2

3 0 1

 Replace R2−−−−−−−−→
with (−1)R2

 1 1
3

2
3

1
3 0 0

0 1 −5 0 −1 0
0 1

3
8
3 −2

3 0 1


 1 1

3
2
3

1
3 0 0

0 1 −5 0 −1 0
0 1

3
8
3 −2

3 0 1

 Replace R3 with−−−−−−−−−−→
− 1

3
R2 +R3

 1 1
3

2
3

1
3 0 0

0 1 −5 0 −1 0
0 0 13

3 −2
3

1
3 1


 1 1

3
2
3

1
3 0 0

0 1 −5 0 −1 0
0 0 13

3 −2
3

1
3 1

 Replace R3−−−−−−−→
with 3

13
R3

 1 1
3

2
3

1
3 0 0

0 1 −5 0 −1 0
0 0 1 − 2

13
1
13

3
13


 1 1

3
2
3

1
3 0 0

0 1 −5 0 −1 0
0 0 1 − 2

13
1
13

3
13


Replace R1 with

− 2
3
R3 +R1

−−−−−−−−−−−−→
Replace R2 with

5R3 +R2

 1 1
3 0 17

39 − 2
39 − 2

13

0 1 0 −10
13 − 8

13
15
13

0 0 1 − 2
13

1
13

3
13
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 1 1
3 0 17

39 − 2
39 − 2

13

0 1 0 −10
13 − 8

13
15
13

0 0 1 − 2
13

1
13

3
13

 Replace R1 with−−−−−−−−−−→
− 1

3
R2 +R1

 1 0 0 9
13

2
13 − 7

13

0 1 0 −10
13 − 8

13
15
13

0 0 1 − 2
13

1
13

3
13



We find A−1 =


9
13

2
13 − 7

13

−10
13 − 8

13
15
13

− 2
13

1
13

3
13

. To check our answer, we compute

A−1A =


9
13

2
13 − 7

13

−10
13 − 8

13
15
13

− 2
13

1
13

3
13


 3 1 2

0 −1 5

2 1 4

 =

 1 0 0

0 1 0

0 0 1

 = I3 X

and

AA−1 =

 3 1 2

0 −1 5

2 1 4




9
13

2
13 − 7

13

−10
13 − 8

13
15
13

− 2
13

1
13

3
13

 =

 1 0 0

0 1 0

0 0 1

 = I3 X

2. Each of the systems in this part has A as its coefficient matrix. The only difference between
the systems is the constants which is the matrix B in the associated matrix equation AX = B.
We solve each of them using the formula X = A−1B.

(a) X = A−1B =


9
13

2
13 − 7

13

−10
13 − 8

13
15
13

− 2
13

1
13

3
13


 26

39

117

 =

 −39

91

26

. Our solution is (−39, 91, 26).

(b) X = A−1B =


9
13

2
13 − 7

13

−10
13 − 8

13
15
13

− 2
13

1
13

3
13


 4

2

5

 =


5
13
19
13
9
13

. We get
(

5
13 ,

19
13 ,

9
13

)
.

(c) X = A−1B =


9
13

2
13 − 7

13

−10
13 − 8

13
15
13

− 2
13

1
13

3
13


 1

0

0

 =


9
13

−10
13

− 2
13

. We find
(

9
13 ,−

10
13 ,−

2
13

)
.6

In Example 8.4.1, we see that finding one inverse matrix can enable us to solve an entire family
of systems of linear equations. There are many examples of where this comes in handy ‘in the
wild’, and we chose our example for this section from the field of electronics. We also take this
opportunity to introduce the student to how we can compute inverse matrices using the calculator.

6Note that the solution is the first column of the A−1. The reader is encouraged to meditate on this ‘coincidence’.
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8.4 Systems of Linear Equations: Matrix Inverses 605

Example 8.4.2. Consider the circuit diagram below.7 We have two batteries with source voltages
VB1 and VB2, measured in volts V , along with six resistors with resistances R1 through R6, measured
in kiloohms, kΩ. Using Ohm’s Law and Kirchhoff’s Voltage Law, we can relate the voltage supplied
to the circuit by the two batteries to the voltage drops across the six resistors in order to find the
four ‘mesh’ currents: i1, i2, i3 and i4, measured in milliamps, mA. If we think of electrons flowing
through the circuit, we can think of the voltage sources as providing the ‘push’ which makes the
electrons move, the resistors as obstacles for the electrons to overcome, and the mesh current as a
net rate of flow of electrons around the indicated loops.

VB1

R5

R1 R2 R6

VB2R3 R4i1 i2 i3

i4

1

The system of linear equations associated with this circuit is
(R1 +R3) i1 −R3i2 −R1i4 = VB1

−R3i1 + (R2 +R3 +R4) i2 −R4i3 −R2i4 = 0
−R4i2 + (R4 +R6) i3 −R6i4 = −VB2

−R1i1 −R2i2 −R6i3 + (R1 +R2 +R5 +R6) i4 = 0

1. Assuming the resistances are all 1kΩ, find the mesh currents if the battery voltages are

(a) VB1 = 10V and VB2 = 5V

(b) VB1 = 10V and VB2 = 0V

(c) VB1 = 0V and VB2 = 10V

(d) VB1 = 10V and VB2 = 10V

2. Assuming VB1 = 10V and VB2 = 5V , find the possible combinations of resistances which
would yield the mesh currents you found in 1(a).

7The authors wish to thank Don Anthan of Lakeland Community College for the design of this example.
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606 Systems of Equations and Matrices

Solution.

1. Substituting the resistance values into our system of equations, we get
2i1 − i2 − i4 = VB1

−i1 + 3i2 − i3 − i4 = 0
−i2 + 2i3 − i4 = −VB2

−i1 − i2 − i3 + 4i4 = 0

This corresponds to the matrix equation AX = B where

A =


2 −1 0 −1
−1 3 −1 −1

0 −1 2 −1
−1 −1 −1 4

 X =


i1
i2
i3
i4

 B =


VB1

0
−VB2

0


When we input the matrix A into the calculator, we find

from which we have A−1 =


1.625 1.25 1.125 1
1.25 1.5 1.25 1

1.125 1.25 1.625 1
1 1 1 1

.

To solve the four systems given to us, we find X = A−1B where the value of B is determined
by the given values of VB1 and VB2

1 (a) B =


10
0
−5

0

 , 1 (b) B =


10
0
0
0

 , 1 (c) B =


0
0

−10
0

 , 1 (d) B =


10
0

10
0


(a) For VB1 = 10V and VB2 = 5V , the calculator gives i1 = 10.625 mA, i2 = 6.25 mA,

i3 = 3.125 mA, and i4 = 5 mA. We include a calculator screenshot below for this part
(and this part only!) for reference.
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8.4 Systems of Linear Equations: Matrix Inverses 607

(b) By keeping VB1 = 10V and setting VB2 = 0V , we are removing the effect of the second
battery. We get i1 = 16.25 mA, i2 = 12.5 mA, i3 = 11.25 mA, and i4 = 10 mA.

(c) Part (c) is a symmetric situation to part (b) in so much as we are zeroing out VB1 and
making VB2 = 10. We find i1 = −11.25 mA, i2 = −12.5 mA, i3 = −16.25 mA, and
i4 = −10 mA, where the negatives indicate that the current is flowing in the opposite
direction as is indicated on the diagram. The reader is encouraged to study the symmetry
here, and if need be, hold up a mirror to the diagram to literally ‘see’ what is happening.

(d) For VB1 = 10V and VB2 = 10V , we get i1 = 5 mA, i2 = 0 mA, i3 = −5 mA, and
i4 = 0 mA. The mesh currents i2 and i4 being zero is a consequence of both batteries
‘pushing’ in equal but opposite directions, causing the net flow of electrons in these two
regions to cancel out.

2. We now turn the tables and are given VB1 = 10V , VB2 = 5V , i1 = 10.625 mA, i2 = 6.25 mA,
i3 = 3.125 mA and i4 = 5 mA and our unknowns are the resistance values. Rewriting our
system of equations, we get


5.625R1 + 4.375R3 = 10

1.25R2 − 4.375R3 + 3.125R4 = 0
−3.125R4 − 1.875R6 = −5

−5.625R1 − 1.25R2 + 5R5 + 1.875R6 = 0

The coefficient matrix for this system is 4× 6 (4 equations with 6 unknowns) and is therefore
not invertible. We do know, however, this system is consistent, since setting all the resis-
tance values equal to 1 corresponds to our situation in problem 1a. This means we have an
underdetermined consistent system which is necessarily dependent. To solve this system, we
encode it into an augmented matrix


5.25 0 4.375 0 0 0 10

0 1.25 −4.375 3.125 0 0 0
0 0 0 −3.125 0 −1.875 −5

−5.625 −1.25 0 0 5 1.875 0


and use the calculator to write in reduced row echelon form
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608 Systems of Equations and Matrices


1 0 0.7 0 0 0 1.7
0 1 −3.5 0 0 −1.5 −4
0 0 0 1 0 0.6 1.6
0 0 0 0 1 0 1


Decoding this system from the matrix, we get

R1 + 0.7R3 = 1.7
R2 − 3.5R3 − 1.5R6 = −4

R4 + 0.6R6 = 1.6
R5 = 1

We have can solve for R1, R2, R4 and R5 leaving R3 and R6 as free variables. Labeling
R3 = s and R6 = t, we have R1 = −0.7s + 1.7, R2 = 3.5s + 1.5t − 4, R4 = −0.6t + 1.6
and R5 = 1. Since resistance values are always positive, we need to restrict our values of
s and t. We know R3 = s > 0 and when we combine that with R1 = −0.7s + 1.7 > 0,
we get 0 < s < 16

7 . Similarly, R6 = t > 0 and with R4 = −0.6t + 1.6 > 0, we find
0 < t < 8

3 . In order visualize the inequality R2 = 3.5s + 1.5t − 4 > 0, we graph the
line 3.5s + 1.5t − 4 = 0 on the st-plane and shade accordingly.8 Imposing the additional
conditions 0 < s < 16

7 and 0 < t < 8
3 , we find our values of s and t restricted to the region

depicted on the right. Using the roster method, the values of s and t are pulled from the region{
(s, t) : 0 < s < 16

7 , 0 < t < 8
3 , 3.5s+ 1.5t− 4 > 0

}
. The reader is encouraged to check that

the solution presented in 1(a), namely all resistance values equal to 1, corresponds to a pair
(s, t) in the region.

t

s

−2 −1 1 2 4

−1

1

2

3

The region where 3.5s+ 1.5t− 4 > 0

t

s

t = 8
3

s = 16
7

−2 −1 1 2 4

−1

1

2

3

The region for our parameters s and t.

8See Section 2.4 for a review of this procedure.

452



8.4 Systems of Linear Equations: Matrix Inverses 609

8.4.1 Exercises

In Exercises 1 - 8, find the inverse of the matrix or state that the matrix is not invertible.

1. A =

[
1 2
3 4

]
2. B =

[
12 −7
−5 3

]

3. C =

[
6 15

14 35

]
4. D =

[
2 −1

16 −9

]

5. E =

 3 0 4
2 −1 3
−3 2 −5

 6. F =

 4 6 −3
3 4 −3
1 2 6



7. G =

 1 2 3
2 3 11
3 4 19


8. H =


1 0 −3 0
2 −2 8 7
−5 0 16 0

1 0 4 1


In Exercises 9 - 11, use one matrix inverse to solve the following systems of linear equations.

9.

{
3x+ 7y = 26

5x+ 12y = 39
10.

{
3x+ 7y = 0

5x+ 12y = −1
11.

{
3x+ 7y = −7

5x+ 12y = 5

In Exercises 12 - 14, use the inverse of E from Exercise 5 above to solve the following systems of
linear equations.

12.


3x+ 4z = 1

2x− y + 3z = 0
−3x+ 2y − 5z = 0

13.


3x+ 4z = 0

2x− y + 3z = 1
−3x+ 2y − 5z = 0

14.


3x+ 4z = 0

2x− y + 3z = 0
−3x+ 2y − 5z = 1

15. This exercise is a continuation of Example 8.3.3 in Section 8.3 and gives another application
of matrix inverses. Recall that given the position matrix P for a point in the plane, the
matrix RP corresponds to a point rotated 45◦ counterclockwise from P where

R =

[ √
2

2 −
√

2
2√

2
2

√
2

2

]

(a) Find R−1.

(b) If RP rotates a point counterclockwise 45◦, what should R−1P do? Check your answer
by finding R−1P for various points on the coordinate axes and the lines y = ±x.

(c) Find R−1P where P corresponds to a generic point P (x, y). Verify that this takes points
on the curve y = 2

x to points on the curve x2 − y2 = 4.
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16. A Sasquatch’s diet consists of three primary foods: Ippizuti Fish, Misty Mushrooms, and Sun
Berries. Each serving of Ippizuti Fish is 500 calories, contains 40 grams of protein, and has
no Vitamin X. Each serving of Misty Mushrooms is 50 calories, contains 1 gram of protein,
and 5 milligrams of Vitamin X. Finally, each serving of Sun Berries is 80 calories, contains
no protein, but has 15 milligrams of Vitamin X.9

(a) If an adult male Sasquatch requires 3200 calories, 130 grams of protein, and 275 mil-
ligrams of Vitamin X daily, use a matrix inverse to find how many servings each of
Ippizuti Fish, Misty Mushrooms, and Sun Berries he needs to eat each day.

(b) An adult female Sasquatch requires 3100 calories, 120 grams of protein, and 300 mil-
ligrams of Vitamin X daily. Use the matrix inverse you found in part (a) to find how
many servings each of Ippizuti Fish, Misty Mushrooms, and Sun Berries she needs to
eat each day.

(c) An adolescent Sasquatch requires 5000 calories, 400 grams of protein daily, but no Vita-
min X daily.10 Use the matrix inverse you found in part (a) to find how many servings
each of Ippizuti Fish, Misty Mushrooms, and Sun Berries she needs to eat each day.

17. Matrices can be used in cryptography. Suppose we wish to encode the message ‘BIGFOOT
LIVES’. We start by assigning a number to each letter of the alphabet, say A = 1, B = 2 and
so on. We reserve 0 to act as a space. Hence, our message ‘BIGFOOT LIVES’ corresponds
to the string of numbers ‘2, 9, 7, 6, 15, 15, 20, 0, 12, 9, 22, 5, 19.’ To encode this message,
we use an invertible matrix. Any invertible matrix will do, but for this exercise, we choose

A =

 2 −3 5
3 1 −2
−7 1 −1


Since A is 3 × 3 matrix, we encode our message string into a matrix M with 3 rows. To do
this, we take the first three numbers, 2 9 7, and make them our first column, the next three
numbers, 6 15 15, and make them our second column, and so on. We put 0’s to round out
the matrix.

M =

 2 6 20 9 19
9 15 0 22 0
7 15 12 5 0


To encode the message, we find the product AM

AM =

 2 −3 5
3 1 −2
−7 1 −1

 2 6 20 9 19
9 15 0 22 0
7 15 12 5 0

 =

 12 42 100 −23 38
1 3 36 39 57

−12 −42 −152 −46 −133


9Misty Mushrooms and Sun Berries are the only known fictional sources of Vitamin X.

10Vitamin X is needed to sustain Sasquatch longevity only.
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So our coded message is ‘12, 1, −12, 42, 3, −42, 100, 36, −152, −23, 39, −46, 38, 57, −133.’
To decode this message, we start with this string of numbers, construct a message matrix as
we did earlier (we should get the matrix AM again) and then multiply by A−1.

(a) Find A−1.

(b) Use A−1 to decode the message and check this method actually works.

(c) Decode the message ‘14, 37, −76, 128, 21, −151, 31, 65, −140’

(d) Choose another invertible matrix and encode and decode your own messages.

18. Using the matrices A from Exercise 1, B from Exercise 2 and D from Exercise 4, show
AB = D and D−1 = B−1A−1. That is, show that (AB)−1 = B−1A−1.

19. Let M and N be invertible n × n matrices. Show that (MN)−1 = N−1M−1 and compare
your work to Exercise 31 in Section 5.2.
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8.4.2 Answers

1. A−1 =

[
−2 1

3
2 −1

2

]
2. B−1 =

[
3 7
5 12

]

3. C is not invertible 4. D−1 =

[
9
2 −1

2
8 −1

]

5. E−1 =

 −1 8 4
1 −3 −1
1 −6 −3

 6. F−1 =

 −
5
2

7
2

1
2

7
4 −9

4 −1
4

−1
6

1
6

1
6



7. G is not invertible 8. H−1 =


16 0 3 0

−90 −1
2 −35

2
7
2

5 0 1 0

−36 0 −7 1


The coefficient matrix is B−1 from Exercise 2 above so the inverse we need is (B−1)−1 = B.

9.

[
12 −7
−5 3

] [
26
39

]
=

[
39
−13

]
So x = 39 and y = −13.

10.

[
12 −7
−5 3

] [
0
−1

]
=

[
7
−3

]
So x = 7 and y = −3.

11.

[
12 −7
−5 3

] [
−7

5

]
=

[
−119

50

]
So x = −119 and y = 50.

The coefficient matrix is E =

 3 0 4
2 −1 3
−3 2 −5

 from Exercise 5, so E−1 =

 −1 8 4
1 −3 −1
1 −6 −3



12.

 −1 8 4
1 −3 −1
1 −6 −3

 1
0
0

 =

 −1
1
1

 So x = −1, y = 1 and z = 1.

13.

 −1 8 4
1 −3 −1
1 −6 −3

 0
1
0

 =

 8
−3
−6

 So x = 8, y = −3 and z = −6.

14.

 −1 8 4
1 −3 −1
1 −6 −3

 0
0
1

 =

 4
−1
−3

 So x = 4, y = −1 and z = −3.
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16. (a) The adult male Sasquatch needs: 3 servings of Ippizuti Fish, 10 servings of Misty Mush-
rooms, and 15 servings of Sun Berries daily.

(b) The adult female Sasquatch needs: 3 servings of Ippizuti Fish and 20 servings of Sun
Berries daily. (No Misty Mushrooms are needed!)

(c) The adolescent Sasquatch requires 10 servings of Ippizuti Fish daily. (No Misty Mush-
rooms or Sun Berries are needed!)

17. (a) A−1 =

 1 2 1
17 33 19
10 19 11


(b)

 1 2 1
17 33 19
10 19 11

 12 42 100 −23 38
1 3 36 39 57

−12 −42 −152 −46 −133

 =

 2 6 20 9 19
9 15 0 22 0
7 15 12 5 0

 X

(c) ‘LOGS RULE’
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8.5 Determinants and Cramer’s Rule

8.5.1 Definition and Properties of the Determinant

In this section we assign to each square matrix A a real number, called the determinant of A,
which will eventually lead us to yet another technique for solving consistent independent systems
of linear equations. The determinant is defined recursively, that is, we define it for 1× 1 matrices
and give a rule by which we can reduce determinants of n × n matrices to a sum of determinants
of (n− 1)× (n− 1) matrices.1 This means we will be able to evaluate the determinant of a 2× 2
matrix as a sum of the determinants of 1× 1 matrices; the determinant of a 3× 3 matrix as a sum
of the determinants of 2 × 2 matrices, and so forth. To explain how we will take an n× n matrix
and distill from it an (n− 1)× (n− 1), we use the following notation.

Definition 8.12. Given an n×n matrix A where n > 1, the matrix Aij is the (n− 1)× (n− 1)
matrix formed by deleting the ith row of A and the jth column of A.

For example, using the matrix A below, we find the matrix A23 by deleting the second row and
third column of A.

A =

 3 1 2
0 −1 5
2 1 4

 Delete R2 and C3−−−−−−−−−−−→ A23 =

[
3 1
2 1

]
We are now in the position to define the determinant of a matrix.

Definition 8.13. Given an n× n matrix A the determinant of A, denoted det(A), is defined
as follows

• If n = 1, then A = [a11] and det(A) = det ([a11]) = a11.

• If n > 1, then A = [aij ]n×n and

det(A) = det
(
[aij ]n×n

)
= a11 det (A11)− a12 det (A12) +− . . .+ (−1)1+na1n det (A1n)

There are two commonly used notations for the determinant of a matrix A: ‘det(A)’ and ‘|A|’
We have chosen to use the notation det(A) as opposed to |A| because we find that the latter is
often confused with absolute value, especially in the context of a 1 × 1 matrix. In the expansion
a11 det (A11)−a12 det (A12)+− . . .+(−1)1+na1n det (A1n), the notation ‘+− . . .+(−1)1+na1n’ means
that the signs alternate and the final sign is dictated by the sign of the quantity (−1)1+n. Since
the entries a11, a12 and so forth up through a1n comprise the first row of A, we say we are finding
the determinant of A by ‘expanding along the first row’. Later in the section, we will develop a
formula for det(A) which allows us to find it by expanding along any row.

Applying Definition 8.13 to the matrix A =

[
4 −3
2 1

]
we get

1We will talk more about the term ‘recursively’ in Section 9.1.
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8.5 Determinants and Cramer’s Rule 615

det(A) = det

([
4 −3
2 1

])
= 4 det (A11)− (−3) det (A12)
= 4 det([1]) + 3 det([2])
= 4(1) + 3(2)
= 10

For a generic 2× 2 matrix A =

[
a b
c d

]
we get

det(A) = det

([
a b
c d

])
= adet (A11)− bdet (A12)
= adet ([d])− bdet ([c])
= ad− bc

This formula is worth remembering

Equation 8.1. For a 2× 2 matrix,

det

([
a b
c d

])
= ad− bc

Applying Definition 8.13 to the 3× 3 matrix A =

 3 1 2
0 −1 5
2 1 4

 we obtain

det(A) = det

 3 1 2
0 −1 5
2 1 4


= 3 det (A11)− 1 det (A12) + 2 det (A13)

= 3 det

([
−1 5

1 4

])
− det

([
0 5
2 4

])
+ 2 det

([
0 −1
2 1

])
= 3((−1)(4)− (5)(1))− ((0)(4)− (5)(2)) + 2((0)(1)− (−1)(2))
= 3(−9)− (−10) + 2(2)
= −13

To evaluate the determinant of a 4 × 4 matrix, we would have to evaluate the determinants of
four 3 × 3 matrices, each of which involves the finding the determinants of three 2 × 2 matrices.
As you can see, our method of evaluating determinants quickly gets out of hand and many of you
may be reaching for the calculator. There is some mathematical machinery which can assist us in
calculating determinants and we present that here. Before we state the theorem, we need some
more terminology.
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616 Systems of Equations and Matrices

Definition 8.14. Let A be an n × n matrix and Aij be defined as in Definition 8.12. The ij
minor of A, denoted Mij is defined by Mij = det (Aij). The ij cofactor of A, denoted Cij is
defined by Cij = (−1)i+jMij = (−1)i+j det (Aij).

We note that in Definition 8.13, the sum

a11 det (A11)− a12 det (A12) +− . . .+ (−1)1+na1n det (A1n)

can be rewritten as

a11(−1)1+1 det (A11) + a12(−1)1+2 det (A12) + . . .+ a1n(−1)1+n det (A1n)

which, in the language of cofactors is

a11C11 + a12C12 + . . .+ a1nC1n

We are now ready to state our main theorem concerning determinants.

Theorem 8.7. Properties of the Determinant: Let A = [aij ]n×n.

• We may find the determinant by expanding along any row. That is, for any 1 ≤ k ≤ n,

det(A) = ak1Ck1 + ak2Ck2 + . . .+ aknCkn

• If A′ is the matrix obtained from A by:

– interchanging any two rows, then det(A′) = −det(A).

– replacing a row with a nonzero multiple (say c) of itself, then det(A′) = cdet(A)

– replacing a row with itself plus a multiple of another row, then det(A′) = det(A)

• If A has two identical rows, or a row consisting of all 0’s, then det(A) = 0.

• If A is upper or lower triangular,a then det(A) is the product of the entries on the main
diagonal.b

• If B is an n× n matrix, then det(AB) = det(A) det(B).

• det (An) = det(A)n for all natural numbers n.

• A is invertible if and only if det(A) 6= 0. In this case, det
(
A−1

)
=

1

det(A)
.

aSee Exercise 8.3.1 in 8.3.
bSee page 585 in Section 8.3.

Unfortunately, while we can easily demonstrate the results in Theorem 8.7, the proofs of most of
these properties are beyond the scope of this text. We could prove these properties for generic 2×2
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8.5 Determinants and Cramer’s Rule 617

or even 3×3 matrices by brute force computation, but this manner of proof belies the elegance and
symmetry of the determinant. We will prove what few properties we can after we have developed
some more tools such as the Principle of Mathematical Induction in Section 9.3.2 For the moment,
let us demonstrate some of the properties listed in Theorem 8.7 on the matrix A below. (Others
will be discussed in the Exercises.)

A =

 3 1 2
0 −1 5
2 1 4


We found det(A) = −13 by expanding along the first row. To take advantage of the 0 in the second
row, we use Theorem 8.7to find det(A) = −13 by expanding along that row.

det

 3 1 2
0 −1 5
2 1 4

 = 0C21 + (−1)C22 + 5C23

= (−1)(−1)2+2 det (A22) + 5(−1)2+3 det (A23)

= −det

([
3 2
2 4

])
− 5 det

([
3 1
2 1

])
= −((3)(4)− (2)(2))− 5((3)(1)− (2)(1))
= −8− 5
= −13 X

In general, the sign of (−1)i+j in front of the minor in the expansion of the determinant follows
an alternating pattern. Below is the pattern for 2 × 2, 3 × 3 and 4 × 4 matrices, and it extends
naturally to higher dimensions.

[
+ −
− +

]  + − +
− + −
+ − +




+ − + −
− + − +
+ − + −
− + − +


The reader is cautioned, however, against reading too much into these sign patterns. In the example
above, we expanded the 3× 3 matrix A by its second row and the term which corresponds to the
second entry ended up being negative even though the sign attached to the minor is (+). These
signs represent only the signs of the (−1)i+j in the formula; the sign of the corresponding entry as
well as the minor itself determine the ultimate sign of the term in the expansion of the determinant.

To illustrate some of the other properties in Theorem 8.7, we use row operations to transform our
3× 3 matrix A into an upper triangular matrix, keeping track of the row operations, and labeling

2For a very elegant treatment, take a course in Linear Algebra. There, you will most likely see the treatment of
determinants logically reversed than what is presented here. Specifically, the determinant is defined as a function
which takes a square matrix to a real number and satisfies some of the properties in Theorem 8.7. From that function,
a formula for the determinant is developed.
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618 Systems of Equations and Matrices

each successive matrix.3

 3 1 2
0 −1 5
2 1 4

 Replace R3−−−−−−−−−−→
with − 2

3
R1 +R3

 3 1 2
0 −1 5
0 1

3
8
3

 Replace R3 with−−−−−−−−−−→
1
3
R2 +R3

 3 1 2
0 −1 5
0 0 13

3


A B C

Theorem 8.7 guarantees us that det(A) = det(B) = det(C) since we are replacing a row with
itself plus a multiple of another row moving from one matrix to the next. Furthermore, since
C is upper triangular, det(C) is the product of the entries on the main diagonal, in this case
det(C) = (3)(−1)

(
13
3

)
= −13. This demonstrates the utility of using row operations to assist in

calculating determinants. This also sheds some light on the connection between a determinant and
invertibility. Recall from Section 8.4 that in order to find A−1, we attempt to transform A to In
using row operations

[
A In

] Gauss Jordan Elimination−−−−−−−−−−−−−−−−→
[
In A−1

]
As we apply our allowable row operations on A to put it into reduced row echelon form, the
determinant of the intermediate matrices can vary from the determinant of A by at most a nonzero
multiple. This means that if det(A) 6= 0, then the determinant of A’s reduced row echelon form
must also be nonzero, which, according to Definition 8.4 means that all the main diagonal entries
on A’s reduced row echelon form must be 1. That is, A’s reduced row echelon form is In, and A is
invertible. Conversely, if A is invertible, then A can be transformed into In using row operations.
Since det (In) = 1 6= 0, our same logic implies det(A) 6= 0. Basically, we have established that the
determinant determines whether or not the matrix A is invertible.4

It is worth noting that when we first introduced the notion of a matrix inverse, it was in the context
of solving a linear matrix equation. In effect, we were trying to ‘divide’ both sides of the matrix
equation AX = B by the matrix A. Just like we cannot divide a real number by 0, Theorem 8.7
tells us we cannot ‘divide’ by a matrix whose determinant is 0. We also know that if the coefficient
matrix of a system of linear equations is invertible, then system is consistent and independent. It
follows, then, that if the determinant of said coefficient is not zero, the system is consistent and
independent.

8.5.2 Cramer’s Rule and Matrix Adjoints

In this section, we introduce a theorem which enables us to solve a system of linear equations by
means of determinants only. As usual, the theorem is stated in full generality, using numbered
unknowns x1, x2, etc., instead of the more familiar letters x, y, z, etc. The proof of the general
case is best left to a course in Linear Algebra.

3Essentially, we follow the Gauss Jordan algorithm but we don’t care about getting leading 1’s.
4In Section 8.5.2, we learn determinants (specifically cofactors) are deeply connected with the inverse of a matrix.
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8.5 Determinants and Cramer’s Rule 619

Theorem 8.8. Cramer’s Rule: Suppose AX = B is the matrix form of a system of n linear
equations in n unknowns where A is the coefficient matrix, X is the unknowns matrix, and B is
the constant matrix. If det(A) 6= 0, then the corresponding system is consistent and independent
and the solution for unknowns x1, x2, . . .xn is given by:

xj =
det (Aj)

det(A)
,

where Aj is the matrix A whose jth column has been replaced by the constants in B.

In words, Cramer’s Rule tells us we can solve for each unknown, one at a time, by finding the ratio
of the determinant of Aj to that of the determinant of the coefficient matrix. The matrix Aj is
found by replacing the column in the coefficient matrix which holds the coefficients of xj with the
constants of the system. The following example fleshes out this method.

Example 8.5.1. Use Cramer’s Rule to solve for the indicated unknowns.

1. Solve

{
2x1 − 3x2 = 4
5x1 + x2 = −2

for x1 and x2

2. Solve


2x− 3y + z = −1
x− y + z = 1

3x− 4z = 0
for z.

Solution.

1. Writing this system in matrix form, we find

A =

[
2 −3
5 1

]
X =

[
x1

x2

]
B =

[
4
−2

]
To find the matrix A1, we remove the column of the coefficient matrix A which holds the
coefficients of x1 and replace it with the corresponding entries in B. Likewise, we replace the
column of A which corresponds to the coefficients of x2 with the constants to form the matrix
A2. This yields

A1 =

[
4 −3
−2 1

]
A2 =

[
2 4
5 −2

]
Computing determinants, we get det(A) = 17, det (A1) = −2 and det (A2) = −24, so that

x1 =
det (A1)

det(A)
= − 2

17
x2 =

det (A2)

det(A)
= −24

17

The reader can check that the solution to the system is
(
− 2

17 ,−
24
17

)
.
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620 Systems of Equations and Matrices

2. To use Cramer’s Rule to find z, we identify x3 as z. We have

A =

 2 −3 1
1 −1 1
3 0 −4

 X =

 x
y
z

 B =

 −1
1
0

 A3 = Az =

 2 −3 −1
1 −1 1
3 0 0


Expanding both det(A) and det (Az) along the third rows (to take advantage of the 0’s) gives

z =
det (Az)

det(A)
=
−12

−10
=

6

5

The reader is encouraged to solve this system for x and y similarly and check the answer.

Our last application of determinants is to develop an alternative method for finding the inverse of
a matrix.5 Let us consider the 3× 3 matrix A which we so extensively studied in Section 8.5.1

A =

 3 1 2
0 −1 5
2 1 4


We found through a variety of methods that det(A) = −13. To our surprise and delight, its inverse
below has a remarkable number of 13’s in the denominators of its entries. This is no coincidence.

A−1 =


9
13

2
13 − 7

13

−10
13 − 8

13
15
13

− 2
13

1
13

3
13


Recall that to find A−1, we are essentially solving the matrix equation AX = I3, where X = [xij ]3×3
is a 3 × 3 matrix. Because of how matrix multiplication is defined, the first column of I3 is the
product of A with the first column of X, the second column of I3 is the product of A with the
second column of X and the third column of I3 is the product of A with the third column of X. In
other words, we are solving three equations6

A

 x11

x21

x31

 =

 1
0
0

 A

 x12

x22

x32

 =

 0
1
0

 A

 x13

x23

x33

 =

 0
0
1


We can solve each of these systems using Cramer’s Rule. Focusing on the first system, we have

A1 =

 1 1 2
0 −1 5
0 1 4

 A2 =

 3 1 2
0 0 5
2 0 4

 A3 =

 3 1 1
0 −1 0
2 1 0


5We are developing a method in the forthcoming discussion. As with the discussion in Section 8.4 when we

developed the first algorithm to find matrix inverses, we ask that you indulge us.
6The reader is encouraged to stop and think this through.
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8.5 Determinants and Cramer’s Rule 621

If we expand det (A1) along the first row, we get

det (A1) = det

([
−1 5

1 4

])
− det

([
0 5
0 4

])
+ 2 det

([
0 −1
0 1

])
= det

([
−1 5

1 4

])
Amazingly, this is none other than the C11 cofactor of A. The reader is invited to check this, as
well as the claims that det (A2) = C12 and det (A3) = C13.

7 (To see this, though it seems unnatural
to do so, expand along the first row.) Cramer’s Rule tells us

x11 =
det (A1)

det(A)
=

C11

det(A)
, x21 =

det (A2)

det(A)
=

C12

det(A)
, x31 =

det (A3)

det(A)
=

C13

det(A)

So the first column of the inverse matrix X is:

 x11

x21

x31

 =



C11

det(A)

C12

det(A)

C13

det(A)


=

1

det(A)

 C11

C12

C13



Notice the reversal of the subscripts going from the unknown to the corresponding cofactor of A.
This trend continues and we get x12

x22

x32

 =
1

det(A)

 C21

C22

C23

  x13

x23

x33

 =
1

det(A)

 C31

C32

C33


Putting all of these together, we have obtained a new and surprising formula for A−1, namely

A−1 =
1

det(A)

 C11 C21 C31

C12 C22 C32

C13 C23 C33


To see that this does indeed yield A−1, we find all of the cofactors of A

C11 = −9, C21 = −2, C31 = 7
C12 = 10, C22 = 8, C32 = −15
C13 = 2, C23 = −1, C33 = −3

And, as promised,

7In a solid Linear Algebra course you will learn that the properties in Theorem 8.7 hold equally well if the word
‘row’ is replaced by the word ‘column’. We’re not going to get into column operations in this text, but they do make
some of what we’re trying to say easier to follow.
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A−1 =
1

det(A)

 C11 C21 C31

C12 C22 C32

C13 C23 C33

 = − 1

13

 −9 −2 7
10 8 −15
2 −1 −3

 =


9
13

2
13 − 7

13

−10
13 − 8

13
15
13

− 2
13

1
13

3
13


To generalize this to invertible n × n matrices, we need another definition and a theorem. Our
definition gives a special name to the cofactor matrix, and the theorem tells us how to use it along
with det(A) to find the inverse of a matrix.

Definition 8.15. Let A be an n×n matrix, and Cij denote the ij cofactor of A. The adjoint
of A, denoted adj(A) is the matrix whose ij-entry is the ji cofactor of A, Cji. That is

adj(A) =


C11 C21 . . . Cn1

C12 C22 . . . Cn2

...
...

...
C1n C2n . . . Cnn


This new notation greatly shortens the statement of the formula for the inverse of a matrix.

Theorem 8.9. Let A be an invertible n× n matrix. Then

A−1 =
1

det(A)
adj(A)

For 2× 2 matrices, Theorem 8.9 reduces to a fairly simple formula.

Equation 8.2. For an invertible 2× 2 matrix,[
a b
c d

]−1

=
1

ad− bc

[
d −b
−c a

]
The proof of Theorem 8.9 is, like so many of the results in this section, best left to a course in
Linear Algebra. In such a course, not only do you gain some more sophisticated proof techniques,
you also gain a larger perspective. The authors assure you that persistence pays off. If you stick
around a few semesters and take a course in Linear Algebra, you’ll see just how pretty all things
matrix really are - in spite of the tedious notation and sea of subscripts. Within the scope of this
text, we will prove a few results involving determinants in Section 9.3 once we have the Principle of
Mathematical Induction well in hand. Until then, make sure you have a handle on the mechanics
of matrices and the theory will come eventually.
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8.5 Determinants and Cramer’s Rule 623

8.5.3 Exercises

In Exercises 1 - 8, compute the determinant of the given matrix. (Some of these matrices appeared
in Exercises 1 - 8 in Section 8.4.)

1. B =

[
12 −7
−5 3

]
2. C =

[
6 15

14 35

]

3. Q =

[
x x2

1 2x

]
4. L =


1

x3

ln(x)

x3

− 3

x4

1− 3 ln(x)

x4



5. F =

 4 6 −3
3 4 −3
1 2 6

 6. G =

 1 2 3
2 3 11
3 4 19



7. V =

 i j k
−1 0 5

9 −4 −2

 8. H =


1 0 −3 0
2 −2 8 7
−5 0 16 0

1 0 4 1


In Exercises 9 - 14, use Cramer’s Rule to solve the system of linear equations.

9.

{
3x+ 7y = 26

5x+ 12y = 39
10.

{
2x− 4y = 5

10x+ 13y = −6

11.

{
x+ y = 8000

0.03x+ 0.05y = 250
12.

{
1
2x−

1
5y = 1

6x+ 7y = 3

13.


x+ y + z = 3

2x− y + z = 0
−3x+ 5y + 7z = 7

14.


3x+ y − 2z = 10
4x− y + z = 5
x− 3y − 4z = −1

In Exercises 15 - 16, use Cramer’s Rule to solve for x4.

15.


x1 − x3 = −2

2x2 − x4 = 0
x1 − 2x2 + x3 = 0
−x3 + x4 = 1

16.


4x1 + x2 = 4
x2 − 3x3 = 1

10x1 + x3 + x4 = 0
−x2 + x3 = −3
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In Exercises 17 - 18, find the inverse of the given matrix using their determinants and adjoints.

17. B =

[
12 −7
−5 3

]
18. F =

 4 6 −3
3 4 −3
1 2 6


19. Carl’s Sasquatch Attack! Game Card Collection is a mixture of common and rare cards.

Each common card is worth $0.25 while each rare card is worth $0.75. If his entire 117 card
collection is worth $48.75, how many of each kind of card does he own?

20. How much of a 5 gallon 40% salt solution should be replaced with pure water to obtain 5
gallons of a 15% solution?

21. How much of a 10 liter 30% acid solution must be replaced with pure acid to obtain 10 liters
of a 50% solution?

22. Daniel’s Exotic Animal Rescue houses snakes, tarantulas and scorpions. When asked how
many animals of each kind he boards, Daniel answered: ‘We board 49 total animals, and I
am responsible for each of their 272 legs and 28 tails.’ How many of each animal does the
Rescue board? (Recall: tarantulas have 8 legs and no tails, scorpions have 8 legs and one
tail, and snakes have no legs and one tail.)

23. This exercise is a continuation of Exercise 16 in Section 8.4. Just because a system is consistent
independent doesn’t mean it will admit a solution that makes sense in an applied setting.
Using the nutrient values given for Ippizuti Fish, Misty Mushrooms, and Sun Berries, use
Cramer’s Rule to determine the number of servings of Ippizuti Fish needed to meet the needs
of a daily diet which requires 2500 calories, 1000 grams of protein, and 400 milligrams of
Vitamin X. Now use Cramer’s Rule to find the number of servings of Misty Mushrooms
required. Does a solution to this diet problem exist?

24. Let R =

[
−7 3
11 2

]
, S =

[
1 −5
6 9

]
T =

[
11 2
−7 3

]
, and U =

[
−3 15

6 9

]
(a) Show that det(RS) = det(R) det(S)

(b) Show that det(T ) = −det(R)

(c) Show that det(U) = −3 det(S)

25. For M , N , and P below, show that det(M) = 0, det(N) = 0 and det(P ) = 0.

M =

 1 2 3
0 0 0
7 8 9

 , N =

 1 2 3
1 2 3
4 5 6

 , P =

 1 2 3
−2 −4 −6

7 8 9
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26. Let A be an arbitrary invertible 3× 3 matrix.

(a) Show that det(I3) = 1.8

(b) Using the facts that AA−1 = I3 and det(AA−1) = det(A) det(A−1), show that

det(A−1) =
1

det(A)

The purpose of Exercises 27 - 30 is to introduce you to the eigenvalues and eigenvectors of a matrix.9

We begin with an example using a 2× 2 matrix and then guide you through some exercises using
a 3× 3 matrix. Consider the matrix

C =

[
6 15

14 35

]
from Exercise 2. We know that det(C) = 0 which means that CX = 02×2 does not have a unique
solution. So there is a nonzero matrix Y with CY = 02×2. In fact, every matrix of the form

Y =

[
−5

2 t

t

]

is a solution to CX = 02×2, so there are infinitely many matrices such that CX = 02×2. But
consider the matrix

X41 =

[
3
7

]
It is NOT a solution to CX = 02×2, but rather,

CX41 =

[
6 15

14 35

] [
3
7

]
=

[
123
287

]
= 41

[
3
7

]
In fact, if Z is of the form

Z =

[
3
7 t

t

]
then

CZ =

[
6 15

14 35

][ 3
7 t

t

]
=

[
123
7 t

41t

]
= 41

[
3
7 t

t

]
= 41Z

for all t. The big question is “How did we know to use 41?”

We need a number λ such that CX = λX has nonzero solutions. We have demonstrated that λ = 0
and λ = 41 both worked. Are there others? If we look at the matrix equation more closely, what

8If you think about it for just a moment, you’ll see that det(In) = 1 for any natural number n. The formal proof
of this fact requires the Principle of Mathematical Induction (Section 9.3) so we’ll stick with n = 3 for the time being.

9This material is usually given its own chapter in a Linear Algebra book so clearly we’re not able to tell you
everything you need to know about eigenvalues and eigenvectors. They are a nice application of determinants,
though, so we’re going to give you enough background so that you can start playing around with them.
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we really wanted was a nonzero solution to (C − λI2)X = 02×2 which we know exists if and only if
the determinant of C − λI2 is zero.10 So we computed

det(C − λI2) = det

([
6− λ 15

14 35− λ

])
= (6− λ)(35− λ)− 14 · 15 = λ2 − 41λ

This is called the characteristic polynomial of the matrix C and it has two zeros: λ = 0 and
λ = 41. That’s how we knew to use 41 in our work above. The fact that λ = 0 showed up as one
of the zeros of the characteristic polynomial just means that C itself had determinant zero which
we already knew. Those two numbers are called the eigenvalues of C. The corresponding matrix
solutions to CX = λX are called the eigenvectors of C and the ‘vector’ portion of the name will
make more sense after you’ve studied vectors.

Now it’s your turn. In the following exercises, you’ll be using the matrix G from Exercise 6.

G =

 1 2 3
2 3 11
3 4 19


27. Show that the characteristic polynomial of G is p(λ) = −λ(λ− 1)(λ− 22). That is, compute

det (G− λI3).

28. Let G0 = G. Find the parametric description of the solution to the system of linear equations
given by GX = 03×3.

29. Let G1 = G − I3. Find the parametric description of the solution to the system of linear
equations given by G1X = 03×3. Show that any solution to G1X = 03×3 also has the property
that GX = 1X.

30. Let G22 = G − 22I3. Find the parametric description of the solution to the system of linear
equations given by G22X = 03×3. Show that any solution to G22X = 03×3 also has the
property that GX = 22X.

10Think about this.
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8.5 Determinants and Cramer’s Rule 627

8.5.4 Answers

1. det(B) = 1 2. det(C) = 0

3. det(Q) = x2 4. det(L) =
1

x7

5. det(F ) = −12 6. det(G) = 0

7. det(V ) = 20i+ 43j + 4k 8. det(H) = −2

9. x = 39, y = −13 10. x = 41
66 , y = −31

33

11. x = 7500, y = 500 12. x = 76
47 , y = −45

47

13. x = 1, y = 2, z = 0 14. x = 121
60 , y = 131

60 , z = −53
60

15. x4 = 4 16. x4 = −1

17. B−1 =

[
3 7
5 12

]

18. F−1 =

 −
5
2

7
2

1
2

7
4 −9

4 −1
4

−1
6

1
6

1
6


19. Carl owns 78 common cards and 39 rare cards.

20. 3.125 gallons.

21. 20
7 ≈ 2.85 liters.

22. The rescue houses 15 snakes, 21 tarantulas and 13 scorpions.

23. Using Cramer’s Rule, we find we need 53 servings of Ippizuti Fish to satisfy the dietary
requirements. The number of servings of Misty Mushrooms required, however, is −1120.
Since it’s impossible to have a negative number of servings, there is no solution to the applied
problem, despite there being a solution to the mathematical problem. A cautionary tale
about using Cramer’s Rule: just because you are guaranteed a mathematical answer for each
variable doesn’t mean the solution will make sense in the ‘real’ world.
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628 Systems of Equations and Matrices

8.6 Partial Fraction Decomposition

This section uses systems of linear equations to rewrite rational functions in a form more palatable
to Calculus students. In College Algebra, the function

f(x) =
x2 − x− 6

x4 + x2
(1)

is written in the best form possible to construct a sign diagram and to find zeros and asymptotes,
but certain applications in Calculus require us to rewrite f(x) as

f(x) =
x+ 7

x2 + 1
− 1

x
− 6

x2
(2)

If we are given the form of f(x) in (2), it is a matter of Intermediate Algebra to determine a common
denominator to obtain the form of f(x) given in (1). The focus of this section is to develop a method
by which we start with f(x) in the form of (1) and ‘resolve it into partial fractions’ to obtain the
form in (2). Essentially, we need to reverse the least common denominator process. Starting with
the form of f(x) in (1), we begin by factoring the denominator

x2 − x− 6

x4 + x2
=
x2 − x− 6

x2 (x2 + 1)

We now think about which individual denominators could contribute to obtain x2
(
x2 + 1

)
as the

least common denominator. Certainly x2 and x2 + 1, but are there any other factors? Since
x2 + 1 is an irreducible quadratic1 there are no factors of it that have real coefficients which can
contribute to the denominator. The factor x2, however, is not irreducible, since we can think of it as
x2 = xx = (x− 0)(x− 0), a so-called ‘repeated’ linear factor.2 This means it’s possible that a term
with a denominator of just x contributed to the expression as well. What about something like
x
(
x2 + 1

)
? This, too, could contribute, but we would then wish to break down that denominator

into x and
(
x2 + 1

)
, so we leave out a term of that form. At this stage, we have guessed

x2 − x− 6

x4 + x2
=
x2 − x− 6

x2 (x2 + 1)
=

?

x
+

?

x2
+

?

x2 + 1

Our next task is to determine what form the unknown numerators take. It stands to reason that
since the expression x2−x−6

x4+x2 is ‘proper’ in the sense that the degree of the numerator is less than
the degree of the denominator, we are safe to make the ansatz that all of the partial fraction
resolvents are also. This means that the numerator of the fraction with x as its denominator is just
a constant and the numerators on the terms involving the denominators x2 and x2 + 1 are at most
linear polynomials. That is, we guess that there are real numbers A, B, C, D and E so that

x2 − x− 6

x4 + x2
=
x2 − x− 6

x2 (x2 + 1)
=
A

x
+
Bx+ C

x2
+
Dx+ E

x2 + 1

1Recall this means it has no real zeros; see Section 3.4.
2Recall this means x = 0 is a zero of multiplicity 2.
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8.6 Partial Fraction Decomposition 629

However, if we look more closely at the term Bx+C
x2 , we see that Bx+C

x2 = Bx
x2 + C

x2 = B
x + C

x2 . The

term B
x has the same form as the term A

x which means it contributes nothing new to our expansion.
Hence, we drop it and, after re-labeling, we find ourselves with our new guess:

x2 − x− 6

x4 + x2
=
x2 − x− 6

x2 (x2 + 1)
=
A

x
+
B

x2
+
Cx+D

x2 + 1

Our next task is to determine the values of our unknowns. Clearing denominators gives

x2 − x− 6 = Ax
(
x2 + 1

)
+B

(
x2 + 1

)
+ (Cx+D)x2

Gathering the like powers of x we have

x2 − x− 6 = (A+ C)x3 + (B +D)x2 +Ax+B

In order for this to hold for all values of x in the domain of f , we equate the coefficients of
corresponding powers of x on each side of the equation3 and obtain the system of linear equations


(E1) A+ C = 0 From equating coefficients of x3

(E2) B +D = 1 From equating coefficients of x2

(E3) A = −1 From equating coefficients of x
(E4) B = −6 From equating the constant terms

To solve this system of equations, we could use any of the methods presented in Sections 8.1 through
8.5, but none of these methods are as efficient as the good old-fashioned substitution you learned
in Intermediate Algebra. From E3, we have A = −1 and we substitute this into E1 to get C = 1.
Similarly, since E4 gives us B = −6, we have from E2 that D = 7. We get

x2 − x− 6

x4 + x2
=
x2 − x− 6

x2 (x2 + 1)
= −1

x
− 6

x2
+

x+ 7

x2 + 1

which matches the formula given in (2). As we have seen in this opening example, resolving a
rational function into partial fractions takes two steps: first, we need to determine the form of
the decomposition, and then we need to determine the unknown coefficients which appear in said
form. Theorem 3.16 guarantees that any polynomial with real coefficients can be factored over
the real numbers as a product of linear factors and irreducible quadratic factors. Once we have
this factorization of the denominator of a rational function, the next theorem tells us the form the
decomposition takes. The reader is encouraged to review the Factor Theorem (Theorem 3.6) and
its connection to the role of multiplicity to fully appreciate the statement of the following theorem.

3We will justify this shortly.
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630 Systems of Equations and Matrices

Theorem 8.10. Suppose R(x) =
N(x)

D(x)
is a rational function where the degree of N(x) less

than the degree of D(x) a and N(x) and D(x) have no common factors.

• If c is a real zero of D of multiplicity m which corresponds to the linear factor ax+ b, the
partial fraction decomposition includes

A1

ax+ b
+

A2

(ax+ b)2
+ . . .+

Am
(ax+ b)m

for real numbers A1, A2, . . .Am.

• If c is a non-real zero of D of multiplicity m which corresponds to the irreducible quadratic
ax2 + bx+ c, the partial fraction decomposition includes

B1x+ C1

ax2 + bx+ c
+

B2x+ C2

(ax2 + bx+ c)2 + . . .+
Bmx+ Cm

(ax2 + bx+ c)m

for real numbers B1, B2, . . .Bm and C1, C2, . . .Cm.

aIn other words, R(x) is a proper rational function.

The proof of Theorem 8.10 is best left to a course in Abstract Algebra. Notice that the theorem
provides for the general case, so we need to use subscripts, A1, A2, etc., to denote different unknown
coefficients as opposed to the usual convention of A, B, etc.. The stress on multiplicities is to help
us correctly group factors in the denominator. For example, consider the rational function

3x− 1

(x2 − 1) (2− x− x2)

Factoring the denominator to find the zeros, we get (x+ 1)(x− 1)(1− x)(2 + x). We find x = −1
and x = −2 are zeros of multiplicity one but that x = 1 is a zero of multiplicity two due to the two
different factors (x− 1) and (1− x). One way to handle this is to note that (1− x) = −(x− 1) so

3x− 1

(x+ 1)(x− 1)(1− x)(2 + x)
=

3x− 1

−(x− 1)2(x+ 1)(x+ 2)
=

1− 3x

(x− 1)2(x+ 1)(x+ 2)

from which we proceed with the partial fraction decomposition

1− 3x

(x− 1)2(x+ 1)(x+ 2)
=

A

x− 1
+

B

(x− 1)2
+

C

x+ 1
+

D

x+ 2

Turning our attention to non-real zeros, we note that the tool of choice to determine the irreducibil-
ity of a quadratic ax2 + bx+ c is the discriminant, b2− 4ac. If b2− 4ac < 0, the quadratic admits a
pair of non-real complex conjugate zeros. Even though one irreducible quadratic gives two distinct
non-real zeros, we list the terms with denominators involving a given irreducible quadratic only
once to avoid duplication in the form of the decomposition. The trick, of course, is factoring the
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8.6 Partial Fraction Decomposition 631

denominator or otherwise finding the zeros and their multiplicities in order to apply Theorem 8.10.
We recommend that the reader review the techniques set forth in Sections 3.3 and 3.4. Next, we
state a theorem that if two polynomials are equal, the corresponding coefficients of the like powers
of x are equal. This is the principal by which we shall determine the unknown coefficients in our
partial fraction decomposition.

Theorem 8.11. Suppose

anx
n + an−1x

n−1 + · · ·+ a2x
2 + a1x+ a0 = bmx

m +mm−1x
m−1 + · · ·+ b2x

2 + b1x+ b0

for all x in an open interval I. Then n = m and ai = bi for all i = 1 . . . n.

Believe it or not, the proof of Theorem 8.11 is a consequence of Theorem 3.14. Define p(x) to be
the difference of the left hand side of the equation in Theorem 8.11 and the right hand side. Then
p(x) = 0 for all x in the open interval I. If p(x) were a nonzero polynomial of degree k, then, by
Theorem 3.14, p could have at most k zeros in I, and k is a finite number. Since p(x) = 0 for all
the x in I, p has infinitely many zeros, and hence, p is the zero polynomial. This means there can
be no nonzero terms in p(x) and the theorem follows. Arguably, the best way to make sense of
either of the two preceding theorems is to work some examples.

Example 8.6.1. Resolve the following rational functions into partial fractions.

1. R(x) =
x+ 5

2x2 − x− 1
2. R(x) =

3

x3 − 2x2 + x
3. R(x) =

3

x3 − x2 + x

4. R(x) =
4x3

x2 − 2
5. R(x) =

x3 + 5x− 1

x4 + 6x2 + 9
6. R(x) =

8x2

x4 + 16

Solution.

1. We begin by factoring the denominator to find 2x2−x− 1 = (2x+ 1)(x− 1). We get x = −1
2

and x = 1 are both zeros of multiplicity one and thus we know

x+ 5

2x2 − x− 1
=

x+ 5

(2x+ 1)(x− 1)
=

A

2x+ 1
+

B

x− 1

Clearing denominators, we get x+5 = A(x−1)+B(2x+1) so that x+5 = (A+2B)x+B−A.
Equating coefficients, we get the system{

A+ 2B = 1
−A+B = 5

This system is readily handled using the Addition Method from Section 8.1, and after adding
both equations, we get 3B = 6 so B = 2. Using back substitution, we find A = −3. Our
answer is easily checked by getting a common denominator and adding the fractions.

x+ 5

2x2 − x− 1
=

2

x− 1
− 3

2x+ 1
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632 Systems of Equations and Matrices

2. Factoring the denominator gives x3−2x2 +x = x
(
x2 − 2x+ 1

)
= x(x−1)2 which gives x = 0

as a zero of multiplicity one and x = 1 as a zero of multiplicity two. We have

3

x3 − 2x2 + x
=

3

x(x− 1)2
=
A

x
+

B

x− 1
+

C

(x− 1)2

Clearing denominators, we get 3 = A(x − 1)2 + Bx(x − 1) + Cx, which, after gathering up
the like terms becomes 3 = (A+B)x2 + (−2A−B + C)x+A. Our system is

A+B = 0
−2A−B + C = 0

A = 3

Substituting A = 3 into A + B = 0 gives B = −3, and substituting both for A and B in
−2A−B + C = 0 gives C = 3. Our final answer is

3

x3 − 2x2 + x
=

3

x
− 3

x− 1
+

3

(x− 1)2

3. The denominator factors as x
(
x2 − x+ 1

)
. We see immediately that x = 0 is a zero of

multiplicity one, but the zeros of x2 − x+ 1 aren’t as easy to discern. The quadratic doesn’t
factor easily, so we check the discriminant and find it to be (−1)2 − 4(1)(1) = −3 < 0. We
find its zeros are not real so it is an irreducible quadratic. The form of the partial fraction
decomposition is then

3

x3 − x2 + x
=

3

x (x2 − x+ 1)
=
A

x
+

Bx+ C

x2 − x+ 1

Proceeding as usual, we clear denominators and get 3 = A
(
x2 − x+ 1

)
+ (Bx + C)x or

3 = (A+B)x2 + (−A+ C)x+A. We get
A+B = 0
−A+ C = 0

A = 3

From A = 3 and A+B = 0, we get B = −3. From −A+ C = 0, we get C = A = 3. We get

3

x3 − x2 + x
=

3

x
+

3− 3x

x2 − x+ 1

4. Since 4x3

x2−2
isn’t proper, we use long division and we get a quotient of 4x with a remainder of

8x. That is, 4x3

x2−2
= 4x+ 8x

x2−2
so we now work on resolving 8x

x2−2
into partial fractions. The

quadratic x2−2, though it doesn’t factor nicely, is, nevertheless, reducible. Solving x2−2 = 0
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8.6 Partial Fraction Decomposition 633

gives us x = ±
√

2, and each of these zeros must be of multiplicity one since Theorem 3.14
enables us to now factor x2 − 2 =

(
x−
√

2
) (
x+
√

2
)
. Hence,

8x

x2 − 2
=

8x(
x−
√

2
) (
x+
√

2
) =

A

x−
√

2
+

B

x+
√

2

Clearing fractions, we get 8x = A
(
x+
√

2
)

+ B
(
x−
√

2
)

or 8x = (A + B)x + (A − B)
√

2.
We get the system {

A+B = 8

(A−B)
√

2 = 0

From (A − B)
√

2 = 0, we get A = B, which, when substituted into A + B = 8 gives B = 4.
Hence, A = B = 4 and we get

4x3

x2 − 2
= 4x+

8x

x2 − 2
= 4x+

4

x+
√

2
+

4

x−
√

2

5. At first glance, the denominator D(x) = x4 + 6x2 + 9 appears irreducible. However, D(x) has
three terms, and the exponent on the first term is exactly twice that of the second. Rewriting
D(x) =

(
x2
)2

+ 6x2 + 9, we see it is a quadratic in disguise and factor D(x) =
(
x2 + 3

)2
.

Since x2 + 3 clearly has no real zeros, it is irreducible and the form of the decomposition is

x3 + 5x− 1

x4 + 6x2 + 9
=
x3 + 5x− 1

(x2 + 3)2 =
Ax+B

x2 + 3
+

Cx+D

(x2 + 3)2

When we clear denominators, we find x3 + 5x− 1 = (Ax+B)
(
x2 + 3

)
+Cx+D which yields

x3 + 5x− 1 = Ax3 +Bx2 + (3A+ C)x+ 3B +D. Our system is
A = 1
B = 0

3A+ C = 5
3B +D = −1

We have A = 1 and B = 0 from which we get C = 2 and D = −1. Our final answer is

x3 + 5x− 1

x4 + 6x2 + 9
=

x

x2 + 3
+

2x− 1

(x2 + 3)2

6. Once again, the difficulty in our last example is factoring the denominator. In an attempt to
get a quadratic in disguise, we write

x4 + 16 =
(
x2
)2

+ 42 =
(
x2
)2

+ 8x2 + 42 − 8x2 =
(
x2 + 4

)2 − 8x2
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634 Systems of Equations and Matrices

and obtain a difference of two squares:
(
x2 + 4

)2
and 8x2 =

(
2x
√

2
)2

. Hence,

x4 + 16 =
(
x2 + 4− 2x

√
2
)(

x2 + 4 + 2x
√

2
)

=
(
x2 − 2x

√
2 + 4

)(
x2 + 2x

√
2 + 4

)
The discrimant of both of these quadratics works out to be −8 < 0, which means they are
irreducible. We leave it to the reader to verify that, despite having the same discriminant,
these quadratics have different zeros. The partial fraction decomposition takes the form

8x2

x4 + 16
=

8x2(
x2 − 2x

√
2 + 4

) (
x2 + 2x

√
2 + 4

) =
Ax+B

x2 − 2x
√

2 + 4
+

Cx+D

x2 + 2x
√

2 + 4

We get 8x2 = (Ax+B)
(
x2 + 2x

√
2 + 4

)
+ (Cx+D)

(
x2 − 2x

√
2 + 4

)
or

8x2 = (A+ C)x3 + (2A
√

2 +B − 2C
√

2 +D)x2 + (4A+ 2B
√

2 + 4C − 2D
√

2)x+ 4B + 4D

which gives the system 
A+ C = 0

2A
√

2 +B − 2C
√

2 +D = 8

4A+ 2B
√

2 + 4C − 2D
√

2 = 0
4B + 4D = 0

We choose substitution as the weapon of choice to solve this system. From A + C = 0, we
get A = −C; from 4B + 4D = 0, we get B = −D. Substituting these into the remaining two
equations, we get {

−2C
√

2−D − 2C
√

2 +D = 8

−4C − 2D
√

2 + 4C − 2D
√

2 = 0

or {
−4C

√
2 = 8

−4D
√

2 = 0

We get C = −
√

2 so that A = −C =
√

2 and D = 0 which means B = −D = 0. We get

8x2

x4 + 16
=

x
√

2

x2 − 2x
√

2 + 4
− x

√
2

x2 + 2x
√

2 + 4
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8.6 Partial Fraction Decomposition 635

8.6.1 Exercises

In Exercises 1 - 6, find only the form needed to begin the process of partial fraction decomposition.
Do not create the system of linear equations or attempt to find the actual decomposition.

1.
7

(x− 3)(x+ 5)
2.

5x+ 4

x(x− 2)(2− x)

3.
m

(7x− 6)(x2 + 9) 4.
ax2 + bx+ c

x3(5x+ 9)(3x2 + 7x+ 9)

5.
A polynomial of degree < 9

(x+ 4)5(x2 + 1)2
6.

A polynomial of degree < 7

x(4x− 1)2(x2 + 5)(9x2 + 16)

In Exercises 7 - 18, find the partial fraction decomposition of the following rational expressions.

7.
2x

x2 − 1
8.

−7x+ 43

3x2 + 19x− 14

9.
11x2 − 5x− 10

5x3 − 5x2
10.

−2x2 + 20x− 68

x3 + 4x2 + 4x+ 16

11.
−x2 + 15

4x4 + 40x2 + 36
12.

−21x2 + x− 16

3x3 + 4x2 − 3x+ 2

13.
5x4 − 34x3 + 70x2 − 33x− 19

(x− 3)2
14.

x6 + 5x5 + 16x4 + 80x3 − 2x2 + 6x− 43

x3 + 5x2 + 16x+ 80

15.
−7x2 − 76x− 208

x3 + 18x2 + 108x+ 216
16.
−10x4 + x3 − 19x2 + x− 10

x5 + 2x3 + x

17.
4x3 − 9x2 + 12x+ 12

x4 − 4x3 + 8x2 − 16x+ 16
18.

2x2 + 3x+ 14

(x2 + 2x+ 9)(x2 + x+ 5)

19. As we stated at the beginning of this section, the technique of resolving a rational function
into partial fractions is a skill needed for Calculus. However, we hope to have shown you that
it is worth doing if, for no other reason, it reinforces a hefty amount of algebra. One of the
common algebraic errors the authors find students make is something along the lines of

8

x2 − 9
6= 8

x2
− 8

9

Think about why if the above were true, this section would have no need to exist.
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8.6.2 Answers

1.
A

x− 3
+

B

x+ 5
2.

A

x
+

B

x− 2
+

C

(x− 2)2

3.
A

7x− 6
+
Bx+ C

x2 + 9
4.

A

x
+
B

x2
+
C

x3
+

D

5x+ 9
+

Ex+ F

3x2 + 7x+ 9

5.
A

x+ 4
+

B

(x+ 4)2
+

C

(x+ 4)3
+

D

(x+ 4)4
+

E

(x+ 4)5
+
Fx+G

x2 + 1
+

Hx+ I

(x2 + 1)2

6.
A

x
+

B

4x− 1
+

C

(4x− 1)2
+
Dx+ E

x2 + 5
+
Fx+G

9x2 + 16

7.
2x

x2 − 1
=

1

x+ 1
+

1

x− 1

8.
−7x+ 43

3x2 + 19x− 14
=

5

3x− 2
− 4

x+ 7

9.
11x2 − 5x− 10

5x3 − 5x2
=

3

x
+

2

x2
− 4

5(x− 1)

10.
−2x2 + 20x− 68

x3 + 4x2 + 4x+ 16
= − 9

x+ 4
+

7x− 8

x2 + 4

11.
−x2 + 15

4x4 + 40x2 + 36
=

1

2(x2 + 1)
− 3

4(x2 + 9)

12.
−21x2 + x− 16

3x3 + 4x2 − 3x+ 2
= − 6

x+ 2
− 3x+ 5

3x2 − 2x+ 1

13.
5x4 − 34x3 + 70x2 − 33x− 19

(x− 3)2
= 5x2 − 4x+ 1 +

9

x− 3
− 1

(x− 3)2

14.
x6 + 5x5 + 16x4 + 80x3 − 2x2 + 6x− 43

x3 + 5x2 + 16x+ 80
= x3 +

x+ 1

x2 + 16
− 3

x+ 5

15.
−7x2 − 76x− 208

x3 + 18x2 + 108x+ 216
= − 7

x+ 6
+

8

(x+ 6)2
− 4

(x+ 6)3

16.
−10x4 + x3 − 19x2 + x− 10

x5 + 2x3 + x
= −10

x
+

1

x2 + 1
+

x

(x2 + 1)2

17.
4x3 − 9x2 + 12x+ 12

x4 − 4x3 + 8x2 − 16x+ 16
=

1

x− 2
+

4

(x− 2)2
+

3x+ 1

x2 + 4

18.
2x2 + 3x+ 14

(x2 + 2x+ 9)(x2 + x+ 5)
=

1

x2 + 2x+ 9
+

1

x2 + x+ 5
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8.7 Systems of Non-Linear Equations and Inequalities

In this section, we study systems of non-linear equations and inequalities. Unlike the systems of
linear equations for which we have developed several algorithmic solution techniques, there is no
general algorithm to solve systems of non-linear equations. Moreover, all of the usual hazards of
non-linear equations like extraneous solutions and unusual function domains are once again present.
Along with the tried and true techniques of substitution and elimination, we shall often need equal
parts tenacity and ingenuity to see a problem through to the end. You may find it necessary to
review topics throughout the text which pertain to solving equations involving the various functions
we have studied thus far. To get the section rolling we begin with a fairly routine example.

Example 8.7.1. Solve the following systems of equations. Verify your answers algebraically and
graphically.

1.

{
x2 + y2 = 4

4x2 + 9y2 = 36

2.

{
x2 + y2 = 4

4x2 − 9y2 = 36

3.

{
x2 + y2 = 4
y − 2x = 0

4.

{
x2 + y2 = 4
y − x2 = 0

Solution:

1. Since both equations contain x2 and y2 only, we can eliminate one of the variables as we did
in Section 8.1.

{
(E1) x2 + y2 = 4
(E2) 4x2 + 9y2 = 36

Replace E2 with−−−−−−−−−−→
−4E1 + E2

{
(E1) x2 + y2 = 4
(E2) 5y2 = 20

From 5y2 = 20, we get y2 = 4 or y = ±2. To find the associated x values, we substitute each
value of y into one of the equations to find the resulting value of x. Choosing x2 + y2 = 4,
we find that for both y = −2 and y = 2, we get x = 0. Our solution is thus {(0, 2), (0,−2)}.
To check this algebraically, we need to show that both points satisfy both of the original
equations. We leave it to the reader to verify this. To check our answer graphically, we sketch
both equations and look for their points of intersection. The graph of x2 + y2 = 4 is a circle
centered at (0, 0) with a radius of 2, whereas the graph of 4x2 +9y2 = 36, when written in the

standard form x2

9 + y2

4 = 1 is easily recognized as an ellipse centered at (0, 0) with a major
axis along the x-axis of length 6 and a minor axis along the y-axis of length 4. We see from
the graph that the two curves intersect at their y-intercepts only, (0,±2).

2. We proceed as before to eliminate one of the variables

{
(E1) x2 + y2 = 4
(E2) 4x2 − 9y2 = 36

Replace E2 with−−−−−−−−−−→
−4E1 + E2

{
(E1) x2 + y2 = 4
(E2) −13y2 = 20
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Since the equation −13y2 = 20 admits no real solution, the system is inconsistent. To verify
this graphically, we note that x2 + y2 = 4 is the same circle as before, but when writing the

second equation in standard form, x
2

9 −
y2

4 = 1, we find a hyperbola centered at (0, 0) opening
to the left and right with a transverse axis of length 6 and a conjugate axis of length 4. We
see that the circle and the hyperbola have no points in common.

x

y

−3 −2 −1 1 2 3

−1

1

x

y

−3 −2 −1 1 2 3

−1

1

Graphs for

{
x2 + y2 = 4

4x2 + 9y2 = 36
Graphs for

{
x2 + y2 = 4

4x2 − 9y2 = 36

3. Since there are no like terms among the two equations, elimination won’t do us any good.
We turn to substitution and from the equation y − 2x = 0, we get y = 2x. Substituting this

into x2 + y2 = 4 gives x2 + (2x)2 = 4. Solving, we find 5x2 = 4 or x = ±2
√

5
5 . Returning

to the equation we used for the substitution, y = 2x, we find y = 4
√

5
5 when x = 2

√
5

5 , so

one solution is
(

2
√

5
5 , 4

√
5

5

)
. Similarly, we find the other solution to be

(
−2
√

5
5 ,−4

√
5

5

)
. We

leave it to the reader that both points satisfy both equations, so that our final answer is{(
2
√

5
5 , 4

√
5

5

)
,
(
−2
√

5
5 ,−4

√
5

5

)}
. The graph of x2 + y2 = 4 is our circle from before and the

graph of y − 2x = 0 is a line through the origin with slope 2. Though we cannot verify the
numerical values of the points of intersection from our sketch, we do see that we have two
solutions: one in Quadrant I and one in Quadrant III as required.

4. While it may be tempting to solve y − x2 = 0 as y = x2 and substitute, we note that this
system is set up for elimination.1

{
(E1) x2 + y2 = 4
(E2) y − x2 = 0

Replace E2 with−−−−−−−−−−→
E1 + E2

{
(E1) x2 + y2 = 4
(E2) y2 + y = 4

From y2 + y = 4 we get y2 + y − 4 = 0 which gives y = −1±
√

17
2 . Due to the complicated

nature of these answers, it is worth our time to make a quick sketch of both equations to head
off any extraneous solutions we may encounter. We see that the circle x2 + y2 = 4 intersects
the parabola y = x2 exactly twice, and both of these points have a positive y value. Of the

two solutions for y, only y = −1+
√

17
2 is positive, so to get our solution, we substitute this

1We encourage the reader to solve the system using substitution to see that you get the same solution.
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into y − x2 = 0 and solve for x. We get x = ±
√
−1+

√
17

2 = ±
√
−2+2

√
17

2 . Our solution is{(√
−2+2

√
17

2 , −1+
√

17
2

)
,

(
−
√
−2+2

√
17

2 , −1+
√

17
2

)}
, which we leave to the reader to verify.

x

y

−3 −2 −1 1 2 3

1

x

y

−3 −2 −1 1 2 3

−1

1

Graphs for

{
x2 + y2 = 4
y − 2x = 0

Graphs for

{
x2 + y2 = 4
y − x2 = 36

A couple of remarks about Example 8.7.1 are in order. First note that, unlike systems of linear
equations, it is possible for a system of non-linear equations to have more than one solution without
having infinitely many solutions. In fact, while we characterize systems of nonlinear equations as
being ‘consistent’ or ‘inconsistent,’ we generally don’t use the labels ‘dependent’ or ‘independent’.
Secondly, as we saw with number 4, sometimes making a quick sketch of the problem situation can
save a lot of time and effort. While in general the curves in a system of non-linear equations may
not be easily visualized, it sometimes pays to take advantage when they are. Our next example
provides some considerable review of many of the topics introduced in this text.

Example 8.7.2. Solve the following systems of equations. Verify your answers algebraically and
graphically, as appropriate.

1.

{
x2 + 2xy − 16 = 0
y2 + 2xy − 16 = 0

2.

{
y + 4e2x = 1
y2 + 2ex = 1 3.


z(x− 2) = x

yz = y
(x− 2)2 + y2 = 1

Solution.

1. At first glance, it doesn’t appear as though elimination will do us any good since it’s clear
that we cannot completely eliminate one of the variables. The alternative, solving one of
the equations for one variable and substituting it into the other, is full of unpleasantness.
Returning to elimination, we note that it is possible to eliminate the troublesome xy term,
and the constant term as well, by elimination and doing so we get a more tractable relationship
between x and y

{
(E1) x2 + 2xy − 16 = 0
(E2) y2 + 2xy − 16 = 0

Replace E2 with−−−−−−−−−−→
−E1 + E2

{
(E1) x2 + 2xy − 16 = 0
(E2) y2 − x2 = 0
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We get y2 − x2 = 0 or y = ±x. Substituting y = x into E1 we get x2 + 2x2 − 16 = 0 so

that x2 = 16
3 or x = ±4

√
3

3 . On the other hand, when we substitute y = −x into E1, we get

x2 − 2x2 − 16 = 0 or x2 = −16 which gives no real solutions. Substituting each of x = ±4
√

3
3

into the substitution equation y = x yields the solution
{(

4
√

3
3 , 4

√
3

3

)
,
(
−4
√

3
3 ,−4

√
3

3

)}
. We

leave it to the reader to show that both points satisfy both equations and now turn to verifying
our solution graphically. We begin by solving x2+2xy−16 = 0 for y to obtain y = 16−x2

2x . This
function is easily graphed using the techniques of Section 4.2. Solving the second equation,
y2 + 2xy − 16 = 0, for y, however, is more complicated. We use the quadratic formula to
obtain y = −x±

√
x2 + 16 which would require the use of Calculus or a calculator to graph.

Believe it or not, we don’t need either because the equation y2 +2xy−16 = 0 can be obtained
from the equation x2 + 2xy − 16 = 0 by interchanging y and x. Thinking back to Section
5.2, this means we can obtain the graph of y2 + 2xy − 16 = 0 by reflecting the graph of
x2 + 2xy − 16 = 0 across the line y = x. Doing so confirms that the two graphs intersect
twice: once in Quadrant I, and once in Quadrant III as required.

x

y

−4 −3 −2 −1 1 2 3 4

−4

−3

−2

−1

1

2

3

4

The graphs of x2 + 2xy − 16 = 0 and y2 + 2xy − 16 = 0

2. Unlike the previous problem, there seems to be no avoiding substitution and a bit of algebraic
unpleasantness. Solving y+ 4e2x = 1 for y, we get y = 1− 4e2x which, when substituted into
the second equation, yields

(
1− 4e2x

)2
+ 2ex = 1. After expanding and gathering like terms,

we get 16e4x− 8e2x + 2ex = 0. Factoring gives us 2ex
(
8e3x − 4ex + 1

)
= 0, and since 2ex 6= 0

for any real x, we are left with solving 8e3x − 4ex + 1 = 0. We have three terms, and even
though this is not a ‘quadratic in disguise’, we can benefit from the substitution u = ex. The
equation becomes 8u3−4u+1 = 0. Using the techniques set forth in Section 3.3, we find u = 1

2
is a zero and use synthetic division to factor the left hand side as

(
u− 1

2

) (
8u2 + 4u− 2

)
. We

use the quadratic formula to solve 8u2 + 4u − 2 = 0 and find u = −1±
√

5
4 . Since u = ex, we

now must solve ex = 1
2 and ex = −1±

√
5

4 . From ex = 1
2 , we get x = ln

(
1
2

)
= − ln(2). As

for ex = −1±
√

5
4 , we first note that −1−

√
5

4 < 0, so ex = −1−
√

5
4 has no real solutions. We are
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left with ex = −1+
√

5
4 , so that x = ln

(
−1+

√
5

4

)
. We now return to y = 1 − 4e2x to find the

accompanying y values for each of our solutions for x. For x = − ln(2), we get

y = 1− 4e2x

= 1− 4e−2 ln(2)

= 1− 4eln( 1
4)

= 1− 4
(

1
4

)
= 0

For x = ln
(
−1+

√
5

4

)
, we have

y = 1− 4e2x

= 1− 4e
2 ln
(
−1+

√
5

4

)
= 1− 4e

ln
(
−1+

√
5

4

)2

= 1− 4
(
−1+

√
5

4

)2

= 1− 4
(

3−
√

5
8

)
= −1+

√
5

2

We get two solutions,
{

(0,− ln(2)),
(

ln
(
−1+

√
5

4

)
, −1+

√
5

2

)}
. It is a good review of the prop-

erties of logarithms to verify both solutions, so we leave that to the reader. We are able to
sketch y = 1 − 4e2x using transformations, but the second equation is more difficult and we
resort to the calculator. We note that to graph y2 + 2ex = 1, we need to graph both the
positive and negative roots, y = ±

√
1− 2ex. After some careful zooming,2 we get

The graphs of y = 1− 4e2x and y = ±
√

1− 2ex.

3. Our last system involves three variables and gives some insight on how to keep such systems
organized. Labeling the equations as before, we have

2The calculator has trouble confirming the solution (− ln(2), 0) due to its issues in graphing square root functions.
If we mentally connect the two branches of the thicker curve, we see the intersection.
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E1 z(x− 2) = x
E2 yz = y
E3 (x− 2)2 + y2 = 1

The easiest equation to start with appears to be E2. While it may be tempting to divide
both sides of E2 by y, we caution against this practice because it presupposes y 6= 0. Instead,
we take E2 and rewrite it as yz − y = 0 so y(z − 1) = 0. From this, we get two cases: y = 0
or z = 1. We take each case in turn.

Case 1: y = 0. Substituting y = 0 into E1 and E3, we get{
E1 z(x− 2) = x
E3 (x− 2)2 = 1

Solving E3 for x gives x = 1 or x = 3. Substituting these values into E1 gives z = −1 when
x = 1 and z = 3 when x = 3. We obtain two solutions, (1, 0,−1) and (3, 0, 3).

Case 2: z = 1. Substituting z = 1 into E1 and E3 gives us{
E1 (1)(x− 2) = x
E3 (1− 2)2 + y2 = 1

Equation E1 gives us x − 2 = x or −2 = 0, which is a contradiction. This means we have
no solution to the system in this case, even though E3 is solvable and gives y = 0. Hence,
our final answer is {(1, 0,−1), (3, 0, 3)}. These points are easy enough to check algebraically
in our three original equations, so that is left to the reader. As for verifying these solutions
graphically, they require plotting surfaces in three dimensions and looking for intersection
points. While this is beyond the scope of this book, we provide a snapshot of the graphs of
our three equations near one of the solution points, (1, 0,−1).

Example 8.7.2 showcases some of the ingenuity and tenacity mentioned at the beginning of the
section. Sometimes you just have to look at a system the right way to find the most efficient
method to solve it. Sometimes you just have to try something.
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We close this section discussing how non-linear inequalities can be used to describe regions in
the plane which we first introduced in Section 2.4. Before we embark on some examples, a little
motivation is in order. Suppose we wish to solve x2 < 4−y2. If we mimic the algorithms for solving
nonlinear inequalities in one variable, we would gather all of the terms on one side and leave a 0
on the other to obtain x2 + y2 − 4 < 0. Then we would find the zeros of the left hand side, that
is, where is x2 + y2 − 4 = 0, or x2 + y2 = 4. Instead of obtaining a few numbers which divide the
real number line into intervals, we get an equation of a curve, in this case, a circle, which divides
the plane into two regions - the ‘inside’ and ‘outside’ of the circle - with the circle itself as the
boundary between the two. Just like we used test values to determine whether or not an interval
belongs to the solution of the inequality, we use test points in the each of the regions to see which
of these belong to our solution set.3 We choose (0, 0) to represent the region inside the circle and
(0, 3) to represent the points outside of the circle. When we substitute (0, 0) into x2 + y2 − 4 < 0,
we get −4 < 4 which is true. This means (0, 0) and all the other points inside the circle are part of
the solution. On the other hand, when we substitute (0, 3) into the same inequality, we get 5 < 0
which is false. This means (0, 3) along with all other points outside the circle are not part of the
solution. What about points on the circle itself? Choosing a point on the circle, say (0, 2), we get
0 < 0, which means the circle itself does not satisfy the inequality.4 As a result, we leave the circle
dashed in the final diagram.

x

y

2

−2

−2 2

The solution to x2 < 4− y2

We put this technique to good use in the following example.

Example 8.7.3. Sketch the solution to the following nonlinear inequalities in the plane.

1. y2 − 4 ≤ x < y + 2 2.

{
x2 + y2 ≥ 4

x2 − 2x+ y2 − 2y ≤ 0

Solution.

1. The inequality y2 − 4 ≤ x < y + 2 is a compound inequality. It translates as y2 − 4 ≤ x
and x < y + 2. As usual, we solve each inequality and take the set theoretic intersection
to determine the region which satisfies both inequalities. To solve y2 − 4 ≤ x, we write

3The theory behind why all this works is, surprisingly, the same theory which guarantees that sign diagrams work
the way they do - continuity and the Intermediate Value Theorem - but in this case, applied to functions of more
than one variable.

4Another way to see this is that points on the circle satisfy x2 + y2− 4 = 0, so they do not satisfy x2 + y2− 4 < 0.
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y2 − x − 4 ≤ 0. The curve y2 − x − 4 = 0 describes a parabola since exactly one of the
variables is squared. Rewriting this in standard form, we get y2 = x+ 4 and we see that the
vertex is (−4, 0) and the parabola opens to the right. Using the test points (−5, 0) and (0, 0),
we find that the solution to the inequality includes the region to the right of, or ‘inside’, the
parabola. The points on the parabola itself are also part of the solution, since the vertex
(−4, 0) satisfies the inequality. We now turn our attention to x < y+2. Proceeding as before,
we write x− y − 2 < 0 and focus our attention on x− y − 2 = 0, which is the line y = x− 2.
Using the test points (0, 0) and (0,−4), we find points in the region above the line y = x− 2
satisfy the inequality. The points on the line y = x − 2 do not satisfy the inequality, since
the y-intercept (0,−2) does not. We see that these two regions do overlap, and to make the
graph more precise, we seek the intersection of these two curves. That is, we need to solve
the system of nonlinear equations

{
(E1) y2 = x+ 4
(E2) y = x− 2

Solving E1 for x, we get x = y2 − 4. Substituting this into E2 gives y = y2 − 4 − 2, or
y2 − y − 6 = 0. We find y = −2 and y = 3 and since x = y2 − 4, we get that the graphs
intersect at (0,−2) and (5, 3). Putting all of this together, we get our final answer below.

x

y

−5−4

−3

3

x

y

2 3 4 5

−3

x

y

−5−4 2 3 4 5

−3

y2 − 4 ≤ x x < y + 2 y2 − 4 ≤ x < y + 2

2. To solve this system of inequalities, we need to find all of the points (x, y) which satisfy
both inequalities. To do this, we solve each inequality separately and take the set theoretic
intersection of the solution sets. We begin with the inequality x2 +y2 ≥ 4 which we rewrite as
x2 + y2− 4 ≥ 0. The points which satisfy x2 + y2− 4 = 0 form our friendly circle x2 + y2 = 4.
Using test points (0, 0) and (0, 3) we find that our solution comprises the region outside the
circle. As far as the circle itself, the point (0, 2) satisfies the inequality, so the circle itself
is part of the solution set. Moving to the inequality x2 − 2x + y2 − 2y ≤ 0, we start with
x2 − 2x + y2 − 2y = 0. Completing the squares, we obtain (x − 1)2 + (y − 1)2 = 2, which is
a circle centered at (1, 1) with a radius of

√
2. Choosing (1, 1) to represent the inside of the

circle, (1, 3) as a point outside of the circle and (0, 0) as a point on the circle, we find that
the solution to the inequality is the inside of the circle, including the circle itself. Our final
answer, then, consists of the points on or outside of the circle x2 + y2 = 4 which lie on or
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inside the circle (x− 1)2 + (y− 1)2 = 2. To produce the most accurate graph, we need to find
where these circles intersect. To that end, we solve the system{

(E1) x2 + y2 = 4
(E2) x2 − 2x+ y2 − 2y = 0

We can eliminate both the x2 and y2 by replacing E2 with −E1 + E2. Doing so produces
−2x − 2y = −4. Solving this for y, we get y = 2 − x. Substituting this into E1 gives
x2 + (2− x)2 = 4 which simplifies to x2 + 4− 4x+ x2 = 4 or 2x2 − 4x = 0. Factoring yields
2x(x − 2) which gives x = 0 or x = 2. Substituting these values into y = 2 − x gives the
points (0, 2) and (2, 0). The intermediate graphs and final solution are below.

x

y

1

−1

1

x

y

−3 −2 −1 2

−3

−2

−1

2

3

x

y

−3 −2 −1 2

−3

−2

−1

2

3

x2 + y2 ≥ 4 x2 − 2x+ y2 − 2y ≤ 0 Solution to the system.
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8.7.1 Exercises

In Exercises 1 - 6, solve the given system of nonlinear equations. Sketch the graph of both equations
on the same set of axes to verify the solution set.

1.

{
x2 − y = 4
x2 + y2 = 4

2.

{
x2 + y2 = 4
x2 − y = 5

3.

{
x2 + y2 = 16

16x2 + 4y2 = 64

4.

{
x2 + y2 = 16

9x2 − 16y2 = 144
5.

{
x2 + y2 = 16

1
9y

2 − 1
16x

2 = 1
6.

{
x2 + y2 = 16
x− y = 2

In Exercises 9 - 15, solve the given system of nonlinear equations. Use a graph to help you avoid
any potential extraneous solutions.

7.

{
x2 − y2 = 1
x2 + 4y2 = 4

8.

{ √
x+ 1− y = 0
x2 + 4y2 = 4

9.

{
x+ 2y2 = 2
x2 + 4y2 = 4

10.

{
(x− 2)2 + y2 = 1

x2 + 4y2 = 4
11.

{
x2 + y2 = 25
y − x = 1

12.

{
x2 + y2 = 25

x2 + (y − 3)2 = 10

13.

{
y = x3 + 8
y = 10x− x2 14.

{
x2 − xy = 8
y2 − xy = 8

15.


x2 + y2 = 25

4x2 − 9y = 0
3y2 − 16x = 0

16. A certain bacteria culture follows the Law of Uninbited Growth, Equation 6.4. After 10
minutes, there are 10,000 bacteria. Five minutes later, there are 14,000 bacteria. How many
bacteria were present initially? How long before there are 50,000 bacteria?

Consider the system of nonlinear equations below
4

x
+

3

y
= 1

3

x
+

2

y
= −1

If we let u = 1
x and v = 1

y then the system becomes{
4u+ 3v = 1
3u+ 2v = −1

This associated system of linear equations can then be solved using any of the techniques presented
earlier in the chapter to find that u = −5 and v = 7. Thus x = 1

u = −1
5 and y = 1

v = 1
7 .

We say that the original system is linear in form because its equations are not linear but a few
substitutions reveal a structure that we can treat like a system of linear equations. Each system in
Exercises 17 - 19 is linear in form. Make the appropriate substitutions and solve for x and y.
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17.

{
4x3 + 3

√
y = 1

3x3 + 2
√
y = −1

18.

{
4ex + 3e−y = 1
3ex + 2e−y = −1

19.

{
4 ln(x) + 3y2 = 1
3 ln(x) + 2y2 = −1

20. Solve the following system 
x2 +

√
y + log2(z) = 6

3x2 − 2
√
y + 2 log2(z) = 5

−5x2 + 3
√
y + 4 log2(z) = 13

In Exercises 21 - 26, sketch the solution to each system of nonlinear inequalities in the plane.

21.

{
x2 − y2 ≤ 1
x2 + 4y2 ≥ 4

22.

{
x2 + y2 < 25

x2 + (y − 3)2 ≥ 10

23.

{
(x− 2)2 + y2 < 1

x2 + 4y2 < 4
24.

{
y > 10x− x2

y < x3 + 8

25.

{
x+ 2y2 > 2
x2 + 4y2 ≤ 4

26.

{
x2 + y2 ≥ 25
y − x ≤ 1

27. Systems of nonlinear equations show up in third semester Calculus in the midst of some really
cool problems. The system below came from a problem in which we were asked to find the
dimensions of a rectangular box with a volume of 1000 cubic inches that has minimal surface
area. The variables x, y and z are the dimensions of the box and λ is called a Lagrange
multiplier. With the help of your classmates, solve the system.5

2y + 2z = λyz
2x+ 2z = λxz
2y + 2x = λxy

xyz = 1000

28. According to Theorem 3.16 in Section 3.4, the polynomial p(x) = x4 + 4 can be factored into
the product linear and irreducible quadratic factors. In this exercise, we present a method
for obtaining that factorization.

(a) Show that p has no real zeros.

(b) Because p has no real zeros, its factorization must be of the form (x2+ax+b)(x2+cx+d)
where each factor is an irreducible quadratic. Expand this quantity and gather like terms
together.

(c) Create and solve the system of nonlinear equations which results from equating the
coefficients of the expansion found above with those of x4 + 4. You should get four
equations in the four unknowns a, b, c and d. Write p(x) in factored form.

29. Factor q(x) = x4 + 6x2 − 5x+ 6.

5If using λ bothers you, change it to w when you solve the system.
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8.7.2 Answers

1. (±2, 0),
(
±
√

3,−1
)

x

y

−2 −1 1 2

−4

−3

−2

−1

1

2

2. No solution

x

y

−2 −1 1 2

−4

−3

−2

−1

1

2

3. (0,±4)

x

y

−4−3−2−1 1 2 3 4

−4

−3

−2

−1

1

2

3

4

4. (±4, 0)

x

y

−6−5−4−3−2−1 1 2 3 4 5 6

−4

−3

−2

−1

1

2

3

4

5.
(
±4
√

7
5 ,±12

√
2

5

)

x

y

−4−3−2−1 1 2 3 4

−4

−3

−2

−1

1

2

3

4

6.
(
1 +
√

7,−1 +
√

7
)
,
(
1−
√

7,−1−
√

7
)

x

y

−4−3−2−1 1 2 3 4

−4

−3

−2

−1

1

2

3

4

7.
(
±2
√

10
5 ,±

√
15
5

)
8. (0, 1) 9. (0,±1), (2, 0)

10.
(

4
3 ,±

√
5

3

)
11. (3, 4), (−4,−3) 12. (±3, 4)

13. (−4,−56), (1, 9), (2, 16) 14. (−2, 2), (2,−2) 15. (3, 4)

16. Initially, there are 250000
49 ≈ 5102 bacteria. It will take 5 ln(49/5)

ln(7/5) ≈ 33.92 minutes for the colony
to grow to 50,000 bacteria.
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17.
(
− 3
√

5, 49
)

18. No solution 19.
(
e−5,±

√
7
)

20. (1, 4, 8), (−1, 4, 8)

21.

{
x2 − y2 ≤ 1
x2 + 4y2 ≥ 4

x

y

−2 −1 1 2

−2

−1

1

2

22.

{
x2 + y2 < 25

x2 + (y − 3)2 ≥ 10

x

y

−5−4−3−2−1 1 2 3 4 5

−5

−4

−3

−2

−1

1

2

3

4

23.

{
(x− 2)2 + y2 < 1

x2 + 4y2 < 4

x

y

1 2

−1

1

24.

{
y > 10x− x2

y < x3 + 8

x

y

−4−3−2−1 1 2

−56

9
16

25.

{
x+ 2y2 > 2
x2 + 4y2 ≤ 4

x

y

1 2

−1

1

26.

{
x2 + y2 ≥ 25
y − x ≤ 1

x

y

−5 −3 −1 1 3 5

−5

−3

1

3

5

7

27. x = 10, y = 10, z = 10, λ = 2
5

28. (c) x4 + 4 = (x2 − 2x+ 2)(x2 + 2x+ 2)

29. x4 + 6x2 − 5x+ 6 = (x2 − x+ 1)(x2 + x+ 6)
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Chapter 9

Sequences and the Binomial
Theorem

9.1 Sequences

When we first introduced a function as a special type of relation in Section 1.3, we did not put
any restrictions on the domain of the function. All we said was that the set of x-coordinates of the
points in the function F is called the domain, and it turns out that any subset of the real numbers,
regardless of how weird that subset may be, can be the domain of a function. As our exploration
of functions continued beyond Section 1.3, we saw fewer and fewer functions with ‘weird’ domains.
It is worth your time to go back through the text to see that the domains of the polynomial,
rational, exponential, logarithmic and algebraic functions discussed thus far have fairly predictable
domains which almost always consist of just a collection of intervals on the real line. This may lead
some readers to believe that the only important functions in a College Algebra text have domains
which consist of intervals and everything else was just introductory nonsense. In this section, we
introduce sequences which are an important class of functions whose domains are the set of natural
numbers.1 Before we get to far ahead of ourselves, let’s look at what the term ‘sequence’ means
mathematically. Informally, we can think of a sequence as an infinite list of numbers. For example,
consider the sequence

1

2
,−3

4
,
9

8
,−27

16
, . . . (1)

As usual, the periods of ellipsis, . . ., indicate that the proposed pattern continues forever. Each of
the numbers in the list is called a term, and we call 1

2 the ‘first term’, −3
4 the ‘second term’, 9

8 the
‘third term’ and so forth. In numbering them this way, we are setting up a function, which we’ll
call a per tradition, between the natural numbers and the terms in the sequence.

1Recall that this is the set {1, 2, 3, . . .}.
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652 Sequences and the Binomial Theorem

n a(n)

1 1
2

2 −3
4

3 9
8

4 −27
16

...
...

In other words, a(n) is the nth term in the sequence. We formalize these ideas in our definition of
a sequence and introduce some accompanying notation.

Definition 9.1. A sequence is a function a whose domain is the natural numbers. The value
a(n) is often written as an and is called the nth term of the sequence. The sequence itself is
usually denoted using the notation: an, n ≥ 1 or the notation: {an}∞n=1.

Applying the notation provided in Definition 9.1 to the sequence given (1), we have a1 = 1
2 , a2 = −3

4 ,
a3 = 9

8 and so forth. Now suppose we wanted to know a117, that is, the 117th term in the sequence.
While the pattern of the sequence is apparent, it would benefit us greatly to have an explicit formula
for an. Unfortunately, there is no general algorithm that will produce a formula for every sequence,
so any formulas we do develop will come from that greatest of teachers, experience. In other words,
it is time for an example.

Example 9.1.1. Write the first four terms of the following sequences.

1. an =
5n−1

3n
, n ≥ 1 2. bk =

(−1)k

2k + 1
, k ≥ 0

3. {2n− 1}∞n=1 4.

{
1 + (−1)i

i

}∞
i=2

5. a1 = 7, an+1 = 2− an, n ≥ 1 6. f0 = 1, fn = n · fn−1, n ≥ 1

Solution.

1. Since we are given n ≥ 1, the first four terms of the sequence are a1, a2, a3 and a4. Since
the notation a1 means the same thing as a(1), we obtain our first term by replacing every

occurrence of n in the formula for an with n = 1 to get a1 = 51−1

31 = 1
3 . Proceeding similarly,

we get a2 = 52−1

32 = 5
9 , a3 = 53−1

33 = 25
27 and a4 = 54−1

34 = 125
81 .

2. For this sequence we have k ≥ 0, so the first four terms are b0, b1, b2 and b3. Proceeding as
before, replacing in this case the variable k with the appropriate whole number, beginning

with 0, we get b0 = (−1)0

2(0)+1 = 1, b1 = (−1)1

2(1)+1 = −1
3 , b2 = (−1)2

2(2)+1 = 1
5 and b3 = (−1)3

2(3)+1 = −1
7 .

(This sequence is called an alternating sequence since the signs alternate between + and −.
The reader is encouraged to think what component of the formula is producing this effect.)
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9.1 Sequences 653

3. From {2n− 1}∞n=1, we have that an = 2n − 1, n ≥ 1. We get a1 = 1, a2 = 3, a3 = 5 and
a4 = 7. (The first four terms are the first four odd natural numbers. The reader is encouraged
to examine whether or not this pattern continues indefinitely.)

4. Here, we are using the letter i as a counter, not as the imaginary unit we saw in Section 3.4.

Proceeding as before, we set ai = 1+(−1)i

i , i ≥ 2. We find a2 = 1, a3 = 0, a4 = 1
2 and a5 = 0.

5. To obtain the terms of this sequence, we start with a1 = 7 and use the equation an+1 = 2−an
for n ≥ 1 to generate successive terms. When n = 1, this equation becomes a1 + 1 = 2 − a1

which simplifies to a2 = 2−a1 = 2−7 = −5. When n = 2, the equation becomes a2 + 1 = 2−a2

so we get a3 = 2 − a2 = 2 − (−5) = 7. Finally, when n = 3, we get a3 + 1 = 2 − a3 so
a4 = 2− a3 = 2− 7 = −5.

6. As with the problem above, we are given a place to start with f0 = 1 and given a formula
to build other terms of the sequence. Substituting n = 1 into the equation fn = n · fn−1,
we get f1 = 1 · f0 = 1 · 1 = 1. Advancing to n = 2, we get f2 = 2 · f1 = 2 · 1 = 2. Finally,
f3 = 3 · f2 = 3 · 2 = 6.

Some remarks about Example 9.1.1 are in order. We first note that since sequences are functions,
we can graph them in the same way we graph functions. For example, if we wish to graph the
sequence {bk}∞k=0 from Example 9.1.1, we graph the equation y = b(k) for the values k ≥ 0. That
is, we plot the points (k, b(k)) for the values of k in the domain, k = 0, 1, 2, . . .. The resulting
collection of points is the graph of the sequence. Note that we do not connect the dots in a pleasing
fashion as we are used to doing, because the domain is just the whole numbers in this case, not a
collection of intervals of real numbers. If you feel a sense of nostalgia, you should see Section 1.2.

x

y

1 2 3

− 3
2

−1

− 1
2

1
2

1

3
2

Graphing y = bk =
(−1)k

2k + 1
, k ≥ 0

Speaking of {bk}∞k=0, the astute and mathematically minded reader will correctly note that this
technically isn’t a sequence, since according to Definition 9.1, sequences are functions whose domains
are the natural numbers, not the whole numbers, as is the case with {bk}∞k=0. In other words, to
satisfy Definition 9.1, we need to shift the variable k so it starts at k = 1 instead of k = 0. To
see how we can do this, it helps to think of the problem graphically. What we want is to shift
the graph of y = b(k) to the right one unit, and thinking back to Section 1.7, we can accomplish
this by replacing k with k − 1 in the definition of {bk}∞k=0. Specifically, let ck = bk−1 where

k − 1 ≥ 0. We get ck = (−1)k−1

2(k−1)+1 = (−1)k−1

2k−1 , where now k ≥ 1. We leave to the reader to verify

that {ck}∞k=1 generates the same list of numbers as does {bk}∞k=0, but the former satisfies Definition
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654 Sequences and the Binomial Theorem

9.1, while the latter does not. Like so many things in this text, we acknowledge that this point
is pedantic and join the vast majority of authors who adopt a more relaxed view of Definition 9.1
to include any function which generates a list of numbers which can then be matched up with
the natural numbers.2 Finally, we wish to note the sequences in parts 5 and 6 are examples of
sequences described recursively. In each instance, an initial value of the sequence is given which
is then followed by a recursion equation − a formula which enables us to use known terms of
the sequence to determine other terms. The terms of the sequence in part 6 are given a special
name: fn = n! is called n-factorial. Using the ‘!’ notation, we can describe the factorial sequence
as: 0! = 1 and n! = n(n− 1)! for n ≥ 1. After 0! = 1 the next four terms, written out in detail, are
1! = 1 · 0! = 1 · 1 = 1, 2! = 2 · 1! = 2 · 1 = 2, 3! = 3 · 2! = 3 · 2 · 1 = 6 and 4! = 4 · 3! = 4 · 3 · 2 · 1 = 24.
From this, we see a more informal way of computing n!, which is n! = n · (n − 1) · (n − 2) · · · 2 · 1
with 0! = 1 as a special case. (We will study factorials in greater detail in Section 9.4.) The world
famous Fibonacci Numbers are defined recursively and are explored in the exercises. While none
of the sequences worked out to be the sequence in (1), they do give us some insight into what kinds
of patterns to look for. Two patterns in particular are given in the next definition.

Definition 9.2. Arithmetic and Geometric Sequences: Suppose {an}∞n=k is a sequencea

• If there is a number d so that an+1 = an + d for all n ≥ k, then {an}∞n=k is called an
arithmetic sequence. The number d is called the common difference.

• If there is a number r so that an+1 = ran for all n ≥ k, then {an}∞n=k is called an
geometric sequence. The number r is called the common ratio.

aNote that we have adjusted for the fact that not all ‘sequences’ begin at n = 1.

Both arithmetic and geometric sequences are defined in terms of recursion equations. In English,
an arithmetic sequence is one in which we proceed from one term to the next by always adding
the fixed number d. The name ‘common difference’ comes from a slight rewrite of the recursion
equation from an+1 = an + d to an+1 − an = d. Analogously, a geometric sequence is one in which
we proceed from one term to the next by always multiplying by the same fixed number r. If r 6= 0,
we can rearrange the recursion equation to get an+1

an
= r, hence the name ‘common ratio.’ Some

sequences are arithmetic, some are geometric and some are neither as the next example illustrates.3

Example 9.1.2. Determine if the following sequences are arithmetic, geometric or neither. If
arithmetic, find the common difference d; if geometric, find the common ratio r.

1. an =
5n−1

3n
, n ≥ 1 2. bk =

(−1)k

2k + 1
, k ≥ 0

3. {2n− 1}∞n=1 4.
1

2
,−3

4
,
9

8
,−27

16
, . . .

2We’re basically talking about the ‘countably infinite’ subsets of the real number line when we do this.
3Sequences which are both arithmetic and geometric are discussed in the Exercises.
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Solution. A good rule of thumb to keep in mind when working with sequences is “When in doubt,
write it out!” Writing out the first several terms can help you identify the pattern of the sequence
should one exist.

1. From Example 9.1.1, we know that the first four terms of this sequence are 1
3 ,

5
9 ,

25
27 and 125

81 .
To see if this is an arithmetic sequence, we look at the successive differences of terms. We
find that a2 − a1 = 5

9 −
1
3 = 2

9 and a3 − a2 = 25
27 −

5
9 = 10

27 . Since we get different numbers,
there is no ‘common difference’ and we have established that the sequence is not arithmetic.
To investigate whether or not it is geometric, we compute the ratios of successive terms. The
first three ratios

a2

a1

=
5
9
1
3

=
5

3
,

a3

a2

=
25
27
5
9

=
5

3
and

a4

a3

=
125
81
25
27

=
5

3

suggest that the sequence is geometric. To prove it, we must show that an+1

an
= r for all n.

an+1

an
=

5(n+1)−1

3n+1

5n−1

3n

=
5n

3n+1
· 3n

5n−1
=

5

3

This sequence is geometric with common ratio r = 5
3 .

2. Again, we have Example 9.1.1 to thank for providing the first four terms of this sequence:
1, −1

3 ,
1
5 and −1

7 . We find b1 − b0 = −4
3 and b2 − b1 = 8

15 . Hence, the sequence is not

arithmetic. To see if it is geometric, we compute b1
b0

= −1
3 and b2

b1
= −3

5 . Since there is no
‘common ratio,’ we conclude the sequence is not geometric, either.

3. As we saw in Example 9.1.1, the sequence {2n− 1}∞n=1 generates the odd numbers: 1, 3, 5, 7, . . ..
Computing the first few differences, we find a2 − a1 = 2, a3 − a2 = 2, and a4 − a3 = 2. This
suggests that the sequence is arithmetic. To verify this, we find

an+1 − an = (2(n+ 1)− 1)− (2n− 1) = 2n+ 2− 1− 2n+ 1 = 2

This establishes that the sequence is arithmetic with common difference d = 2. To see if it is
geometric, we compute a2

a1
= 3 and a3

a2
= 5

3 . Since these ratios are different, we conclude the
sequence is not geometric.

4. We met our last sequence at the beginning of the section. Given that a2 − a1 = −5
4 and

a3−a2 = 15
8 , the sequence is not arithmetic. Computing the first few ratios, however, gives us

a2
a1

= −3
2 , a3

a2
= −3

2 and a4
a3

= −3
2 . Since these are the only terms given to us, we assume that

the pattern of ratios continue in this fashion and conclude that the sequence is geometric.

We are now one step away from determining an explicit formula for the sequence given in (1). We
know that it is a geometric sequence and our next result gives us the explicit formula we require.
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656 Sequences and the Binomial Theorem

Equation 9.1. Formulas for Arithmetic and Geometric Sequences:

• An arithmetic sequence with first term a and common difference d is given by

an = a+ (n− 1)d, n ≥ 1

• A geometric sequence with first term a and common ratio r 6= 0 is given by

an = arn−1, n ≥ 1

While the formal proofs of the formulas in Equation 9.1 require the techniques set forth in Section
9.3, we attempt to motivate them here. According to Definition 9.2, given an arithmetic sequence
with first term a and common difference d, the way we get from one term to the next is by adding
d. Hence, the terms of the sequence are: a, a+ d, a+ 2d, a+ 3d, . . . . We see that to reach the nth
term, we add d to a exactly (n − 1) times, which is what the formula says. The derivation of the
formula for geometric series follows similarly. Here, we start with a and go from one term to the
next by multiplying by r. We get a, ar, ar2, ar3 and so forth. The nth term results from multiplying
a by r exactly (n− 1) times. We note here that the reason r = 0 is excluded from Equation 9.1 is
to avoid an instance of 00 which is an indeterminant form.4 With Equation 9.1 in place, we finally
have the tools required to find an explicit formula for the nth term of the sequence given in (1).
We know from Example 9.1.2 that it is geometric with common ratio r = −3

2 . The first term is

a = 1
2 so by Equation 9.1 we get an = arn−1 = 1

2

(
−3

2

)n−1
for n ≥ 1. After a touch of simplifying,

we get an = (−3)n−1

2n for n ≥ 1. Note that we can easily check our answer by substituting in values
of n and seeing that the formula generates the sequence given in (1). We leave this to the reader.
Our next example gives us more practice finding patterns.

Example 9.1.3. Find an explicit formula for the nth term of the following sequences.

1. 0.9, 0.09, 0.009, 0.0009, . . . 2.
2

5
, 2,−2

3
,−2

7
, . . . 3. 1,−2

7
,

4

13
,− 8

19
, . . .

Solution.

1. Although this sequence may seem strange, the reader can verify it is actually a geometric
sequence with common ratio r = 0.1 = 1

10 . With a = 0.9 = 9
10 , we get an = 9

10

(
1
10

)n−1
for

n ≥ 0. Simplifying, we get an = 9
10n , n ≥ 1. There is more to this sequence than meets the

eye and we shall return to this example in the next section.

2. As the reader can verify, this sequence is neither arithmetic nor geometric. In an attempt
to find a pattern, we rewrite the second term with a denominator to make all the terms
appear as fractions. We have 2

5 ,
2
1 ,−

2
3 ,−

2
7 , . . .. If we associate the negative ‘−’ of the last two

terms with the denominators we get 2
5 ,

2
1 ,

2
−3 ,

2
−7 , . . .. This tells us that we can tentatively

sketch out the formula for the sequence as an = 2
dn

where dn is the sequence of denominators.

4See the footnotes on page 237 in Section 3.1 and page 418 of Section 6.1.
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Looking at the denominators 5, 1,−3,−7, . . ., we find that they go from one term to the next
by subtracting 4 which is the same as adding −4. This means we have an arithmetic sequence
on our hands. Using Equation 9.1 with a = 5 and d = −4, we get the nth denominator by
the formula dn = 5 + (n− 1)(−4) = 9− 4n for n ≥ 1. Our final answer is an = 2

9−4n , n ≥ 1.

3. The sequence as given is neither arithmetic nor geometric, so we proceed as in the last problem
to try to get patterns individually for the numerator and denominator. Letting cn and dn
denote the sequence of numerators and denominators, respectively, we have an = cn

dn
. After

some experimentation,5 we choose to write the first term as a fraction and associate the
negatives ‘−’ with the numerators. This yields 1

1 ,
−2
7 ,

4
13 ,
−8
19 , . . .. The numerators form the

sequence 1,−2, 4,−8, . . . which is geometric with a = 1 and r = −2, so we get cn = (−2)n−1,
for n ≥ 1. The denominators 1, 7, 13, 19, . . . form an arithmetic sequence with a = 1 and
d = 6. Hence, we get dn = 1 + 6(n − 1) = 6n − 5, for n ≥ 1. We obtain our formula for

an = cn
dn

= (−2)n−1

6n−5 , for n ≥ 1. We leave it to the reader to show that this checks out.

While the last problem in Example 9.1.3 was neither geometric nor arithmetic, it did resolve into
a combination of these two kinds of sequences. If handed the sequence 2, 5, 10, 17, . . ., we would
be hard-pressed to find a formula for an if we restrict our attention to these two archetypes. We
said before that there is no general algorithm for finding the explicit formula for the nth term of
a given sequence, and it is only through experience gained from evaluating sequences from explicit
formulas that we learn to begin to recognize number patterns. The pattern 1, 4, 9, 16, . . . is rather
recognizable as the squares, so the formula an = n2, n ≥ 1 may not be too hard to determine.
With this in mind, it’s possible to see 2, 5, 10, 17, . . . as the sequence 1 + 1, 4 + 1, 9 + 1, 16 + 1, . . .,
so that an = n2 + 1, n ≥ 1. Of course, since we are given only a small sample of the sequence, we
shouldn’t be too disappointed to find out this isn’t the only formula which generates this sequence.
For example, consider the sequence defined by bn = −1

4n
4 + 5

2n
3 − 31

4 n
2 + 25

2 n − 5, n ≥ 1. The
reader is encouraged to verify that it also produces the terms 2, 5, 10, 17. In fact, it can be shown
that given any finite sample of a sequence, there are infinitely many explicit formulas all of which
generate those same finite points. This means that there will be infinitely many correct answers to
some of the exercises in this section.6 Just because your answer doesn’t match ours doesn’t mean
it’s wrong. As always, when in doubt, write your answer out. As long as it produces the same
terms in the same order as what the problem wants, your answer is correct.

Sequences play a major role in the Mathematics of Finance, as we have already seen with Equation
6.2 in Section 6.5. Recall that if we invest P dollars at an annual percentage rate r and compound
the interest n times per year, the formula for Ak, the amount in the account after k compounding

periods, is Ak = P
(
1 + r

n

)k
=
[
P
(
1 + r

n

)] (
1 + r

n

)k−1
, k ≥ 1. We now spot this as a geometric

sequence with first term P
(
1 + r

n

)
and common ratio

(
1 + r

n

)
. In retirement planning, it is seldom

the case that an investor deposits a set amount of money into an account and waits for it to
grow. Usually, additional payments of principal are made at regular intervals and the value of the
investment grows accordingly. This kind of investment is called an annuity and will be discussed
in the next section once we have developed more mathematical machinery.

5Here we take ‘experimentation’ to mean a frustrating guess-and-check session.
6For more on this, see When Every Answer is Correct: Why Sequences and Number Patterns Fail the Test.
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9.1.1 Exercises

In Exercises 1 - 13, write out the first four terms of the given sequence.

1. an = 2n − 1, n ≥ 0 2. dj = (−1)

j(j + 1)

2 , j ≥ 1

3. {5k − 2}∞k=1 4.

{
n2 + 1

n+ 1

}∞
n=0

5.

{
xn

n2

}∞
n=1

6.

{
ln(n)

n

}∞
n=1

7. a1 = 3, an+1 = an − 1, n ≥ 1 8. d0 = 12, dm =
dm-1

100
, m ≥ 1

9. b1 = 2, bk+1 = 3bk + 1, k ≥ 1 10. c0 = −2, cj =
cj-1

(j + 1)(j + 2)
, m ≥ 1

11. a1 = 117, an+1 =
1

an
, n ≥ 1 12. s0 = 1, sn+1 = xn+1 + sn, n ≥ 0

13. F0 = 1, F1 = 1, Fn = Fn-1 + Fn-2, n ≥ 2 (This is the famous Fibonacci Sequence )

In Exercises 14 - 21 determine if the given sequence is arithmetic, geometric or neither. If it is
arithmetic, find the common difference d; if it is geometric, find the common ratio r.

14. {3n− 5}∞n=1 15. an = n2 + 3n+ 2, n ≥ 1

16.
1

3
,

1

6
,

1

12
,

1

24
, . . . 17.

{
3

(
1

5

)n−1
}∞
n=1

18. 17, 5, −7, −19, . . . 19. 2, 22, 222, 2222, . . .

20. 0.9, 9, 90, 900, . . . 21. an =
n!

2
, n ≥ 0.

In Exercises 22 - 30, find an explicit formula for the nth term of the given sequence. Use the
formulas in Equation 9.1 as needed.

22. 3, 5, 7, 9, . . . 23. 1, −1

2
,

1

4
, −1

8
, . . . 24. 1,

2

3
,

4

5
,

8

7
, . . .

25. 1,
2

3
,

1

3
,

4

27
, . . . 26. 1,

1

4
,

1

9
,

1

16
, . . . 27. x, −x

3

3
,
x5

5
, −x

7

7
, . . .
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28. 0.9, 0.99, 0.999, 0.9999, . . . 29. 27, 64, 125, 216, . . . 30. 1, 0, 1, 0, . . .

31. Find a sequence which is both arithmetic and geometric. (Hint: Start with an = c for all n.)

32. Show that a geometric sequence can be transformed into an arithmetic sequence by taking
the natural logarithm of the terms.

33. Thomas Robert Malthus is credited with saying, “The power of population is indefinitely
greater than the power in the earth to produce subsistence for man. Population, when
unchecked, increases in a geometrical ratio. Subsistence increases only in an arithmetical
ratio. A slight acquaintance with numbers will show the immensity of the first power in
comparison with the second.” (See this webpage for more information.) Discuss this quote
with your classmates from a sequences point of view.

34. This classic problem involving sequences shows the power of geometric sequences. Suppose
that a wealthy benefactor agrees to give you one penny today and then double the amount
she gives you each day for 30 days. So, for example, you get two pennies on the second day
and four pennies on the third day. How many pennies do you get on the 30th day? What is
the total dollar value of the gift you have received?

35. Research the terms ‘arithmetic mean’ and ‘geometric mean.’ With the help of your classmates,
show that a given term of a arithmetic sequence ak, k ≥ 2 is the arithmetic mean of the
term immediately preceding, ak−1 it and immediately following it, ak+1. State and prove an
analogous result for geometric sequences.

36. Discuss with your classmates how the results of this section might change if we were to
examine sequences of other mathematical things like complex numbers or matrices. Find an
explicit formula for the nth term of the sequence i,−1,−i, 1, i, . . .. List out the first four terms
of the matrix sequences we discussed in Exercise 8.3.1 in Section 8.3.
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9.1.2 Answers

1. 0, 1, 3, 7 2. −1,−1, 1, 1

3. 3, 8, 13, 18 4. 1, 1, 5
3 ,

5
2

5. x, x
2

4 ,
x3

9 ,
x4

16 6. 0, ln(2)
2 , ln(3)

3 , ln(4)
4

7. 3, 2, 1, 0 8. 12, 0.12, 0.0012, 0.000012

9. 2, 7, 22, 67 10. −2,−1
3 ,−

1
36 ,−

1
720

11. 117, 1
117 , 117, 1

117 12. 1, x+ 1, x2 + x+ 1, x3 + x2 + x+ 1

13. 1, 1, 2, 3

14. arithmetic, d = 3 15. neither

16. geometric, r = 1
2 17. geometric, r = 1

5

18. arithmetic, d = −12 19. neither

20. geometric, r = 10 21. neither

22. an = 1 + 2n, n ≥ 1 23. an =
(
−1

2

)n−1
, n ≥ 1 24. an = 2n−1

2n−1 , n ≥ 1

25. an = n
3n−1 , n ≥ 1 26. an = 1

n2 , n ≥ 1 27. (−1)n−1x2n−1

2n−1 , n ≥ 1

28. an = 10n−1
10n , n ≥ 1 29. an = (n+ 2)3, n ≥ 1 30. an = 1+(−1)n−1

2 , n ≥ 1
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9.2 Summation Notation

In the previous section, we introduced sequences and now we shall present notation and theorems
concerning the sum of terms of a sequence. We begin with a definition, which, while intimidating,
is meant to make our lives easier.

Definition 9.3. Summation Notation: Given a sequence {an}∞n=k and numbers m and p
satisfying k ≤ m ≤ p, the summation from m to p of the sequence {an} is written

p∑
n=m

an = am + am+1 + . . .+ ap

The variable n is called the index of summation. The number m is called the lower limit of
summation while the number p is called the upper limit of summation.

In English, Definition 9.3 is simply defining a short-hand notation for adding up the terms of the
sequence {an}∞n=k from am through ap. The symbol Σ is the capital Greek letter sigma and is
shorthand for ‘sum’. The lower and upper limits of the summation tells us which term to start
with and which term to end with, respectively. For example, using the sequence an = 2n − 1 for
n ≥ 1, we can write the sum a3 + a4 + a5 + a6 as

6∑
n=3

(2n− 1) = (2(3)− 1) + (2(4)− 1) + (2(5)− 1) + (2(6)− 1)

= 5 + 7 + 9 + 11
= 32

The index variable is considered a ‘dummy variable’ in the sense that it may be changed to any
letter without affecting the value of the summation. For instance,

6∑
n=3

(2n− 1) =
6∑

k=3

(2k − 1) =
6∑
j=3

(2j − 1)

One place you may encounter summation notation is in mathematical definitions. For example,
summation notation allows us to define polynomials as functions of the form

f(x) =
n∑
k=0

akx
k

for real numbers ak, k = 0, 1, . . . n. The reader is invited to compare this with what is given in
Definition 3.1. Summation notation is particularly useful when talking about matrix operations.
For example, we can write the product of the ith row Ri of a matrix A = [aij ]m×n and the jth

column Cj of a matrix B = [bij ]n×r as

Ri · Cj =

n∑
k=1

aikbkj
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Again, the reader is encouraged to write out the sum and compare it to Definition 8.9. Our next
example gives us practice with this new notation.

Example 9.2.1.

1. Find the following sums.

(a)
4∑

k=1

13

100k
(b)

4∑
n=0

n!

2
(c)

5∑
n=1

(−1)n+1

n
(x− 1)n

2. Write the following sums using summation notation.

(a) 1 + 3 + 5 + . . .+ 117

(b) 1− 1

2
+

1

3
− 1

4
+− . . .+ 1

117

(c) 0.9 + 0.09 + 0.009 + . . . 0.0 · · · 0︸ ︷︷ ︸
n− 1 zeros

9

Solution.

1. (a) We substitute k = 1 into the formula 13
100k

and add successive terms until we reach k = 4.

4∑
k=1

13

100k
=

13

1001
+

13

1002
+

13

1003
+

13

1004

= 0.13 + 0.0013 + 0.000013 + 0.00000013
= 0.13131313

(b) Proceeding as in (a), we replace every occurrence of n with the values 0 through 4. We
recall the factorials, n! as defined in number Example 9.1.1, number 6 and get:

4∑
n=0

n!

2
=

0!

2
+

1!

2
+

2!

2
+

3!

2
=

4!

2

=
1

2
+

1

2
+

2 · 1
2

+
3 · 2 · 1

2
+

4 · 3 · 2 · 1
2

=
1

2
+

1

2
+ 1 + 3 + 12

= 17

(c) We proceed as before, replacing the index n, but not the variable x, with the values 1
through 5 and adding the resulting terms.
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5∑
n=1

(−1)n+1

n
(x− 1)n =

(−1)1+1

1
(x− 1)1 +

(−1)2+1

2
(x− 1)2 +

(−1)3+1

3
(x− 1)3

+
(−1)1+4

4
(x− 1)4 +

(−1)1+5

5
(x− 1)5

= (x− 1)− (x− 1)2

2
+

(x− 1)3

3
− (x− 1)4

4
+

(x− 1)5

5

2. The key to writing these sums with summation notation is to find the pattern of the terms.
To that end, we make good use of the techniques presented in Section 9.1.

(a) The terms of the sum 1, 3, 5, etc., form an arithmetic sequence with first term a = 1
and common difference d = 2. We get a formula for the nth term of the sequence using
Equation 9.1 to get an = 1+(n−1)2 = 2n−1, n ≥ 1. At this stage, we have the formula
for the terms, namely 2n − 1, and the lower limit of the summation, n = 1. To finish
the problem, we need to determine the upper limit of the summation. In other words,
we need to determine which value of n produces the term 117. Setting an = 117, we get
2n− 1 = 117 or n = 59. Our final answer is

1 + 3 + 5 + . . .+ 117 =

59∑
n=1

(2n− 1)

(b) We rewrite all of the terms as fractions, the subtraction as addition, and associate the
negatives ‘−’ with the numerators to get

1

1
+
−1

2
+

1

3
+
−1

4
+ . . .+

1

117

The numerators, 1, −1, etc. can be described by the geometric sequence1 cn = (−1)n−1

for n ≥ 1, while the denominators are given by the arithmetic sequence2 dn = n for

n ≥ 1. Hence, we get the formula an = (−1)n−1

n for our terms, and we find the lower and
upper limits of summation to be n = 1 and n = 117, respectively. Thus

1− 1

2
+

1

3
− 1

4
+− . . .+ 1

117
=

117∑
n=1

(−1)n−1

n

(c) Thanks to Example 9.1.3, we know that one formula for the nth term is an = 9
10n for

n ≥ 1. This gives us a formula for the summation as well as a lower limit of summation.
To determine the upper limit of summation, we note that to produce the n− 1 zeros to
the right of the decimal point before the 9, we need a denominator of 10n. Hence, n is

1This is indeed a geometric sequence with first term a = 1 and common ratio r = −1.
2It is an arithmetic sequence with first term a = 1 and common difference d = 1.
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664 Sequences and the Binomial Theorem

the upper limit of summation. Since n is used in the limits of the summation, we need
to choose a different letter for the index of summation.3 We choose k and get

0.9 + 0.09 + 0.009 + . . . 0.0 · · · 0︸ ︷︷ ︸
n− 1 zeros

9 =

n∑
k=1

9

10k

The following theorem presents some general properties of summation notation. While we shall not
have much need of these properties in Algebra, they do play a great role in Calculus. Moreover,
there is much to be learned by thinking about why the properties hold. We invite the reader to
prove these results. To get started, remember, “When in doubt, write it out!”

Theorem 9.1. Properties of Summation Notation: Suppose {an} and {bn} are sequences
so that the following sums are defined.

•
p∑

n=m

(an ± bn) =

p∑
n=m

an ±
p∑

n=m

bn

•
p∑

n=m

c an = c

p∑
n=m

an, for any real number c.

•
p∑

n=m

an =

j∑
n=m

an +

p∑
n=j+1

an, for any natural number m ≤ j < j + 1 ≤ p.

•
p∑

n=m

an =

p+r∑
n=m+r

an−r, for any whole number r.

We now turn our attention to the sums involving arithmetic and geometric sequences. Given an
arithmetic sequence ak = a+ (k − 1)d for k ≥ 1, we let S denote the sum of the first n terms. To
derive a formula for S, we write it out in two different ways

S = a + (a+ d) + . . . + (a+ (n− 2)d) + (a+ (n− 1)d)
S = (a+ (n− 1)d) + (a+ (n− 2)d) + . . . + (a+ d) + a

If we add these two equations and combine the terms which are aligned vertically, we get

2S = (2a+ (n− 1)d) + (2a+ (n− 1)d) + . . .+ (2a+ (n− 1)d) + (2a+ (n− 1)d)

The right hand side of this equation contains n terms, all of which are equal to (2a+ (n− 1)d) so
we get 2S = n(2a+ (n− 1)d). Dividing both sides of this equation by 2, we obtain the formula

3To see why, try writing the summation using ‘n’ as the index.
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9.2 Summation Notation 665

S =
n

2
(2a+ (n− 1)d)

If we rewrite the quantity 2a+ (n− 1)d as a+ (a+ (n− 1)d) = a1 + an, we get the formula

S = n

(
a1 + an

2

)

A helpful way to remember this last formula is to recognize that we have expressed the sum as the
product of the number of terms n and the average of the first and nth terms.

To derive the formula for the geometric sum, we start with a geometric sequence ak = ark−1, k ≥ 1,
and let S once again denote the sum of the first n terms. Comparing S and rS, we get

S = a + ar + ar2 + . . . + arn−2 + arn−1

rS = ar + ar2 + . . . + arn−2 + arn−1 + arn

Subtracting the second equation from the first forces all of the terms except a and arn to cancel
out and we get S− rS = a− arn. Factoring, we get S(1− r) = a (1− rn). Assuming r 6= 1, we can
divide both sides by the quantity (1− r) to obtain

S = a

(
1− rn

1− r

)

If we distribute a through the numerator, we get a− arn = a1 − an+1 which yields the formula

S =
a1 − an+1

1− r

In the case when r = 1, we get the formula

S = a+ a+ . . .+ a︸ ︷︷ ︸
n times

= na

Our results are summarized below.
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666 Sequences and the Binomial Theorem

Equation 9.2. Sums of Arithmetic and Geometric Sequences:

• The sum S of the first n terms of an arithmetic sequence ak = a+ (k − 1)d for k ≥ 1 is

S =
n∑
k=1

ak = n

(
a1 + an

2

)
=
n

2
(2a+ (n− 1)d)

• The sum S of the first n terms of a geometric sequence ak = ark−1 for k ≥ 1 is

1. S =
n∑
k=1

ak =
a1 − an+1

1− r
= a

(
1− rn

1− r

)
, if r 6= 1.

2. S =
n∑
k=1

ak =

n∑
k=1

a = na, if r = 1.

While we have made an honest effort to derive the formulas in Equation 9.2, formal proofs require
the machinery in Section 9.3. An application of the arithmetic sum formula which proves useful
in Calculus results in formula for the sum of the first n natural numbers. The natural numbers
themselves are a sequence4 1, 2, 3, . . . which is arithmetic with a = d = 1. Applying Equation 9.2,

1 + 2 + 3 + . . .+ n =
n(n+ 1)

2

So, for example, the sum of the first 100 natural numbers5 is 100(101)
2 = 5050.

An important application of the geometric sum formula is the investment plan called an annuity.
Annuities differ from the kind of investments we studied in Section 6.5 in that payments are
deposited into the account on an on-going basis, and this complicates the mathematics a little.6

Suppose you have an account with annual interest rate r which is compounded n times per year.
We let i = r

n denote the interest rate per period. Suppose we wish to make ongoing deposits of P
dollars at the end of each compounding period. Let Ak denote the amount in the account after k
compounding periods. Then A1 = P , because we have made our first deposit at the end of the first
compounding period and no interest has been earned. During the second compounding period, we
earn interest on A1 so that our initial investment has grown to A1(1 + i) = P (1 + i) in accordance
with Equation 6.1. When we add our second payment at the end of the second period, we get

A2 = A1(1 + i) + P = P (1 + i) + P = P (1 + i)

(
1 +

1

1 + i

)
The reason for factoring out the P (1 + i) will become apparent in short order. During the third
compounding period, we earn interest on A2 which then grows to A2(1 + i). We add our third

4This is the identity function on the natural numbers!
5There is an interesting anecdote which says that the famous mathematician Carl Friedrich Gauss was given this

problem in primary school and devised a very clever solution.
6The reader may wish to re-read the discussion on compound interest in Section 6.5 before proceeding.
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payment at the end of the third compounding period to obtain

A3 = A2(1 + i) + P = P (1 + i)

(
1 +

1

1 + i

)
(1 + i) + P = P (1 + i)2

(
1 +

1

1 + i
+

1

(1 + i)2

)
During the fourth compounding period, A3 grows to A3(1+i), and when we add the fourth payment,
we factor out P (1 + i)3 to get

A4 = P (1 + i)3

(
1 +

1

1 + i
+

1

(1 + i)2
+

1

(1 + i)3

)
This pattern continues so that at the end of the kth compounding, we get

Ak = P (1 + i)k−1

(
1 +

1

1 + i
+

1

(1 + i)2
+ . . .+

1

(1 + i)k−1

)
The sum in the parentheses above is the sum of the first k terms of a geometric sequence with
a = 1 and r = 1

1+i . Using Equation 9.2, we get

1 +
1

1 + i
+

1

(1 + i)2
+ . . .+

1

(1 + i)k−1
= 1

1− 1

(1 + i)k

1− 1

1 + i

 =
(1 + i)

(
1− (1 + i)−k

)
i

Hence, we get

Ak = P (1 + i)k−1

(
(1 + i)

(
1− (1 + i)−k

)
i

)
=
P
(
(1 + i)k − 1

)
i

If we let t be the number of years this investment strategy is followed, then k = nt, and we get the
formula for the future value of an ordinary annuity.

Equation 9.3. Future Value of an Ordinary Annuity: Suppose an annuity offers an annual
interest rate r compounded n times per year. Let i = r

n be the interest rate per compounding
period. If a deposit P is made at the end of each compounding period, the amount A in the
account after t years is given by

A =
P
(
(1 + i)nt − 1

)
i

The reader is encouraged to substitute i = r
n into Equation 9.3 and simplify. Some familiar

equations arise which are cause for pause and meditation. One last note: if the deposit P is made
a the beginning of the compounding period instead of at the end, the annuity is called an annuity-
due. We leave the derivation of the formula for the future value of an annuity-due as an exercise
for the reader.
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Example 9.2.2. An ordinary annuity offers a 6% annual interest rate, compounded monthly.

1. If monthly payments of $50 are made, find the value of the annuity in 30 years.

2. How many years will it take for the annuity to grow to $100,000?

Solution.

1. We have r = 0.06 and n = 12 so that i = r
n = 0.06

12 = 0.005. With P = 50 and t = 30,

A =
50
(
(1 + 0.005)(12)(30) − 1

)
0.005

≈ 50225.75

Our final answer is $50,225.75.

2. To find how long it will take for the annuity to grow to $100,000, we set A = 100000 and
solve for t. We isolate the exponential and take natural logs of both sides of the equation.

100000 =
50
(
(1 + 0.005)12t − 1

)
0.005

10 = (1.005)12t − 1

(1.005)12t = 11

ln
(
(1.005)12t

)
= ln(11)

12t ln(1.005) = ln(11)

t = ln(11)
12 ln(1.005) ≈ 40.06

This means that it takes just over 40 years for the investment to grow to $100,000. Comparing
this with our answer to part 1, we see that in just 10 additional years, the value of the annuity
nearly doubles. This is a lesson worth remembering.

We close this section with a peek into Calculus by considering infinite sums, called series. Consider
the number 0.9. We can write this number as

0.9 = 0.9999... = 0.9 + 0.09 + 0.009 + 0.0009 + . . .

From Example 9.2.1, we know we can write the sum of the first n of these terms as

0. 9 · · · 9︸ ︷︷ ︸
n nines

= .9 + 0.09 + 0.009 + . . . 0.0 · · · 0︸ ︷︷ ︸
n− 1 zeros

9 =

n∑
k=1

9

10k

Using Equation 9.2, we have
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n∑
k=1

9

10k
=

9

10

1− 1

10n+1

1− 1

10

 = 1− 1

10n+1

It stands to reason that 0.9 is the same value of 1− 1
10n+1 as n→∞. Our knowledge of exponential

expressions from Section 6.1 tells us that 1
10n+1 → 0 as n → ∞, so 1 − 1

10n+1 → 1. We have
just argued that 0.9 = 1, which may cause some distress for some readers.7 Any non-terminating
decimal can be thought of as an infinite sum whose denominators are the powers of 10, so the
phenomenon of adding up infinitely many terms and arriving at a finite number is not as foreign
of a concept as it may appear. We end this section with a theorem concerning geometric series.

Theorem 9.2. Geometric Series: Given the sequence ak = ark−1 for k ≥ 1, where |r| < 1,

a+ ar + ar2 + . . . =

∞∑
k=1

ark−1 =
a

1− r

If |r| ≥ 1, the sum a+ ar + ar2 + . . . is not defined.

The justification of the result in Theorem 9.2 comes from taking the formula in Equation 9.2 for the
sum of the first n terms of a geometric sequence and examining the formula as n→∞. Assuming
|r| < 1 means −1 < r < 1, so rn → 0 as n→∞. Hence as n→∞,

n∑
k=1

ark−1 = a

(
1− rn

1− r

)
→ a

1− r

As to what goes wrong when |r| ≥ 1, we leave that to Calculus as well, but will explore some cases
in the exercises.

7To make this more palatable, it is usually accepted that 0.3 = 1
3

so that 0.9 = 3
(
0.3
)

= 3
(

1
3

)
= 1. Feel better?
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9.2.1 Exercises

In Exercises 1 - 8, find the value of each sum using Definition 9.3.

1.
9∑
g=4

(5g + 3) 2.
8∑

k=3

1

k
3.

5∑
j=0

2j 4.
2∑

k=0

(3k − 5)xk

5.

4∑
i=1

1

4
(i2 + 1) 6.

100∑
n=1

(−1)n 7.

5∑
n=1

(n+ 1)!

n!
8.

3∑
j=1

5!

j! (5− j)!

In Exercises 9 - 16, rewrite the sum using summation notation.

9. 8 + 11 + 14 + 17 + 20 10. 1− 2 + 3− 4 + 5− 6 + 7− 8

11. x− x3

3
+
x5

5
− x7

7
12. 1 + 2 + 4 + · · ·+ 229

13. 2 + 3
2 + 4

3 + 5
4 + 6

5 14. − ln(3) + ln(4)− ln(5) + · · ·+ ln(20)

15. 1− 1
4 + 1

9 −
1
16 + 1

25 −
1
36 16. 1

2(x−5)+ 1
4(x−5)2 + 1

6(x−5)3 + 1
8(x−5)4

In Exercises 17 - 28, use the formulas in Equation 9.2 to find the sum.

17.
10∑
n=1

5n+ 3 18.
20∑
n=1

2n− 1 19.
15∑
k=0

3− k

20.

10∑
n=1

(
1

2

)n
21.

5∑
n=1

(
3

2

)n
22.

5∑
k=0

2

(
1

4

)k

23. 1 + 4 + 7 + . . .+ 295 24. 4 + 2 + 0− 2− . . .− 146 25. 1 + 3 + 9 + . . .+ 2187

26. 1
2 + 1

4 + 1
8 + . . .+ 1

256 27. 3− 3
2 + 3

4 −
3
8 +− · · ·+ 3

256 28.

10∑
n=1

−2n+

(
5

3

)n

In Exercises 29 - 32, use Theorem 9.2 to express each repeating decimal as a fraction of integers.

29. 0.7 30. 0.13 31. 10.159 32. −5.867
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In Exercises 33 - 38, use Equation 9.3 to compute the future value of the annuity with the given
terms. In all cases, assume the payment is made monthly, the interest rate given is the annual rate,
and interest is compounded monthly.

33. payments are $300, interest rate is 2.5%, term is 17 years.

34. payments are $50, interest rate is 1.0%, term is 30 years.

35. payments are $100, interest rate is 2.0%, term is 20 years

36. payments are $100, interest rate is 2.0%, term is 25 years

37. payments are $100, interest rate is 2.0%, term is 30 years

38. payments are $100, interest rate is 2.0%, term is 35 years

39. Suppose an ordinary annuity offers an annual interest rate of 2%, compounded monthly, for
30 years. What should the monthly payment be to have $100,000 at the end of the term?

40. Prove the properties listed in Theorem 9.1.

41. Show that the formula for the future value of an annuity due is

A = P (1 + i)

[
(1 + i)nt − 1

i

]

42. Discuss with your classmates what goes wrong when trying to find the following sums.8

(a)

∞∑
k=1

2k−1 (b)

∞∑
k=1

(1.0001)k−1 (c)

∞∑
k=1

(−1)k−1

8When in doubt, write them out!
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9.2.2 Answers

1. 213 2. 341
280 3. 63 4. −5− 2x+ x2

5. 17
2 6. 0 7. 20 8. 25

9.
5∑

k=1

(3k + 5) 10.
8∑

k=1

(−1)k−1k 11.
4∑

k=1

(−1)k−1 x

2k − 1
12.

30∑
k=1

2k−1

13.

5∑
k=1

k + 1

k
14.

20∑
k=3

(−1)k ln(k) 15.

6∑
k=1

(−1)k−1

k2
16.

4∑
k=1

1

2k
(x− 5)k

17. 305 18. 400 19. −72 20.
1023

1024

21.
633

32
22.

1365

512
23. 14652 24. −5396

25. 3280 26.
255

256
27.

513

256
28.

17771050

59049

29.
7

9
30.

13

99
31.

3383

333
32. −5809

990

33. $76,163.67 34. $20,981.40 35. $29,479.69 36. $38,882.12

37. 49,272.55 38. 60,754.80

39. For $100,000, the monthly payment is ≈ $202.95.
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9.3 Mathematical Induction 673

9.3 Mathematical Induction

The Chinese philosopher Confucius is credited with the saying, “A journey of a thousand miles
begins with a single step.” In many ways, this is the central theme of this section. Here we introduce
a method of proof, Mathematical Induction, which allows us to prove many of the formulas we have
merely motivated in Sections 9.1 and 9.2 by starting with just a single step. A good example is
the formula for arithmetic sequences we touted in Equation 9.1. Arithmetic sequences are defined
recursively, starting with a1 = a and then an+1 = an + d for n ≥ 1. This tells us that we start the
sequence with a and we go from one term to the next by successively adding d. In symbols,

a, a+ d, a+ 2d, a+ 3d, a+ 4d+ . . .

The pattern suggested here is that to reach the nth term, we start with a and add d to it exactly
n− 1 times, which lead us to our formula an = a+ (n− 1)d for n ≥ 1. But how do we prove this
to be the case? We have the following.

The Principle of Mathematical Induction (PMI): Suppose P (n) is a sentence involving
the natural number n.

IF

1. P (1) is true and

2. whenever P (k) is true, it follows that P (k + 1) is also true

THEN the sentence P (n) is true for all natural numbers n.

The Principle of Mathematical Induction, or PMI for short, is exactly that - a principle.1 It is a
property of the natural numbers we either choose to accept or reject. In English, it says that if we
want to prove that a formula works for all natural numbers n, we start by showing it is true for
n = 1 (the ‘base step’) and then show that if it is true for a generic natural number k, it must be
true for the next natural number, k + 1 (the ‘inductive step’). The notation P (n) acts just like
function notation. For example, if P (n) is the sentence (formula) ‘n2 + 1 = 3’, then P (1) would
be ‘12 + 1 = 3’, which is false. The construction P (k + 1) would be ‘(k + 1)2 + 1 = 3’. As usual,
this new concept is best illustrated with an example. Returning to our quest to prove the formula
for an arithmetic sequence, we first identify P (n) as the formula an = a+ (n− 1)d. To prove this
formula is valid for all natural numbers n, we need to do two things. First, we need to establish
that P (1) is true. In other words, is it true that a1 = a + (1 − 1)d? The answer is yes, since this
simplifies to a1 = a, which is part of the definition of the arithmetic sequence. The second thing
we need to show is that whenever P (k) is true, it follows that P (k+ 1) is true. In other words, we
assume P (k) is true (this is called the ‘induction hypothesis’) and deduce that P (k + 1) is also
true. Assuming P (k) to be true seems to invite disaster - after all, isn’t this essentially what we’re
trying to prove in the first place? To help explain this step a little better, we show how this works
for specific values of n. We’ve already established P (1) is true, and we now want to show that P (2)

1Another word for this you may have seen is ‘axiom.’
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674 Sequences and the Binomial Theorem

is true. Thus we need to show that a2 = a+(2−1)d. Since P (1) is true, we have a1 = a, and by the
definition of an arithmetic sequence, a2 = a1 +d = a+d = a+(2−1)d. So P (2) is true. We now use
the fact that P (2) is true to show that P (3) is true. Using the fact that a2 = a+ (2− 1)d, we show
a3 = a+(3−1)d. Since a3 = a2 +d, we get a3 = (a+(2−1)d)+d = a+2d = a+(3−1)d, so we have
shown P (3) is true. Similarly, we can use the fact that P (3) is true to show that P (4) is true, and so
forth. In general, if P (k) is true (i.e., ak = a+(k−1)d) we set out to show that P (k+1) is true (i.e.,
ak+1 = a+ ((k+ 1)− 1)d). Assuming ak = a+ (k− 1)d, we have by the definition of an arithmetic
sequence that ak+1 = ak + d so we get ak+1 = (a + (k − 1)d) + d = a + kd = a + ((k + 1) − 1)d.
Hence, P (k + 1) is true.

In essence, by showing that P (k + 1) must always be true when P (k) is true, we are showing that
the formula P (1) can be used to get the formula P (2), which in turn can be used to derive the
formula P (3), which in turn can be used to establish the formula P (4), and so on. Thus as long
as P (k) is true for some natural number k, P (n) is true for all of the natural numbers n which
follow k. Coupling this with the fact P (1) is true, we have established P (k) is true for all natural
numbers which follow n = 1, in other words, all natural numbers n. One might liken Mathematical
Induction to a repetitive process like climbing stairs.2 If you are sure that (1) you can get on the
stairs (the base case) and (2) you can climb from any one step to the next step (the inductive step),
then presumably you can climb the entire staircase.3 We get some more practice with induction in
the following example.

Example 9.3.1. Prove the following assertions using the Principle of Mathematical Induction.

1. The sum formula for arithmetic sequences:

n∑
j=1

(a+ (j − 1)d) =
n

2
(2a+ (n− 1)d).

2. For a complex number z, (z)n = zn for n ≥ 1.

3. 3n > 100n for n > 5.

4. Let A be an n× n matrix and let A′ be the matrix obtained by replacing a row R of A with
cR for some real number c. Use the definition of determinant to show det(A′) = cdet(A).

Solution.

1. We set P (n) to be the equation we are asked to prove. For n = 1, we compare both sides of
the equation given in P (n)

1∑
j=1

(a+ (j − 1)d)
?
=

1

2
(2a+ (1− 1)d)

a+ (1− 1)d
?
=

1

2
(2a)

a = aX

2Falling dominoes is the most widely used metaphor in the mainstream College Algebra books.
3This is how Carl climbed the stairs in the Cologne Cathedral. Well, that, and encouragement from Kai.
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9.3 Mathematical Induction 675

This shows the base case P (1) is true. Next we assume P (k) is true, that is, we assume

k∑
j=1

(a+ (j − 1)d) =
k

2
(2a+ (k − 1)d)

and attempt to use this to show P (k + 1) is true. Namely, we must show

k+1∑
j=1

(a+ (j − 1)d) =
k + 1

2
(2a+ (k + 1− 1)d)

To see how we can use P (k) in this case to prove P (k+ 1), we note that the sum in P (k+ 1)
is the sum of the first k + 1 terms of the sequence ak = a+ (k − 1)d for k ≥ 1 while the sum
in P (k) is the sum of the first k terms. We compare both side of the equation in P (k + 1).

k+1∑
j=1

(a+ (j − 1)d)︸ ︷︷ ︸
summing the first k + 1 terms

?
=

k + 1

2
(2a+ (k + 1− 1)d)

k∑
j=1

(a+ (j − 1)d)︸ ︷︷ ︸
summing the first k terms

+ (a+ (k + 1− 1)d)︸ ︷︷ ︸
adding the (k + 1)st term

?
=

k + 1

2
(2a+ kd)

k

2
(2a+ (k − 1)d)︸ ︷︷ ︸

Using P (k)

+(a+ kd)
?
=

(k + 1)(2a+ kd)

2

k(2a+ (k − 1)d) + 2(a+ kd)

2

?
=

2ka+ k2d+ 2a+ kd

2

2ka+ 2a+ k2d+ kd

2
=

2ka+ 2a+ k2d+ kd

2
X

Since all of our steps on both sides of the string of equations are reversible, we conclude that
the two sides of the equation are equivalent and hence, P (k + 1) is true. By the Principle of
Mathematical Induction, we have that P (n) is true for all natural numbers n.

2. We let P (n) be the formula (z)n = zn. The base case P (1) is (z)1 = z1, which reduces to

z = z which is true. We now assume P (k) is true, that is, we assume (z)k = zk and attempt
to show that P (k+1) is true. Since (z)k+1 = (z)k z, we can use the induction hypothesis and
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676 Sequences and the Binomial Theorem

write (z)k = zk. Hence, (z)k+1 = (z)k z = zk z. We now use the product rule for conjugates4

to write zk z = zkz = zk+1. This establishes (z)k+1 = zk+1, so that P (k + 1) is true. Hence,
by the Principle of Mathematical Induction, (z)n = zn for all n ≥ 1.

3. The first wrinkle we encounter in this problem is that we are asked to prove this formula for
n > 5 instead of n ≥ 1. Since n is a natural number, this means our base step occurs at
n = 6. We can still use the PMI in this case, but our conclusion will be that the formula is
valid for all n ≥ 6. We let P (n) be the inequality 3n > 100n, and check that P (6) is true.
Comparing 36 = 729 and 100(6) = 600, we see 36 > 100(6) as required. Next, we assume
that P (k) is true, that is we assume 3k > 100k. We need to show that P (k + 1) is true, that
is, we need to show 3k+1 > 100(k + 1). Since 3k+1 = 3 · 3k, the induction hypothesis gives
3k+1 = 3 · 3k > 3(100k) = 300k. We are done if we can show 300k > 100(k + 1) for k ≥ 6.
Solving 300k > 100(k + 1) we get k > 1

2 . Since k ≥ 6, we know this is true. Putting all of
this together, we have 3k+1 = 3 · 3k > 3(100k) = 300k > 100(k + 1), and hence P (k + 1) is
true. By induction, 3n > 100n for all n ≥ 6.

4. To prove this determinant property, we use induction on n, where we take P (n) to be that
the property we wish to prove is true for all n×n matrices. For the base case, we note that if
A is a 1× 1 matrix, then A = [a] so A′ = [ca]. By definition, det(A) = a and det(A′) = ca so
we have det(A′) = cdet(A) as required. Now suppose that the property we wish to prove is
true for all k×k matrices. Let A be a (k+1)× (k+1) matrix. We have two cases, depending
on whether or not the row R being replaced is the first row of A.

Case 1: The row R being replaced is the first row of A. By definition,

det(A′) =
n∑
p=1

a′1pC
′
1p

where the 1p cofactor of A′ is C ′1p = (−1)(1+p) det
(
A′1p
)

and A′1p is the k× k matrix obtained
by deleting the 1st row and pth column of A′.5 Since the first row of A′ is c times the first
row of A, we have a′1p = c a1p. In addition, since the remaining rows of A′ are identical to
those of A, A′1p = A1p. (To obtain these matrices, the first row of A′ is removed.) Hence
det
(
A′1p
)

= det (A1p), so that C ′1p = C1p. As a result, we get

det(A′) =
n∑
p=1

a′1pC
′
1p =

n∑
p=1

c a1pC1p = c
n∑
p=1

a1pC1p = c det(A),

as required. Hence, P (k + 1) is true in this case, which means the result is true in this case
for all natural numbers n ≥ 1. (You’ll note that we did not use the induction hypothesis at
all in this case. It is possible to restructure the proof so that induction is only used where

4See Exercise 54 in Section 3.4.
5See Section 8.5 for a review of this notation.
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9.3 Mathematical Induction 677

it is needed. While mathematically more elegant, it is less intuitive, and we stand by our
approach because of its pedagogical value.)

Case 2: The row R being replaced is the not the first row of A. By definition,

det(A′) =
n∑
p=1

a′1pC
′
1p,

where in this case, a′1p = a1p, since the first rows of A and A′ are the same. The matrices
A′1p and A1p, on the other hand, are different but in a very predictable way − the row in A′1p
which corresponds to the row cR in A′ is exactly c times the row in A1p which corresponds to
the row R in A. In other words, A′1p and A1p are k × k matrices which satisfy the induction
hypothesis. Hence, we know det

(
A′1p
)

= cdet (A1p) and C ′1p = cC1p. We get

det(A′) =

n∑
p=1

a′1pC
′
1p =

n∑
p=1

a1pcC1p = c
n∑
p=1

a1pC1p = cdet(A),

which establishes P (k + 1) to be true. Hence by induction, we have shown that the result
holds in this case for n ≥ 1 and we are done.

While we have used the Principle of Mathematical Induction to prove some of the formulas we have
merely motivated in the text, our main use of this result comes in Section 9.4 to prove the celebrated
Binomial Theorem. The ardent Mathematics student will no doubt see the PMI in many courses
yet to come. Sometimes it is explicitly stated and sometimes it remains hidden in the background.
If ever you see a property stated as being true ‘for all natural numbers n’, it’s a solid bet that the
formal proof requires the Principle of Mathematical Induction.
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678 Sequences and the Binomial Theorem

9.3.1 Exercises

In Exercises 1 - 7, prove each assertion using the Principle of Mathematical Induction.

1.
n∑
j=1

j2 =
n(n+ 1)(2n+ 1)

6

2.

n∑
j=1

j3 =
n2(n+ 1)2

4

3. 2n > 500n for n > 12

4. 3n ≥ n3 for n ≥ 4

5. Use the Product Rule for Absolute Value to show |xn| = |x|n for all real numbers x and all
natural numbers n ≥ 1

6. Use the Product Rule for Logarithms to show log (xn) = n log(x) for all real numbers x > 0
and all natural numbers n ≥ 1.

7.

[
a 0
0 b

]n
=

[
an 0
0 bn

]
for n ≥ 1.

8. Prove Equations 9.1 and 9.2 for the case of geometric sequences. That is:

(a) For the sequence a1 = a, an+1 = ran, n ≥ 1, prove an = arn−1, n ≥ 1.

(b)
n∑
j=1

arn−1 = a

(
1− rn

1− r

)
, if r 6= 1,

n∑
j=1

arn−1 = na, if r = 1.

9. Prove that the determinant of a lower triangular matrix is the product of the entries on the
main diagonal. (See Exercise 8.3.1 in Section 8.3.) Use this result to then show det (In) = 1
where In is the n× n identity matrix.

10. Discuss the classic ‘paradox’ All Horses are the Same Color problem with your classmates.
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9.3 Mathematical Induction 679

9.3.2 Selected Answers

1. Let P (n) be the sentence

n∑
j=1

j2 =
n(n+ 1)(2n+ 1)

6
. For the base case, n = 1, we get

1∑
j=1

j2 ?
=

(1)(1 + 1)(2(1) + 1)

6

12 = 1X

We now assume P (k) is true and use it to show P (k + 1) is true. We have

k+1∑
j=1

j2 ?
=

(k + 1)((k + 1) + 1)(2(k + 1) + 1)

6

k∑
j=1

j2 + (k + 1)2 ?
=

(k + 1)(k + 2)(2k + 3)

6

k(k + 1)(2k + 1)

6︸ ︷︷ ︸
Using P (k)

+(k + 1)2 ?
=

(k + 1)(k + 2)(2k + 3)

6

k(k + 1)(2k + 1)

6
+

6(k + 1)2

6

?
=

(k + 1)(k + 2)(2k + 3)

6

k(k + 1)(2k + 1) + 6(k + 1)2

6

?
=

(k + 1)(k + 2)(2k + 3)

6

(k + 1)(k(2k + 1) + 6(k + 1))

6

?
=

(k + 1)(k + 2)(2k + 3)

6

(k + 1)
(
2k2 + 7k + 6

)
6

?
=

(k + 1)(k + 2)(2k + 3)

6

(k + 1)(k + 2)(2k + 3)

6
=

(k + 1)(k + 2)(2k + 3)

6
X

By induction,

n∑
j=1

j2 =
n(n+ 1)(2n+ 1)

6
is true for all natural numbers n ≥ 1.

4. Let P (n) be the sentence 3n > n3. Our base case is n = 4 and we check 34 = 81 and
43 = 64 so that 34 > 43 as required. We now assume P (k) is true, that is 3k > k3, and
try to show P (k + 1) is true. We note that 3k+1 = 3 · 3k > 3k3 and so we are done if
we can show 3k3 > (k + 1)3 for k ≥ 4. We can solve the inequality 3x3 > (x + 1)3 using
the techniques of Section 5.3, and doing so gives us x > 1

3√3−1
≈ 2.26. Hence, for k ≥ 4,

3k+1 = 3 · 3k > 3k3 > (k + 1)3 so that 3k+1 > (k + 1)3. By induction, 3n > n3 is true for all
natural numbers n ≥ 4.
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6. Let P (n) be the sentence log (xn) = n log(x). For the duration of this argument, we assume
x > 0. The base case P (1) amounts checking that log

(
x1
)

= 1 log(x) which is clearly true.
Next we assume P (k) is true, that is log

(
xk
)

= k log(x) and try to show P (k + 1) is true.
Using the Product Rule for Logarithms along with the induction hypothesis, we get

log
(
xk+1

)
= log

(
xk · x

)
= log

(
xk
)

+ log(x) = k log(x) + log(x) = (k + 1) log(x)

Hence, log
(
xk+1

)
= (k + 1) log(x). By induction log (xn) = n log(x) is true for all x > 0 and

all natural numbers n ≥ 1.

9. Let A be an n×n lower triangular matrix. We proceed to prove the det(A) is the product of
the entries along the main diagonal by inducting on n. For n = 1, A = [a] and det(A) = a,
so the result is (trivially) true. Next suppose the result is true for k × k lower triangular
matrices. Let A be a (k + 1)× (k + 1) lower triangular matrix. Expanding det(A) along the
first row, we have

det(A) =
n∑
p=1

a1pC1p

Since a1p = 0 for 2 ≤ p ≤ k + 1, this simplifies det(A) = a11C11. By definition, we know that
C11 = (−1)1+1 det (A11) = det (A11) where A11 is k × k matrix obtained by deleting the first
row and first column of A. Since A is lower triangular, so is A11 and, as such, the induction
hypothesis applies to A11. In other words, det (A11) is the product of the entries along A11’s
main diagonal. Now, the entries on the main diagonal of A11 are the entries a22, a33, . . . ,
a(k+1)(k+1) from the main diagonal of A. Hence,

det(A) = a11 det (A11) = a11

(
a22a33 · · · a(k+1)(k+1)

)
= a11a22a33 · · · a(k+1)(k+1)

We have det(A) is the product of the entries along its main diagonal. This shows P (k+ 1) is
true, and, hence, by induction, the result holds for all n× n upper triangular matrices. The
n× n identity matrix In is a lower triangular matrix whose main diagonal consists of all 1’s.
Hence, det (In) = 1, as required.
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9.4 The Binomial Theorem 681

9.4 The Binomial Theorem

In this section, we aim to prove the celebrated Binomial Theorem. Simply stated, the Binomial
Theorem is a formula for the expansion of quantities (a+b)n for natural numbers n. In Elementary
and Intermediate Algebra, you should have seen specific instances of the formula, namely

(a+ b)1 = a+ b
(a+ b)2 = a2 + 2ab+ b2

(a+ b)3 = a3 + 3a2b+ 3ab2 + b3

If we wanted the expansion for (a+b)4 we would write (a+b)4 = (a+b)(a+b)3 and use the formula
that we have for (a+b)3 to get (a+b)4 = (a+b)

(
a3 + 3a2b+ 3ab2 + b3

)
= a4+4a3b+6a2b2+4ab3+b4.

Generalizing this a bit, we see that if we have a formula for (a + b)k, we can obtain a formula for
(a+ b)k+1 by rewriting the latter as (a+ b)k+1 = (a+ b)(a+ b)k. Clearly this means Mathematical
Induction plays a major role in the proof of the Binomial Theorem.1 Before we can state the
theorem we need to revisit the sequence of factorials which were introduced in Example 9.1.1
number 6 in Section 9.1.

Definition 9.4. Factorials: For a whole number n, n factorial, denoted n!, is the term fn of
the sequence f0 = 1, fn = n · fn−1, n ≥ 1.

Recall this means 0! = 1 and n! = n(n − 1)! for n ≥ 1. Using the recursive definition, we get:
1! = 1 · 0! = 1 · 1 = 1, 2! = 2 · 1! = 2 · 1 = 2, 3! = 3 · 2! = 3 · 2 · 1 = 6 and 4! = 4 · 3! = 4 · 3 · 2 · 1 = 24.
Informally, n! = n · (n − 1) · (n − 2) · · · 2 · 1 with 0! = 1 as our ‘base case.’ Our first example
familiarizes us with some of the basic computations involving factorials.

Example 9.4.1.

1. Simplify the following expressions.

(a)
3! 2!

0!
(b)

7!

5!
(c)

1000!

998! 2!
(d)

(k + 2)!

(k − 1)!
, k ≥ 1

2. Prove n! > 3n for all n ≥ 7.

Solution.

1. We keep in mind the mantra, “When in doubt, write it out!” as we simplify the following.

(a) We have been programmed to react with alarm to the presence of a 0 in the denominator,
but in this case 0! = 1, so the fraction is defined after all. As for the numerator,
3! = 3 · 2 · 1 = 6 and 2! = 2 · 1 = 2, so we have 3! 2!

0! = (6)(2)
1 = 12.

1It’s pretty much the reason Section 9.3 is in the book.
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(b) We have 7! = 7 · 6 · 5 · 4 · 3 · 2 · 1 = 5040 while 5! = 5 · 4 · 3 · 2 · 1 = 120. Dividing, we get
7!
5! = 5040

120 = 42. While this is correct, we note that we could have saved ourselves some
of time had we proceeded as follows

7!

5!
=

7 · 6 · 5 · 4 · 3 · 2 · 1
5 · 4 · 3 · 2 · 1

=
7 · 6 · �5 · �4 · �3 · �2 · �1
�5 · �4 · �3 · �2 · �1

= 7 · 6 = 42

In fact, should we want to fully exploit the recursive nature of the factorial, we can write

7!

5!
=

7 · 6 · 5!

5!
=

7 · 6 ·��5!

��5!
= 42

(c) Keeping in mind the lesson we learned from the previous problem, we have

1000!

998! 2!
=

1000 · 999 · 998!

998! · 2!
=

1000 · 999 ·���998!

���998! · 2!
=

999000

2
= 499500

(d) This problem continues the theme which we have seen in the previous two problems.
We first note that since k + 2 is larger than k − 1, (k + 2)! contains all of the factors
of (k − 1)! and as a result we can get the (k − 1)! to cancel from the denominator. To
see this, we begin by writing out (k+ 2)! starting with (k+ 2) and multiplying it by the
numbers which precede it until we reach (k − 1): (k + 2)! = (k + 2)(k + 1)(k)(k − 1)!.
As a result, we have

(k + 2)!

(k − 1)!
=

(k + 2)(k + 1)(k)(k − 1)!

(k − 1)!
=

(k + 2)(k + 1)(k)���
�(k − 1)!

���
�(k − 1)!

= k(k + 1)(k + 2)

The stipulation k ≥ 1 is there to ensure that all of the factorials involved are defined.

2. We proceed by induction and let P (n) be the inequality n! > 3n. The base case here is n = 7
and we see that 7! = 5040 is larger than 37 = 2187, so P (7) is true. Next, we assume that P (k)
is true, that is, we assume k! > 3k and attempt to show P (k+1) follows. Using the properties
of the factorial, we have (k + 1)! = (k + 1)k! and since k! > 3k, we have (k + 1)! > (k + 1)3k.
Since k ≥ 7, k + 1 ≥ 8, so (k + 1)3k ≥ 8 · 3k > 3 · 3k = 3k+1. Putting all of this together, we
have (k + 1)! = (k + 1)k! > (k + 1)3k > 3k+1 which shows P (k + 1) is true. By the Principle
of Mathematical Induction, we have n! > 3n for all n ≥ 7.

Of all of the mathematical animals we have discussed in the text, factorials grow most quickly. In
problem 2 of Example 9.4.1, we proved that n! overtakes 3n at n = 7. ‘Overtakes’ may be too
polite a word, since n! thoroughly trounces 3n for n ≥ 7, as any reasonable set of data will show.
It can be shown that for any real number x > 0, not only does n! eventually overtake xn, but the
ratio xn

n! → 0 as n→∞.2

Applications of factorials in the wild often involve counting arrangements. For example, if you have
fifty songs on your mp3 player and wish arrange these songs in a playlist in which the order of the

2This fact is far more important than you could ever possibly imagine.
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9.4 The Binomial Theorem 683

songs matters, it turns out that there are 50! different possible playlists. If you wish to select only
ten of the songs to create a playlist, then there are 50!

40! such playlists. If, on the other hand, you just
want to select ten song files out of the fifty to put on a flash memory card so that now the order
no longer matters, there are 50!

40!10! ways to achieve this.3 While some of these ideas are explored
in the Exercises, the authors encourage you to take courses such as Finite Mathematics, Discrete
Mathematics and Statistics. We introduce these concepts here because this is how the factorials
make their way into the Binomial Theorem, as our next definition indicates.

Definition 9.5. Binomial Coefficients: Given two whole numbers n and j with n ≥ j, the

binomial coefficient

(
n

j

)
(read, n choose j) is the whole number given by(

n

j

)
=

n!

j!(n− j)!

The name ‘binomial coefficient’ will be justified shortly. For now, we can physically interpret(
n
j

)
as the number of ways to select j items from n items where the order of the items selected is

unimportant. For example, suppose you won two free tickets to a special screening of the latest
Hollywood blockbuster and have five good friends each of whom would love to accompany you to
the movies. There are

(
5
2

)
ways to choose who goes with you. Applying Definition 9.5, we get

(
5

2

)
=

5!

2!(5− 2)!
=

5!

2!3!
=

5 · 4
2

= 10

So there are 10 different ways to distribute those two tickets among five friends. (Some will see it
as 10 ways to decide which three friends have to stay home.) The reader is encouraged to verify
this by actually taking the time to list all of the possibilities.

We now state anf prove a theorem which is crucial to the proof of the Binomial Theorem.

Theorem 9.3. For natural numbers n and j with n ≥ j,(
n

j − 1

)
+

(
n

j

)
=

(
n+ 1

j

)
The proof of Theorem 9.3 is purely computational and uses the definition of binomial coefficients,
the recursive property of factorials and common denominators.

3For reference,

50! = 30414093201713378043612608166064768844377641568960512000000000000,
50!

40!
= 37276043023296000, and

50!

40!10!
= 10272278170
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(
n

j − 1

)
+

(
n

j

)
=

n!

(j − 1)!(n− (j − 1))!
+

n!

j!(n− j)!

=
n!

(j − 1)!(n− j + 1)!
+

n!

j!(n− j)!

=
n!

(j − 1)!(n− j + 1)(n− j)!
+

n!

j(j − 1)!(n− j)!

=
n! j

j(j − 1)!(n− j + 1)(n− j)!
+

n!(n− j + 1)

j(j − 1)!(n− j + 1)(n− j)!

=
n! j

j!(n− j + 1)!
+
n!(n− j + 1)

j!(n− j + 1)!

=
n! j + n!(n− j + 1)

j!(n− j + 1)!

=
n! (j + (n− j + 1))

j!(n− j + 1)!

=
(n+ 1)n!

j!(n+ 1− j))!

=
(n+ 1)!

j!((n+ 1)− j))!

=

(
n+ 1

j

)
X

We are now in position to state and prove the Binomial Theorem where we see that binomial
coefficients are just that - coefficients in the binomial expansion.

Theorem 9.4. Binomial Theorem: For nonzero real numbers a and b,

(a+ b)n =
n∑
j=0

(
n

j

)
an−jbj

for all natural numbers n.

To get a feel of what this theorem is saying and how it really isn’t as hard to remember as it may
first appear, let’s consider the specific case of n = 4. According to the theorem, we have
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(a+ b)4 =
4∑
j=0

(
4

j

)
a4−jbj

=

(
4

0

)
a4−0b0 +

(
4

1

)
a4−1b1 +

(
4

2

)
a4−2b2 +

(
4

3

)
a4−3b3 +

(
4

4

)
a4−4b4

=

(
4

0

)
a4 +

(
4

1

)
a3b+

(
4

2

)
a2b2 +

(
4

3

)
ab3 +

(
4

4

)
b4

We forgo the simplification of the coefficients in order to note the pattern in the expansion. First
note that in each term, the total of the exponents is 4 which matched the exponent of the binomial
(a+b)4. The exponent on a begins at 4 and decreases by one as we move from one term to the next
while the exponent on b starts at 0 and increases by one each time. Also note that the binomial
coefficients themselves have a pattern. The upper number, 4, matches the exponent on the binomial
(a + b)4 whereas the lower number changes from term to term and matches the exponent of b in
that term. This is no coincidence and corresponds to the kind of counting we discussed earlier. If
we think of obtaining (a+ b)4 by multiplying (a+ b)(a+ b)(a+ b)(a+ b), our answer is the sum of
all possible products with exactly four factors - some a, some b. If we wish to count, for instance,
the number of ways we obtain 1 factor of b out of a total of 4 possible factors, thereby forcing the
remaining 3 factors to be a, the answer is

(
4
1

)
. Hence, the term

(
4
1

)
a3b is in the expansion. The

other terms which appear cover the remaining cases. While this discussion gives an indication as
to why the theorem is true, a formal proof requires Mathematical Induction.4

To prove the Binomial Theorem, we let P (n) be the expansion formula given in the statement of
the theorem and we note that P (1) is true since

(a+ b)1 ?
=

1∑
j=0

(
1

j

)
a1−jbj

a+ b
?
=

(
1

0

)
a1−0b0 +

(
1

1

)
a1−1b1

a+ b = a+ bX

Now we assume that P (k) is true. That is, we assume that we can expand (a + b)k using the
formula given in Theorem 9.4 and attempt to show that P (k + 1) is true.

4and a fair amount of tenacity and attention to detail.
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(a+ b)k+1 = (a+ b)(a+ b)k

= (a+ b)
k∑
j=0

(
k

j

)
ak−jbj

= a

k∑
j=0

(
k

j

)
ak−jbj + b

k∑
j=0

(
k

j

)
ak−jbj

=

k∑
j=0

(
k

j

)
ak+1−jbj +

k∑
j=0

(
k

j

)
ak−jbj+1

Our goal is to combine as many of the terms as possible within the two summations. As the counter
j in the first summation runs from 0 through k, we get terms involving ak+1, akb, ak−1b2, . . . , abk.
In the second summation, we get terms involving akb, ak−1b2, . . . , abk, bk+1. In other words, apart
from the first term in the first summation and the last term in the second summation, we have
terms common to both summations. Our next move is to ‘kick out’ the terms which we cannot
combine and rewrite the summations so that we can combine them. To that end, we note

k∑
j=0

(
k

j

)
ak+1−jbj = ak+1 +

k∑
j=1

(
k

j

)
ak+1−jbj

and

k∑
j=0

(
k

j

)
ak−jbj+1 =

k−1∑
j=0

(
k

j

)
ak−jbj+1 + bk+1

so that

(a+ b)k+1 = ak+1 +

k∑
j=1

(
k

j

)
ak+1−jbj +

k−1∑
j=0

(
k

j

)
ak−jbj+1 + bk+1

We now wish to write

k∑
j=1

(
k

j

)
ak+1−jbj +

k−1∑
j=0

(
k

j

)
ak−jbj+1

as a single summation. The wrinkle is that the first summation starts with j = 1, while the second
starts with j = 0. Even though the sums produce terms with the same powers of a and b, they do
so for different values of j. To resolve this, we need to shift the index on the second summation so
that the index j starts at j = 1 instead of j = 0 and we make use of Theorem 9.1 in the process.
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9.4 The Binomial Theorem 687

k−1∑
j=0

(
k

j

)
ak−jbj+1 =

k−1+1∑
j=0+1

(
k

j − 1

)
ak−(j−1)b(j−1)+1

=
k∑
j=1

(
k

j − 1

)
ak+1−jbj

We can now combine our two sums using Theorem 9.1 and simplify using Theorem 9.3

k∑
j=1

(
k

j

)
ak+1−jbj +

k−1∑
j=0

(
k

j

)
ak−jbj+1 =

k∑
j=1

(
k

j

)
ak+1−jbj +

k∑
j=1

(
k

j − 1

)
ak+1−jbj

=
k∑
j=1

[(
k

j

)
+

(
k

j − 1

)]
ak+1−jbj

=

k∑
j=1

(
k + 1

j

)
ak+1−jbj

Using this and the fact that
(
k+1

0

)
= 1 and

(
k+1
k+1

)
= 1, we get

(a+ b)k+1 = ak+1 +

k∑
j=1

(
k + 1

j

)
ak+1−jbj + bk+1

=

(
k + 1

0

)
ak+1b0 +

k∑
j=1

(
k + 1

j

)
ak+1−jbj +

(
k + 1

k + 1

)
a0bk+1

=
k+1∑
j=0

(
k + 1

j

)
a(k+1)−jbj

which shows that P (k + 1) is true. Hence, by induction, we have established that the Binomial
Theorem holds for all natural numbers n.

Example 9.4.2. Use the Binomial Theorem to find the following.

1. (x− 2)4 2. 2.13

3. The term containing x3 in the expansion (2x+ y)5

Solution.

1. Since (x− 2)4 = (x+ (−2))4, we identify a = x, b = −2 and n = 4 and obtain
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(x− 2)4 =

4∑
j=0

(
4

j

)
x4−j(−2)j

=

(
4

0

)
x4−0(−2)0+

(
4

1

)
x4−1(−2)1+

(
4

2

)
x4−2(−2)2+

(
4

3

)
x4−3(−2)3+

(
4

4

)
x4−4(−2)4

= x4 − 8x3 + 24x2 − 32x+ 16

2. At first this problem seem misplaced, but we can write 2.13 = (2 + 0.1)3. Identifying a = 2,
b = 0.1 = 1

10 and n = 3, we get

(
2 +

1

10

)3

=
3∑
j=0

(
3

j

)
23−j

(
1

10

)j
=

(
3

0

)
23−0

(
1

10

)0

+

(
3

1

)
23−1

(
1

10

)1

+

(
3

2

)
23−2

(
1

10

)2

+

(
3

3

)
23−3

(
1

10

)3

= 8 +
12

10
+

6

100
+

1

1000

= 8 + 1.2 + 0.06 + 0.001
= 9.261

3. Identifying a = 2x, b = y and n = 5, the Binomial Theorem gives

(2x+ y)5 =
5∑
j=0

(
5

j

)
(2x)5−jyj

Since we are concerned with only the term containing x3, there is no need to expand the
entire sum. The exponents on each term must add to 5 and if the exponent on x is 3, the
exponent on y must be 2. Plucking out the term j = 2, we get

(
5

2

)
(2x)5−2y2 = 10(2x)3y2 = 80x3y2

We close this section with Pascal’s Triangle, named in honor of the mathematician Blaise Pascal.
Pascal’s Triangle is obtained by arranging the binomial coefficients in the triangular fashion below.
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(
0

0

)
(

1

0

) (
1

1

)
↘↙(

2

0

) (
2

1

) (
2

2

)
↘↙ ↘↙(

3

0

) (
3

1

) (
3

2

) (
3

3

)
↘↙ ↘↙ ↘↙(

4

0

) (
4

1

) (
4

2

) (
4

3

) (
4

4

)
...

Since
(
n
0

)
= 1 and

(
n
n

)
= 1 for all whole numbers n, we get that each row of Pascal’s Triangle

begins and ends with 1. To generate the numbers in the middle of the rows (from the third row
onwards), we take advantage of the additive relationship expressed in Theorem 9.3. For instance,(

1
0

)
+
(

1
1

)
=
(

2
1

)
,
(

2
0

)
+
(

2
1

)
=
(

3
1

)
and so forth. This relationship is indicated by the arrows in the

array above. With these two facts in hand, we can quickly generate Pascal’s Triangle. We start
with the first two rows, 1 and 1 1. From that point on, each successive row begins and ends with
1 and the middle numbers are generated using Theorem 9.3. Below we attempt to demonstrate
this building process to generate the first five rows of Pascal’s Triangle.

1
1 1
↘↙

1 1 + 1 1

−−−−−−→
1

1 1
1 2 1

1
1 1

1 2 1
↘↙ ↘↙

1 1 + 2 2 + 1 1

−−−−−−→

1
1 1

1 2 1
1 3 3 1

1
1 1

1 2 1
1 3 3 1
↘↙ ↘↙ ↘↙

1 1 + 3 3 + 3 3 + 1 1

−−−−−−→

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
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To see how we can use Pascal’s Triangle to expedite the Binomial Theorem, suppose we wish to
expand (3x − y)4. The coefficients we need are

(
4
j

)
for j = 0, 1, 2, 3, 4 and are the numbers which

form the fifth row of Pascal’s Triangle. Since we know that the exponent of 3x in the first term is
4 and then decreases by one as we go from left to right while the exponent of −y starts at 0 in the
first term and then increases by one as we move from left to right, we quickly obtain

(3x− y)4 = (1)(3x)4 + (4)(3x)3(−y) + (6)(3x)2(−y)2 + 4(3x)(−y)3 + 1(−y)4

= 81x4 − 108x3y + 54x2y2 − 12xy3 + y4

We would like to stress that Pascal’s Triangle is a very quick method to expand an entire binomial.
If only a term (or two or three) is required, then the Binomial Theorem is definitely the way to go.
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9.4 The Binomial Theorem 691

9.4.1 Exercises

In Exercises 1 - 9, simplify the given expression.

1. (3!)2
2.

10!

7!
3.

7!

233!

4.
9!

4!3!2!
5.

(n+ 1)!

n!
, n ≥ 0. 6.

(k − 1)!

(k + 2)!
, k ≥ 1.

7.

(
8

3

)
8.

(
117

0

)
9.

(
n

n− 2

)
, n ≥ 2

In Exercises 10 - 13, use Pascal’s Triangle to expand the given binomial.

10. (x+ 2)5 11. (2x− 1)4 12.
(

1
3x+ y2

)3
13.

(
x− x−1

)4
In Exercises 14 - 17, use Pascal’s Triangle to simplify the given power of a complex number.

14. (1 + 2i)4 15.
(
−1 + i

√
3
)3

16.

(√
3

2
+

1

2
i

)3

17.

(√
2

2
−
√

2

2
i

)4

In Exercises 18 - 22, use the Binomial Theorem to find the indicated term.

18. The term containing x3 in the expansion (2x− y)5

19. The term containing x117 in the expansion (x+ 2)118

20. The term containing x
7
2 in the expansion (

√
x− 3)

8

21. The term containing x−7 in the expansion
(
2x− x−3

)5
22. The constant term in the expansion

(
x+ x−1

)8
23. Use the Prinicple of Mathematical Induction to prove n! > 2n for n ≥ 4.

24. Prove

n∑
j=0

(
n

j

)
= 2n for all natural numbers n. (HINT: Use the Binomial Theorem!)

25. With the help of your classmates, research Patterns and Properties of Pascal’s Triangle.

26. You’ve just won three tickets to see the new film, ‘8.9.’ Five of your friends, Albert, Beth,
Chuck, Dan, and Eugene, are interested in seeing it with you. With the help of your class-
mates, list all the possible ways to distribute your two extra tickets among your five friends.
Now suppose you’ve come down with the flu. List all the different ways you can distribute the
three tickets among these five friends. How does this compare with the first list you made?
What does this have to do with the fact that

(
5
2

)
=
(

5
3

)
?
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9.4.2 Answers

1. 36 2. 720 3. 105

4. 1260 5. n+ 1 6. 1
k(k+1)(k+2)

7. 56 8. 1 9. n(n−1)
2

10. (x+ 2)5 = x5 + 10x4 + 40x3 + 80x2 + 80x+ 32

11. (2x− 1)4 = 16x4 − 32x3 + 24x2 − 8x+ 1

12.
(

1
3x+ y2

)3
= 1

27x
3 + 1

3x
2y2 + xy4 + y6

13.
(
x− x−1

)4
= x4 − 4x2 + 6− 4x−2 + x−4

14. −7− 24i 15. 8 16. i 17. −1

18. 80x3y2 19. 236x117 20. −24x
7
2 21. −40x−7 22. 70
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Index

nth root

of a complex number, 998, 999

principal, 397

nth Roots of Unity, 1004

u-substitution, 273

x-axis, 6

x-coordinate, 6

x-intercept, 25

y-axis, 6

y-coordinate, 6

y-intercept, 25

abscissa, 6

absolute value

definition of, 173

inequality, 211

properties of, 173

acidity of a solution

pH, 432

acute angle, 694

adjoint of a matrix, 622

alkalinity of a solution

pH, 432

amplitude, 794, 879

angle

acute, 694

between two vectors, 1033, 1034

central angle, 701

complementary, 696

coterminal, 698

decimal degrees, 695

definition, 693

degree, 694

DMS, 695

initial side, 698

measurement, 693

negative, 698

obtuse, 694

of declination, 761

of depression, 761

of elevation, 753

of inclination, 753

oriented, 697

positive, 698

quadrantal, 698

radian measure, 701

reference, 721

right, 694

standard position, 698

straight, 693

supplementary, 696

terminal side, 698

vertex, 693

angle side opposite pairs, 894

angular frequency, 708

annuity

annuity-due, 667

ordinary

definition of, 666

future value, 667

applied domain of a function, 60

arccosecant

calculus friendly

definition of, 831

graph of, 830

properties of, 831

1067
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1068 Index

trigonometry friendly

definition of, 828

graph of, 827

properties of, 828

arccosine

definition of, 820

graph of, 819

properties of, 820

arccotangent

definition of, 824

graph of, 824

properties of, 824

arcsecant

calculus friendly

definition of, 831

graph of, 830

properties of, 831

trigonometry friendly

definition of, 828

graph of, 827

properties of, 828

arcsine

definition of, 820

graph of, 820

properties of, 820

arctangent

definition of, 824

graph of, 823

properties of, 824

argument

of a complex number

definition of, 989

properties of, 993

of a function, 55

of a logarithm, 425

of a trigonometric function, 793

arithmetic sequence, 654

associative property

for function composition, 366

matrix

addition, 579

matrix multiplication, 585

scalar multiplication, 581
vector

addition, 1013
scalar multiplication, 1016

asymptote
horizontal

formal definition of, 304
intuitive definition of, 304
location of, 308

of a hyperbola, 531
slant

determination of, 312
formal definition of, 311

slant (oblique), 311
vertical

formal definition of, 304
intuitive definition of, 304
location of, 306

augmented matrix, 568
average angular velocity, 707
average cost, 346
average cost function, 82
average rate of change, 160
average velocity, 706
axis of symmetry, 191

back substitution, 560
bearings, 903
binomial coefficient, 683
Binomial Theorem, 684
Bisection Method, 277
BMI, body mass index, 355
Boyle’s Law, 350
buffer solution, 478

cardioid, 949
Cartesian coordinate plane, 6
Cartesian coordinates, 6
Cauchy’s Bound, 269
center

of a circle, 498
of a hyperbola, 531
of an ellipse, 516
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central angle, 701

change of base formulas, 442

characteristic polynomial, 626

Charles’s Law, 355

circle

center of, 498

definition of, 498

from slicing a cone, 495

radius of, 498

standard equation, 498

standard equation, alternate, 519

circular function, 744

cis(θ), 993

coefficient of determination, 226

cofactor, 616

Cofunction Identities, 773

common base, 420

common logarithm, 422

commutative property

function composition does not have, 366

matrix

addition, 579

vector

addition, 1013

dot product, 1032

complementary angles, 696

Complex Factorization Theorem, 289

complex number

nth root, 998, 999

nth Roots of Unity, 1004

argument

definition of, 989

properties of, 993

conjugate

definition of, 287

properties of, 288

definition of, 2, 286, 989

imaginary part, 989

imaginary unit, i, 286

modulus

definition of, 989

properties of, 991

polar form

cis-notation, 993

principal argument, 989

real part, 989

rectangular form, 989

set of, 2

complex plane, 989

component form of a vector, 1011

composite function

definition of, 360

properties of, 367

compound interest, 470

conic sections

definition, 495

conjugate axis of a hyperbola, 532

conjugate of a complex number

definition of, 287

properties of, 288

Conjugate Pairs Theorem, 290

consistent system, 553

constant function

as a horizontal line, 156

formal definition of, 101

intuitive definition of, 100

constant of proportionality, 350

constant term of a polynomial, 236

continuous, 241

continuously compounded interest, 472

contradiction, 549

coordinates

Cartesian, 6

polar, 917

rectangular, 917

correlation coefficient, 226

cosecant

graph of, 801

of an angle, 744, 752

properties of, 802

cosine

graph of, 791

of an angle, 717, 730, 744

properties of, 791
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cost
average, 82, 346
fixed, start-up, 82
variable, 159

cost function, 82
cotangent

graph of, 805
of an angle, 744, 752
properties of, 806

coterminal angle, 698
Coulomb’s Law, 355
Cramer’s Rule, 619
curve

orientated, 1046
cycloid, 1054

decibel, 431
decimal degrees, 695
decreasing function

formal definition of, 101
intuitive definition of, 100

degree measure, 694
degree of a polynomial, 236
DeMoivre’s Theorem, 995
dependent system, 554
dependent variable, 55
depreciation, 420
Descartes’ Rule of Signs, 273
determinant of a matrix

definition of, 614
properties of, 616

Difference Identity
for cosine, 771, 775
for sine, 773, 775
for tangent, 775

difference quotient, 79
dimension

of a matrix, 567
direct variation, 350
directrix

of a conic section in polar form, 979
of a parabola, 505

discriminant

of a conic, 977
of a quadratic equation, 195
trichotomy, 195

distance
definition, 10
distance formula, 11

distributive property
matrix

matrix multiplication, 585
scalar multiplication, 581

vector
dot product, 1032
scalar multiplication, 1016

DMS, 695
domain

applied, 60
definition of, 45
implied, 58

dot product
commutative property of, 1032
definition of, 1032
distributive property of, 1032
geometric interpretation, 1033
properties of, 1032
relation to orthogonality, 1035
relation to vector magnitude, 1032
work, 1040

Double Angle Identities, 776

earthquake
Richter Scale, 431

eccentricity, 522, 979
eigenvalue, 626
eigenvector, 626
ellipse

center, 516
definition of, 516
eccentricity, 522
foci, 516
from slicing a cone, 496
guide rectangle, 519
major axis, 516
minor axis, 516
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reflective property, 523
standard equation, 519
vertices, 516

ellipsis (. . . ), 31, 651
empty set, 2
end behavior

of f(x) = axn, n even, 240
of f(x) = axn, n odd, 240
of a function graph, 239
polynomial, 243

entry
in a matrix, 567

equation
contradiction, 549
graph of, 23
identity, 549
linear of n variables, 554
linear of two variables, 549

even function, 95
Even/Odd Identities, 770
exponential function

algebraic properties of, 437
change of base formula, 442
common base, 420
definition of, 418
graphical properties of, 419
inverse properties of, 437
natural base, 420
one-to-one properties of, 437
solving equations with, 448

extended interval notation, 756

Factor Theorem, 258
factorial, 654, 681
fixed cost, 82
focal diameter of a parabola, 507
focal length of a parabola, 506
focus

of a conic section in polar form, 979
focus (foci)

of a hyperbola, 531
of a parabola, 505
of an ellipse, 516

free variable, 552

frequency

angular, 708, 879

of a sinusoid, 795

ordinary, 708, 879

function

(absolute) maximum, 101

(absolute, global) minimum, 101

absolute value, 173

algebraic, 399

argument, 55

arithmetic, 76

as a process, 55, 378

average cost, 82

circular, 744

composite

definition of, 360

properties of, 367

constant, 100, 156

continuous, 241

cost, 82

decreasing, 100

definition as a relation, 43

dependent variable of, 55

difference, 76

difference quotient, 79

domain, 45

even, 95

exponential, 418

Fundamental Graphing Principle, 93

identity, 168

increasing, 100

independent variable of, 55

inverse

definition of, 379

properties of, 379

solving for, 384

uniqueness of, 380

linear, 156

local (relative) maximum, 101

local (relative) minimum, 101

logarithmic, 422
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notation, 55
odd, 95
one-to-one, 381
periodic, 790
piecewise-defined, 62
polynomial, 235
price-demand, 82
product, 76
profit, 82
quadratic, 188
quotient, 76
range, 45
rational, 301
revenue, 82
smooth, 241
sum, 76
transformation of graphs, 120, 135
zero, 95

fundamental cycle
of y = cos(x), 791

Fundamental Graphing Principle
for equations, 23
for functions, 93
for polar equations, 936

Fundamental Theorem of Algebra, 289

Gauss-Jordan Elimination, 571
Gaussian Elimination, 557
geometric sequence, 654
geometric series, 669
graph

hole in, 305
horizontal scaling, 132
horizontal shift, 123
of a function, 93
of a relation, 20
of an equation, 23
rational function, 321
reflection about an axis, 126
transformations, 135
vertical scaling, 130
vertical shift, 121

greatest integer function, 67

growth model
limited, 475
logistic, 475
uninhibited, 472

guide rectangle
for a hyperbola, 532
for an ellipse, 519

Half-Angle Formulas, 779
harmonic motion, 883
Henderson-Hasselbalch Equation, 446
Heron’s Formula, 912
hole

in a graph, 305
location of, 306

Hooke’s Law, 350
horizontal asymptote

formal definition of, 304
intuitive definition of, 304
location of, 308

horizontal line, 23
Horizontal Line Test (HLT), 381
hyperbola

asymptotes, 531
branch, 531
center, 531
conjugate axis, 532
definition of, 531
foci, 531
from slicing a cone, 496
guide rectangle, 532
standard equation

horizontal, 534
vertical, 534

transverse axis, 531
vertices, 531

hyperbolic cosine, 1060
hyperbolic sine, 1060
hyperboloid, 542

identity
function, 367
matrix, additive, 579
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matrix, multiplicative, 585

statement which is always true, 549

imaginary axis, 989

imaginary part of a complex number, 989

imaginary unit, i, 286

implied domain of a function, 58

inconsistent system, 553

increasing function

formal definition of, 101

intuitive definition of, 100

independent system, 554

independent variable, 55

index of a root, 397

induction

base step, 673

induction hypothesis, 673

inductive step, 673

inequality

absolute value, 211

graphical interpretation, 209

non-linear, 643

quadratic, 215

sign diagram, 214

inflection point, 477

information entropy, 477

initial side of an angle, 698

instantaneous rate of change, 161, 472, 707

integer

definition of, 2

greatest integer function, 67

set of, 2

intercept

definition of, 25

location of, 25

interest

compound, 470

compounded continuously, 472

simple, 469

Intermediate Value Theorem

polynomial zero version, 241

interrobang, 321

intersection of two sets, 4

interval
definition of, 3
notation for, 3
notation, extended, 756

inverse
matrix, additive, 579, 581
matrix, multiplicative, 602
of a function

definition of, 379
properties of, 379
solving for, 384
uniqueness of, 380

inverse variation, 350
invertibility

function, 382
invertible

function, 379
matrix, 602

irrational number
definition of, 2
set of, 2

irreducible quadratic, 290

joint variation, 350

Kepler’s Third Law of Planetary Motion, 355
Kirchhoff’s Voltage Law, 605

latus rectum of a parabola, 507
Law of Cosines, 908
Law of Sines, 895
leading coefficient of a polynomial, 236
leading term of a polynomial, 236
Learning Curve Equation, 315
least squares regression line, 225
lemniscate, 948
limaçon, 948
line

horizontal, 23
least squares regression, 225
linear function, 156
of best fit, 225
parallel, 166

543



1074 Index

perpendicular, 167
point-slope form, 155
slope of, 151
slope-intercept form, 155
vertical, 23

linear equation
n variables, 554
two variables, 549

linear function, 156
local maximum

formal definition of, 102
intuitive definition of, 101

local minimum
formal definition of, 102
intuitive definition of, 101

logarithm
algebraic properties of, 438
change of base formula, 442
common, 422
general, “base b”, 422
graphical properties of, 423
inverse properties of, 437
natural, 422
one-to-one properties of, 437
solving equations with, 459

logarithmic scales, 431
logistic growth, 475
LORAN, 538
lower triangular matrix, 593

main diagonal, 585
major axis of an ellipse, 516
Markov Chain, 592
mathematical model, 60
matrix

addition
associative property, 579
commutative property, 579
definition of, 578
properties of, 579

additive identity, 579
additive inverse, 579
adjoint, 622

augmented, 568

characteristic polynomial, 626

cofactor, 616

definition, 567

determinant

definition of, 614

properties of, 616

dimension, 567

entry, 567

equality, 578

invertible, 602

leading entry, 569

lower triangular, 593

main diagonal, 585

matrix multiplication

associative property of, 585

definition of, 584

distributive property, 585

identity for, 585

properties of, 585

minor, 616

multiplicative inverse, 602

product of row and column, 584

reduced row echelon form, 570

rotation, 984

row echelon form, 569

row operations, 568

scalar multiplication

associative property of, 581

definition of, 580

distributive properties, 581

identity for, 581

properties of, 581

zero product property, 581

size, 567

square matrix, 586

sum, 578

upper triangular, 593

maximum

formal definition of, 102

intuitive definition of, 101

measure of an angle, 693
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midpoint
definition of, 12
midpoint formula, 13

minimum
formal definition of, 102
intuitive definition of, 101

minor, 616
minor axis of an ellipse, 516
model

mathematical, 60
modulus of a complex number

definition of, 989
properties of, 991

multiplicity
effect on the graph of a polynomial, 245, 249
of a zero, 244

natural base, 420
natural logarithm, 422
natural number

definition of, 2
set of, 2

negative angle, 698
Newton’s Law of Cooling, 421, 474
Newton’s Law of Universal Gravitation, 351

oblique asymptote, 311
obtuse angle, 694
odd function, 95
Ohm’s Law, 350, 605
one-to-one function, 381
ordered pair, 6
ordinary frequency, 708
ordinate, 6
orientation, 1046
oriented angle, 697
oriented arc, 704
origin, 7
orthogonal projection, 1036
orthogonal vectors, 1035
overdetermined system, 554

parabola

axis of symmetry, 191

definition of, 505

directrix, 505

focal diameter, 507

focal length, 506

focus, 505

from slicing a cone, 496

graph of a quadratic function, 188

latus rectum, 507

reflective property, 510

standard equation

horizontal, 508

vertical, 506

vertex, 188, 505

vertex formulas, 194

paraboloid, 510

parallel vectors, 1028

parameter, 1046

parametric equations, 1046

parametric solution, 552

parametrization, 1046

partial fractions, 628

Pascal’s Triangle, 688

password strength, 477

period

circular motion, 708

of a function, 790

of a sinusoid, 879

periodic function, 790

pH, 432

phase, 795, 879

phase shift, 795, 879

pi, π, 700

piecewise-defined function, 62

point of diminishing returns, 477

point-slope form of a line, 155

polar coordinates

conversion into rectangular, 922

definition of, 917

equivalent representations of, 921

polar axis, 917

pole, 917
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polar form of a complex number, 993

polar rose, 948

polynomial division

dividend, 258

divisor, 258

factor, 258

quotient, 258

remainder, 258

synthetic division, 260

polynomial function

completely factored

over the complex numbers, 290

over the real numbers, 290

constant term, 236

definition of, 235

degree, 236

end behavior, 239

leading coefficient, 236

leading term, 236

variations in sign, 273

zero

lower bound, 274

multiplicity, 244

upper bound, 274

positive angle, 698

Power Reduction Formulas, 778

power rule

for absolute value, 173

for complex numbers, 995

for exponential functions, 437

for logarithms, 438

for radicals, 398

for the modulus of a complex number, 991

price-demand function, 82

principal, 469

principal nth root, 397

principal argument of a complex number, 989

principal unit vectors, ı̂, ̂, 1022

Principle of Mathematical Induction, 673

product rule

for absolute value, 173

for complex numbers, 995

for exponential functions, 437
for logarithms, 438
for radicals, 398
for the modulus of a complex number, 991

Product to Sum Formulas, 780
profit function, 82
projection

x−axis, 45
y−axis, 46
orthogonal, 1036

Pythagorean Conjugates, 751
Pythagorean Identities, 749

quadrantal angle, 698
quadrants, 8
quadratic formula, 194
quadratic function

definition of, 188
general form, 190
inequality, 215
irreducible quadratic, 290
standard form, 190

quadratic regression, 228
Quotient Identities, 745
quotient rule

for absolute value, 173
for complex numbers, 995
for exponential functions, 437
for logarithms, 438
for radicals, 398
for the modulus of a complex number, 991

radian measure, 701
radical

properties of, 398
radicand, 397
radioactive decay, 473
radius

of a circle, 498
range

definition of, 45
rate of change

average, 160
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instantaneous, 161, 472

slope of a line, 154

rational exponent, 398

rational functions, 301

rational number

definition of, 2

set of, 2

Rational Zeros Theorem, 269

ray

definition of, 693

initial point, 693

real axis, 989

Real Factorization Theorem, 291

real number

definition of, 2

set of, 2

real part of a complex number, 989

Reciprocal Identities, 745

rectangular coordinates

also known as Cartesian coordinates, 917

conversion into polar, 922

rectangular form of a complex number, 989

recursion equation, 654

reduced row echelon form, 570

reference angle, 721

Reference Angle Theorem

for cosine and sine, 722

for the circular functions, 747

reflection

of a function graph, 126

of a point, 10

regression

coefficient of determination, 226

correlation coefficient, 226

least squares line, 225

quadratic, 228

total squared error, 225

relation

algebraic description, 23

definition, 20

Fundamental Graphing Principle, 23

Remainder Theorem, 258

revenue function, 82
Richter Scale, 431
right angle, 694
root

index, 397
radicand, 397

Roots of Unity, 1004
rotation matrix, 984
rotation of axes, 972
row echelon form, 569
row operations for a matrix, 568

scalar multiplication
matrix

associative property of, 581
definition of, 580
distributive properties of, 581
properties of, 581

vector
associative property of, 1016
definition of, 1015
distributive properties of, 1016
properties of, 1016

scalar projection, 1037
secant

graph of, 800
of an angle, 744, 752
properties of, 802

secant line, 160
sequence

nth term, 652
alternating, 652
arithmetic

common difference, 654
definition of, 654
formula for nth term, 656
sum of first n terms, 666

definition of, 652
geometric

common ratio, 654
definition of, 654
formula for nth term, 656
sum of first n terms, 666
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recursive, 654

series, 668

set

definition of, 1

empty, 2

intersection, 4

roster method, 1

set-builder notation, 1

sets of numbers, 2

union, 4

verbal description, 1

set-builder notation, 1

Side-Angle-Side triangle, 908

Side-Side-Side triangle, 908

sign diagram

algebraic function, 399

for quadratic inequality, 214

polynomial function, 242

rational function, 321

simple interest, 469

sine

graph of, 792

of an angle, 717, 730, 744

properties of, 791

sinusoid

amplitude, 794, 879

baseline, 879

frequency

angular, 879

ordinary, 879

graph of, 795, 880

period, 879

phase, 879

phase shift, 795, 879

properties of, 879

vertical shift, 879

slant asymptote, 311

slant asymptote

determination of, 312

formal definition of, 311

slope

definition, 151

of a line, 151

rate of change, 154

slope-intercept form of a line, 155

smooth, 241

sound intensity level

decibel, 431

square matrix, 586

standard position of a vector, 1017

standard position of an angle, 698

start-up cost, 82

steady state, 592

stochastic process, 592

straight angle, 693

Sum Identity

for cosine, 771, 775

for sine, 773, 775

for tangent, 775

Sum to Product Formulas, 781

summation notation

definition of, 661

index of summation, 661

lower limit of summation, 661

properties of, 664

upper limit of summation, 661

supplementary angles, 696

symmetry

about the x-axis, 9

about the y-axis, 9

about the origin, 9

testing a function graph for, 95

testing an equation for, 26

synthetic division tableau, 260

system of equations

back-substitution, 560

coefficient matrix, 590

consistent, 553

constant matrix, 590

definition, 549

dependent, 554

free variable, 552

Gauss-Jordan Elimination, 571

Gaussian Elimination, 557
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inconsistent, 553
independent, 554
leading variable, 556
linear
n variables, 554
two variables, 550

linear in form, 646
non-linear, 637
overdetermined, 554
parametric solution, 552
triangular form, 556
underdetermined, 554
unknowns matrix, 590

tangent
graph of, 804
of an angle, 744, 752
properties of, 806

terminal side of an angle, 698
Thurstone, Louis Leon, 315
total squared error, 225
transformation

non-rigid, 129
rigid, 129

transformations of function graphs, 120, 135
transverse axis of a hyperbola, 531
Triangle Inequality, 183
triangular form, 556

underdetermined system, 554
uninhibited growth, 472
union of two sets, 4
Unit Circle

definition of, 501
important points, 724

unit vector, 1021
Upper and Lower Bounds Theorem, 274
upper triangular matrix, 593

variable
dependent, 55
independent, 55

variable cost, 159

variation

constant of proportionality, 350

direct, 350

inverse, 350

joint, 350

variations in sign, 273

vector

x-component, 1010

y-component, 1010

addition

associative property, 1013

commutative property, 1013

definition of, 1012

properties of, 1013

additive identity, 1013

additive inverse, 1013, 1016

angle between two, 1033, 1034

component form, 1010

Decomposition Theorem

Generalized, 1038

Principal, 1022

definition of, 1010

direction

definition of, 1018

properties of, 1018

dot product

commutative property of, 1032

definition of, 1032

distributive property of, 1032

geometric interpretation, 1033

properties of, 1032

relation to magnitude, 1032

relation to orthogonality, 1035

work, 1040

head, 1010

initial point, 1010

magnitude

definition of, 1018

properties of, 1018

relation to dot product, 1032

normalization, 1022

orthogonal projection, 1036
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orthogonal vectors, 1035
parallel, 1028
principal unit vectors, ı̂, ̂, 1022
resultant, 1011
scalar multiplication

associative property of, 1016
definition of, 1015
distributive properties, 1016
identity for, 1016
properties of, 1016
zero product property, 1016

scalar product
definition of, 1032
properties of, 1032

scalar projection, 1037
standard position, 1017
tail, 1010
terminal point, 1010
triangle inequality, 1042
unit vector, 1021

velocity
average angular, 707
instantaneous, 707
instantaneous angular, 707

vertex
of a hyperbola, 531
of a parabola, 188, 505
of an angle, 693
of an ellipse, 516

vertical asymptote
formal definition of, 304
intuitive definition of, 304
location of, 306

vertical line, 23
Vertical Line Test (VLT), 43

whole number
definition of, 2
set of, 2

work, 1039
wrapping function, 704

zero

multiplicity of, 244
of a function, 95
upper and lower bounds, 274
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